Folding of Stratigraphic Layersin Ice Domes

Herbert Paul Jacobson |11

A dissertation submitted in partial fulfillment

of the requirementsfor the degree of

Doctor of Philosophy

University of Washington

2001

Program Authorized to Offer Degree: Earth and Space Sciences






University of Washington
Graduate School

Thisisto certify that | have examined this copy of adoctoral dissertation by

Herbert Paul Jacobson |11

and have found that it is complete and satisfactory in all respects,
and that any and all revisionsrequired by the final

examining committee have been made.

Chair of Supervisory Committee:

Edwin D. Waddington

Reading Committee:

Charles F. Raymond

Bernard Hallet

Date:







In presenting this dissertation in partial fulfillment of the requirements for the Doctoral degree at
the University of Washington, | agree that the Library shall make its copies freely available for in-
spection. | further agree that extensive copying of this dissertation is alowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Bell and Howell Information and Learning,
300 North Zeeb Road, Ann Arbor, M1 48106-1346, to whom the author has granted “the right to re-
produce and sell (&) copiesof the manuscript in microform and/or (b) printed copies of the manuscript

made from microform.”

Signature

Date







University of Washington
Abstract
Folding of Stratigraphic Layersin Ice Domes
by Herbert Paul Jacobson I11

Chair of Supervisory Committee:

Professor Edwin D. Waddington
Dept. of Earth and Space Sciences

Thisdissertation presentsatwo part model of the formation of recumbent foldsin stratigraphiclayers
of ice sheets such asthose in Greenland and Antarctica. Theinitial disturbancesin the stratigraphy
have their roots in transient dynamic processes and local rheological inhomogeneities, but the kine-
matics of even asimpleice flow model can deform these disturbances enough to alter paleoclimatic
interpretation of an ice core. This study focuses on this deformation, treating the disturbed strati-
graphic layers as passive markers in the large—scale flow.

The two major tools that | use to study overturning are core—relative isochrones (precores) and
the deformation gradient tensor along a particle path. This tensor is used to calculate the rotation
of stratigraphic segments of various orientations. It is also used in a stochastic model to derive the
probability distribution of observing overturned segments given a probability distribution of the ini-
tial disturbances.

Overturn probabilitiesincrease downstream along a path. They also increase with depth, unless
the initial disturbance processes are concentrated at a particular depth. Because of rapid rate of ro-
tation of near—vertical segments, the probability of seeing obvious overturning in a small ice—core
cross—section is low even if recumbent folds are present. Gentle disturbances are more likely to be
overturned if they occur deep in theice where the shear is strongest.

Overlaying precores on divide arch isochrones shows that ice divide movement can produce re-

cumbent folds. Thismovement must have a stop—start quality, with enough stability to produce ma-






ture arching, but also enough movement to leave an orphaned disturbance on the flank where it can
be overturned. Such folding may be most likely downstream from ice ridges bounded by variable
ice streams.

Thevariationinthevertical thicknessof adisturbed layer isalso examined. Evenif adisturbance
is not overturned, some portions will be thinned more than undisturbed |ayers while other portions
will be thickened. Passive deformation may reduce or exaggerate certain aspects of dynamicaly
produced stratigraphic disturbances, but it does not obliterate them.
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INTRODUCTION

This dissertation examines the possibility that recumbent folding could disturb the stratigraphic
layering in cores taken from ice sheets in Greenland and Antarctica. | use a two—stage model of
folding inwhich the large—scale flow of the ice sheet shears and overturns disturbancesin the steady
state stratigraphy (Figure 0.1). Theinitial disturbances must be produced by transient dynamic pro-
cesses and local rheological inhomogeneities. The core of thiswork is afinite strain analysis of the
deformation of such disturbancesby the large—scale flow. The goal of thiswork isto identify where
recumbent folding could occur and how it might affect the stratigraphy in ice cores. Dueto limited
knowledge of the seed processes, it has been most productive to start with afold, and to seek con-
straints on itsorigin.

Chapter 1is presentsfoundationsfor analysis, summarizes previouswork, and outlines the basic
model of folding. Precores and the deformation gradient tensor, F, are two toolsthat | use to evalu-
ate what disturbances could be overturned. The precores are core—relativeisochrones, which can be
derived from conventional stratigraphic isochrones. They give the orientation at upstream points of
segments which are vertical in anice core. F, which can be calculated with a differential equation
along a particle path, isageneral tool for deforming any small disturbance. | apply these toolsto the
question of where observed dips and folds (in the GISP2 ice core) could have originated.

Thisfolding model is extended in Chapter 2 with the addition of a probabilistic component. By
describing the initial disturbance generation in terms of a disturbance injection probability distribu-
tion, | can calculate an overturn probability distribution at points downstream. F is used to define
the the set of overturnable injection events. A number of different injection patterns are examined.

An example of the use of precoresis given in Chapter 3. By overlaying precores and an offset
Raymond bump, | show that a suitabl e stop—start pattern of divide migration can result in recumbent
folding downstream. By tracking layers with a time dependent ice sheet geometry, | look at what
effect the rate of divide migration has on thisfolding.
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Figure 0.1: Large—scale flow deforms open disturbancesinto recumbent folds

In Chapter 4, the F tensor is used to examine the change in the vertical thickness of disturbed
layers as they are deformed by the large—scale flow. After identifying key patterns of change from
a simple disturbance, | look at thickness variations in more general wiggles, including the divide
arching analyzed in Chapter 3.

Appendix A is adetailed description of the flowband velocity model used in this work (a sum-
mary isincluded in Chapter 1). Appendices B, C, and D add other calculation details to the main
chapters. Appendix E describes a generalization of Mohr circles to nonsymmetric linear operators
such asthevelocity gradient and the deformation gradient tensors. Related topics such asthe vortic-
ity number, segment rotation rate, and matching rotation angles are also discussed. Appendix Fisa

preliminary look at folding over an undulating bed. Notation is summarized in Appendix G.



Chapter 1

RECUMBENT FOLDING IN ICE SHEETS- PART 1:
A CORE-REFERENTIAL STUDY

Abstract

To better understand apparent stratigraphic disturbances in ice cores such as GISP2, we examine
how ice sheet flow can transform gentle open folds into order—disturbing recumbent folds. The ini-
tial disturbancesin the stratigraphy must have their roots in transient dynamic processes and local
rheological inhomogeneities, but the kinematics of even asimpleice flow model can deform these
disturbances enough to alter paleoclimatic interpretation of an ice core. The vorticity number of the
local velocity gradient of the flow suggests which structures can be passively overturned, but an-
alyzing the finite strain along particle paths gives a more complete picture. We examine the finite
strain relative to a hypothetical core location. Core—relative isochrones predict which stratigraphic
disturbances will appear as obviously overturned layersin a core. Further insight is gained by cal-
culating the deformation gradient tensor along particle paths and deriving its effect on segments of
different slope. These calculations suggest that observed 20° dipsin the GI SP2 core are rotating on a
time scale of afew hundred yearsand could result from dynamically produced distortionswith much
smaller slopes in the stratigraphy upstream. The time during which they are obviously overturning
issmall because the rotation rate ishigh. Once overturned they are flattened further and may be hard

to recognize, especially in the small cross—section of a core.

1.1 Introduction

Underlying the pal eoclimatic interpretation of ice coresisthe assumption that a core samplestheice
in the order in which it was deposited. Some post—depositional modification in the ice stratigraphy,
such as thinning of annual layers, is anticipated and can be included in the interpretation of the cli-

matic signal. Unanticipated thinning would introduce errors in some climatic signals, such as the



accumulation rate, but actual ateration in the order of some of the stratigraphic layersin the core
sample affects all of the climatic signal they carry.

The suggestion that the GRIP ice core showed evidence of major climatic shifts in part of the
Eemian interglacial period (GRIPmembers, 1993) proved to be particularly controversial when the
nearby GISP2 core lacked the corresponding oxygen isotope oscillations (Grootes et al., 1993). It
was suggested that one or both of the cores had been altered by folding or other forms of mixing.
Further research found evidence for inverted stratigraphy close to the bed by comparing the water
isotope signal with the atmospheric dissolved gases signal (Fuchs and Leuenberger, 1996). A de-
tailed examination of visible stratigraphy showed dips of up to 20°, and even afew small overturned
folds (Alley et al., 1995). A small-scale structure, called 'stripes’, was also identified in the GI SP2
core (Alley et al., 1997).

Interaction of contrasting layers has been been proposed as a cause of such folding (Dahl-Jensen
et al., 1997). Layering in anisotropic ice directly under the divide, where it is subject to vertical
compression appears, in theory, to be unstable (Castelnau et al., 1998; Azuma and Goto-Azuma,
1996). Recumbent Folding observed at the terminus of the Barnes Ice Cap has been attributed to
advancing or retreating margins (Hudleston, 1976). Banding devel oped under oneflow pattern could
be passively deformed and folded when subjected to a different flow.

The GRIP core was drilled close to the current summit divide of the Greenland ice sheet in the
hope of observing a maximum possible thickness of undisturbed ice. The GISP2 core was placed
10 ice thicknesses (30km) to the west to give a complementary sample of near flank flow ice. But
if the divide has moved around during last glacial cycle (Cuffey and Marshal, 2000) it may be best
to consider both locations as near—divide sites. Other cores, such as Dye3, Camp C, and Byrd, have

been drilled on clearly flank positions.

111 APassive Shearing Model of Folding

To understand how stratigraphic layersin an ice sheet could be reordered, Waddington et al. (sub)
(Waddington et al., 1995; Jacobson and Waddington, 1996) have studied the kinematics of forming
recumbent folds from gentle disturbances in otherwise steady state stratigraphy. These initial dis-

turbances could have their rootsin sometransient dynamic process, most likely involving local rhe-
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Figure 1.1: The deformation of a disturbed layer under (a) pure shear and (b) simple shear. Pure
shear, with vertical compression, flattens the disturbance. Simple shear steepens (and overturns) the
A-B edge while leaving the disturbance amplitude unchanged.

ological inhomogeneities. See Waddington et al. (sub) for further evaluation of possible processes
that could generate wiggles.

The deformation in an ice sheet in plane strain can be represented as a combination of vertically
compressive pure shear and bed—parallel simple shear. The pure shear thins and stretches the strati-
graphic layers. It also flattens disturbances in these layers. The simple shear, on the other hand,
"catches' these wiggles and deforms them into order—disrupting recumbent folds. These two effects
areillustrated in Figure 1.1, where the contrasting rotations of the A—B edge are highlighted. When
wediscusstheangleand rotation of asegment, it isthebehavior of just suchaportion of adisturbance
that we have in mind.

Waddington et al. (sub) used this tradeoff between stretching and shearing to determine where

disturbances of any given slope would be flattening and where they would be overturning. They



assessed the plausibility of several proposed disturbance sources, and applied their stability limit es-
timatesto the Dye 3, GRIP, GISP2 and Siple Domeice core sites. Their simple approach was based
entirely on the strain rate at a point, e.g. the point at which a disturbance might be created by local-
ized inhomogeneous flow. As they noted, their assessment gave an optimistic view of stratigraphic
integrity, becauseit neglected variationsin strain rate experienced by disturbancesas they moved (@)
over undulating bedrock, and (b) into deeper regions with stronger bed—parallel shear strain rates.
They were able to estimate the time required for disturbances to overturn, and the distance that dis-
turbances would move during thistime, but only for disturbancesthat were already rotating strongly
at the point of injection. They suggested that finite strain cal cul ations, following disturbancesasthey
moved along particle paths, would produce better assessments of the behavior of marginally unstable
disturbances, and would greatly advance understanding of this passive folding process. This paper
analyzesthosefinitestrainsto understand features of folding that could not be addressed by Wadding-
ton et al. (sub).

Onemeasure of the mixture of pureand simple shear isthe kinematic vorticity number, W, = (T)/ £
(Meanset al., 1980). Thisis defined so that for pure shear Wi = 0, and W, = 1 for simple shear. R
is the rotation rate of the principal axes, and £ is the differencein their strain rates, €max — Emin. 1N
Hudleston and Hooke (1980) thisis the Index of Simple Shear, Iss. Under pure shear the principal

axes do not rotate, while under simple shear their rotation rate equalsthe strain rate.

The vorticity number for asimple ice sheet flowband model® is shown in Figure 1.2. Near the
surface of theice sheet vertical compression dominates so W iscloseto 0. Thisisalso true directly
under the divide where the horizonta flow is negligible. Elsewhere on the flank the proportion of

simple shear increases with depth and W, approaches unity.

In pure shear (asin Figure1.1(a)), vertical and horizontal segmentsdo not rotate, while segments
on either side of vertical rotate toward horizontal. Under simple shear, all segments, except those
parallel to the plane of shear, rotatein the same direction (clockwisein Figure 1.1(b)). In mixed pure
and simple shear (0 < W < 1), thereis some angle, 6, = cos™ W, between vertical and horizontal
that is not rotating, and which separates the clockwise rotating segments from the anti—clockwise

ones (Bobyarchick, 1986). The contoursin Figure 1.2 have a so been labeled with thisangle.

10ur model geometry and notation are explained in Section 1.2.2.
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Figure 1.2: The kinematic vorticity number, W, and the critical wiggle angle, 6;, for asimpleice
sheet model. The left hand number on each contour, W, is a measure of the relative magnitudes of
pure and simple shear. Pure shear dominates near the surface and under the divide (W close to 0)
while simple shear dominates else where (W closeto 1). Theright hand number, 6; is the segment
angle that is not rotating at this point in the flow (cos™*W).

The critical wiggle segment slope, mgit ~ Z~1, in Waddington et al. (sub) is approximately the

tangent of 6;. Their dimensionless shear number, %, is avariant on the vorticity number.

The bump in Figure 1.1 with the A—B segment at about 41° would be flattening if it occurred
above the 41° contour in Figure 1.2. But if it was below this contour, the A—B segment would be

steepening (rotating clockwise).

This no—rotation angle, 6, isnot simply a divider between segments that rotate one way versus
the other. Asasegment movesalong aparticle path, W increasesand 6, decreases. The effect onthe
segment rotation can be seen by considering asegment with an angle equal to 6, at timet on the path.

At thispoint it isnot rotating. Att+ dt, ashort timelater, it will have practically the same angle, but
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Figure 1.3: The change in leading edge rotation direction at 6;, where 6 = 0.

will be further along the path, where 8, will be smaller. Sinceit is now steeper than 6; itsrotationis
clockwise (stegpening) away from 6;. But at an earlier time, t — dt, the local 8, was larger than the
segment angle, which means, that the segment was rotating anti—clockwise (flattening) toward 6;. In
effect the 6, angleis aturn—around point. Segments rotate anti—clockwise until they reach the local

O, at which point, they stop rotating, and start rotating in the other direction.

1.1.2 Observation Points

Since segments can change their direction of rotation, we need to look at the evolution of a distur-

bance over afiniteinterval along a path in order to gain amore detailed understanding of thefolding



process than that which the first analysis of 8, by Waddington et al. (sub) provides. This requires
choosing meaningful end points for such an interval.

Theobviouschoicefor the starting point iswherethe di sturbance originated, assuming, of course,
that there is a point where the transient dynamics generating the disturbance ceases to be significant
and we can focus on the kinematics. In this paper we ignore the complexities of this transition. But
since we do not have a comprehensive theory of how and where this disturbance injection might
occur, we will limit our study to examining the effect of injection at a variety of positions.

We have found it equally productive to specify the interval end point, with an observed or hypo-
thetical fold, and ask what sort of disturbance might have been its precursor. In particular we look
at avertical set of observation points, such as might be sampled in an ice core.

To study this kinematic folding, we use a flowband model to calculate the vel ocity and its gradi-
ent at all points, and usethisto calcul ate particle paths. Themodel capturesthetransitioninvorticity
number, without unnecessary complexities. Then we define and explore the notion of core—relative
isochrones, and show their relevanceto the folding question. Next we calculatethe deformation gra-
dient and show how it tiesin with these isochrones, giving us more general information on segment
rotation. Finally we address the question of how much information is needed to predict where ob-

served folds might have originated.

1.2 Flowband Model

After defining some terminology for dealing with disturbances and angles, we will describeasimple
flowband model of an ice sheet. This model calculates the velocity at points in the flowband as a
function of position and model geometry. Using this velocity field, we can calculate the velocity

gradient, W, and 6;. We can also calculate particle paths and finite strain along these paths.

1.2.1 Disturbance Notation

A prototypical upward disturbance with key termsis depicted in Figure 1.4. Such awiggle might be
the result of stratigraphic layers draping around a transient rheologically harder lump (Waddington
et al., sub). Of particular interest is the leading edge, (the A—B edge in Figure 1.1) which is the

portion of this disturbance which would overturn when sheared in the direction of flow. We will
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flow

stegpen

trailing edge leading edge
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Figure 1.4: Prototypical disturbance, illustrating our notation, including leading edge, trailing edge,
and 6. Segment slope is measured relative to horizontal (pointing upstream). Not shown isthe slight
slope (relative to horizontal) of the undisturbed stratigraphy. One could imagine a disturbance such
as thisforming around arheologically stiffer "lump’ in theice. Such alump would aso disturb the
layers below it.

also refer to the trailing edge, the portion that will flatten under both pure and simple shear. If the
disturbance were inverted (that is, a dip) the edge on the upstream side of the disturbance would be

the edge at risk of folding?.

We will use 0 for the angle of a segment, measuring it relative to the horizontal axis pointing in
the upstream direction (to the left in our prototype). This choice of angle orientation means that the
initial angle of aleading edge will beinthe 0to 90° range, and will increase to 90° and beyond when

the leading edge overturns. A trailing edge will start in the 90 to 180° range and rotate toward 180°.

For the purposesof this paper weignorethe distinction between horizontal and theslope of undis-
turbed stratigraphy. Near the center of an ice sheet, the slope of stratigraphy over aflat bed is negli-

gible, on the order of 0.5° or less.

2We do not yet have a terminology that applies equally well to both upward and downward disturbances. For now
leading and trailing edges are best understood in the context of this prototypical upward disturbance.
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Figure 1.5: Flowband geometry and notation.

1.2.2 Velocity Model

We use asimple flowband model, with enough detail to capture the change in the vorticity number
along particle paths but without complicating details. We are most interested in the central portion of
an ice sheet where surface slopesare small and the bed islikely to be frozen. The principal variables
aredepicted in Figure 1.5.

The coordinate system is aligned with the direction of flow. The horizontal coordinate in this di-
rectionisx. zisthevertical coordinate. The corresponding velocity componentsareu and w (positive
upward). Perpendicular to theseisy, with its velocity component, v, being zero by definition.

Thegeometricinputsto our velocity model arethe surface profile, S(x), and the bed profile, B(x).
The flowband ice equivalent thicknessish(x) = S— B.

The transverse geometry can be expressed in terms of a relative flowband width, and used to
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calculate the transverse spreading rate, dyv, as afunction of u and x.

We al so specify theflux, Q(x), through the flowband cross-sectionat x. Dividing by thethickness
gives a depth—averaged horizontal velocity, u(x) = Q/h.

Rounding out theinputsisan expression for thevertical profile (shape function) of the horizontal
velocity, ((x, z). The source of thisfunction isadynamic model that includes momentum conserva-

tion and ice rheology. The horizontal velocity can then be written as:
u(x,z) =ud(x,z) (1.1

Since the integral of u over the depth h equals the flux, the integral of 0 over z must equal h. The

vertical velocity can be derived from this by incompressibility:
z
w(X,z) = —/ (Oxu +0yV ) dz+w(x, B) (1.2)
B

We simplify the cal culations with a number of assumptions, which can be selectively relaxed to
explore their effect on the results. Few are essential to this analysis, but they allow us to keep the
description simplewhileretaining the features of the flow that arekey tofolding. Theresulting model
was first proposed by Vialov (1958) (see also Reeh (1988)).

We assume that the base is flat, B(x) = 0, and that the ice is frozen to the bed, so u(x,B) =
w(x,B) = 0. The flowband width is uniform, so that al the gradient terms in the y direction van-
ish. Thisapproximatesthe flow on anice ridge or ahighly elongated dome. The velocity gradientis

then

oyu O.u
L=0Ov= (1.3)
oW 0,w

We assumethat theice sheet surfaceisin steady state. Theflux Q(x) through across-section must
equal the net accumulation upstream. If we also assume that the accumul ation rate, b, isuniformin
space, theflux is Q(x) = bx.

The uniform accumulation assumption requires that we specify the length or span of the flow-
band, L, in order to determine the model geometry. In effect we specify acalving front that can han-
dleany flux. The conditions at such aterminus are not realistic, but they do not adversely affect the
model a short distanceinland. Thislength L could aso be thought of asavirtual or effective length.
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If an ice sheet terminatesin an ice stream (such as Siple Dome does) or anarrow ablation zone, the
terminus profile would be different, but this model would still be useful from some distance inland
back to the divide.

To specify U and S, we assume that the ice isisothermal, and use the shallow ice approximation
(Hutter, 1983; Paterson, 1994, p. 262) with Glen'sflow law. Thisflow law assumesthat the devia-
toric stress, o', and strain rate, £, are related by € = Ac’3, where A is a temperature—dependent flow
parameter. Sinceinatypical ice sheet the length is much larger than the thickness, the shearing com-
ponent, d,u, is the largest term of the velocity gradient over much of the flowband and the flow law

can be written as;

0,U e 28, ~ 2A0'S, = —2A(pg)3S3h3d3 (1.4)
d= S%Z normalized depth (L5)
0'w=—-pgShd  shear stress (1.6)

S isthe surface gradient. Integrating this upward from the bed gives the horizontal velocity:

= —1A(pg)s°®h* (1 d*) = ta(d) (1.7)
a(d) = 3 (1-d* (1.8)

In this case 0 is afunction of the normalized depth only.

The corresponding vertical velocity (using (1.2)) is:
w= —bw(d) +uS (1-d) (1.9)
~ 1 . ~ ~
W(d)z[ G(d)dd = 1— 5d + 1d® (1.10)
d

A surface profile consistent with this 0(& ) can be derived from the steady state expression for

the flux:
, s
Q) = bx:/B u(x,2) dz= —2A(pg)S>®n° (1.11)

This can berewritten as adifferential equationin S, which can be solved numerically. Inthe simple
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case of aflat bed and uniform accumulation, it can be solved analytically giving:

S(x) = H (1— (E) ) (1.12)
The maximum thickness, H = h(0), is related to the other parameters (L, b, and A) by:
20bL4 ) 1/8
H=| —— 1.13
(A<pg)3 (L13)

The horizontal coordinate, x, scaleswith L, whilethe vertical coordinate and ice sheet thickness
scalewithH. Withatypical H/L ratio of 1/50, the surfaceslope, S (for x < 0.5L) issmall. Thetime
scaleisset by T = H/b. The velocities, u and w, scalewith L/T and H/T (= b) respectively.

The velocity gradient, L (1.3) scalesas

{ ! L/H] 1 (1.14)
H/L 1
SinceL ismuch larger than H, the d,u term clearly dominates. Thedywtermis (H/L)2 timessmaller,

and can, in many cases, be assumed to be zero.

1.2.3 Segment Rotation Rate

With avelocity model we can calculate the velocity gradient, and from that the rotation rate, é, of a

segment with an angle of 6
0 = 9,usin?@ — (dxu — 9,W) SiNBcose — d,wcos? B (1.15)

WhenW issmall (mostly pure shear), the (dxu — d,w) term dominates, resulting in rotation away
from vertical for most angles. In most of theice sheet d,u dominates, producing apositiveé for most
angles except asmall set closeto 0° (horizontal upstream). At some points over an uneven bed, itis
possiblefor d,w to be sufficiently negative that 6 > 0 for all segment angles. At such pointsW > 1.

When d,w is negligible, the segment is not rotating (6 = 0) if tan8 ~ (Oxu — 0,w) /0zu. In this

case the vorticity number can be written as:

w 0,U — Oy W
& /(0U+ 0,W)2+ (OxU — O W)2
N J.u

/07U2 + (0xU — 9,W)2

= cos6; (1.16)
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confirming the relationship between W and 8, shown in Figure 1.2.

In general there are two segment angles that do not rotate; they merge into one for simple shear.
cos~ W is the sum of angles of these two non—rotating segments. For small d,w, our 6, approxima-
tion is valid because one of theseis practically horizontal. Waddington et al. (sub) refine thisidea
of anon-rotating segment by cal cul ating the segment that is not rotating relative to the isochrone at
apoint. However this requires knowing the slope of the isochrones, which must be calculated from

particle paths.

1.2.4 Particle Paths

We calculate particle paths by solving the pair of differential equations:
X =U(X,2) z=w(X,2) (1.17)

Paths can start at any point in the ice sheet, and run either forward or back in time. Each point along
a path is defined by atriplet of values, [X,zt]. For a steady state geometry, only relative times are
important. We solve these differential equations numerically with the ODE routines provided with
MATLAB (Shampine and Reichelt, 1997).

In velocity and particle path calculations, the horizontal and vertical coordinates can be rescaled
independently. But the slope and finite deformation cal culations (next section) retain a dependence
ontheH /L ratio. For most of our exampleswe use an ice ridge with dimensionscomparableto Siple
Dome, West Antarctica, with a1/50 ratio. We aso examine a Greenland-like ridge with a 1/100
ratio (Table 1.1).

1.3 Precores

A conventional isochrone is the set of glacial ice of the same age, where age is the time since the
ice accumulated at the surface. We can equally well construct isochrones relative to another set of
initial pointssuch asthe set of vertically aligned pointsat apossible coresite (located at x =C). Such
isochrones would show wheretheice currently in the core was located at earlier times. Such a set of
core—relative isochrones, which we call precores, are shown in Figure 1.6 for acoreat C/L = 0.2.
Figure 1.7 illustrateswhy precores are relevant to the problem of turning open foldsinto recum-

bent folds. If adisturbance originates at point (p) with aleading edge angle of 24°, this edge will be
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Figure 1.6: Precoresfor anice sheetwithanH to L ratioof 1: 50 and acoreat C= 0.2L (10H). The
heavier linesare at 1T intervals. Selected particle paths are drawn as dotted lines.
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Figure 1.7: Therelation of precoresto the folding of a sample disturbance. A particle path (dotted)
is shown with three precores (solid). The precores are at 0.4T before and after the coreat C= 0.2L
(10H). The small figures underneath show a representative disturbance at these three points, (p),
(g), and (r). These three plots have the same scale, but a different aspect ratio from the larger plot.
The particle path and precore through the center point is included on each subplot. The number in
the upper right corner is the angle of the precore at that point.
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Table 1.1: Characteristic Geometry Parameters

parameter SipleDome  Greenland
L (km) 50 300

H (m) 1000 3000
H/L 1/50 1/100

b (myr—1) 0.1 0.3
T=H/b(yr) 10,000 10,000

A(kPyr3sl) 56x10716 3.3x10°16

near vertical when the disturbance reaches point (q) at x = 0.2L. This disturbance would appesar as
an obvious fold-in—progressin acore sampletaken at this point (provided that is small enough to fit
in the core cross-section). Further downstream at point (r) it will appear asanearly horizontal 176°
segment.

A graphical way of using these precores would be to overlay them with plots of representative
disturbances. If aportion of the disturbanceis steeper than the corresponding precore, it will be over-
turned at the core location. Portions that are not as steep will not be overturned in this core, though
overturning further downstreamis still possible.

The upper panel in Figure 1.8 contoursthe angles of the precores shown in Figure 1.6, while the
lower panel showsthe angles along selected particle pathsfor segments that have an angle of 90° at
x = C. The rotation through vertical is abrupt for deep paths, and much more gradual for paths near
the surface. This contrast in rotation ratesis largely aresult of the larger vorticity number at depth,
though the lower velocity near the bed makes the contrast stronger when plotted against distance (x)
than against time.

Inthe lower panel of Figure 1.8, the angle at point (p) is close to the minimum along its particle
path. Thismeansthat a segment with aslope angle of 24° isnot rotating at this point in the flowband.

In the upper plot of the same figure, the same property is seen in the fact that the angle contour is
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Figure 1.8: The upper plot shows contours of the precore angles, 65, in degrees. The lower plot
shows these angles along selected particle paths (marked with ¢ at the surface). (p), (q), and (r)
pointsin Figure 1.7 are also shown.

paralel to the particle path at this point. At this point, 6, ~ 24°.

Consider a segment with an angle of 60° near the surface on the same particle path (the middle
diamond). Asit moves downstream, it will be flattened (angle decreasing) until it reaches point (p).
At this point it starts rotating in the other direction. It passes through vertical at (q) and continues
rotating toward horizontal in the downstream direction. Disturbances can be flattened when the vor-
ticity number is small (dominant pure shear), but farther along the path the vorticity number grows

to the point that the flattening changes to steepening and overturning.

The slope angle of the precore at apoint is the threshold for segments that are obviously folding
when they get to the core site. We will denote thisfinite strain threshold as6¢. It isafunction of the
particle path and the corelocations. Segmentsthat are steeper than 6 will overturn prior to reaching
C. Segments with asmaller 8 will not overturn before they get to C, and might never do so. This
thresholdislower than the vel ocity gradient—based wiggle stability angle, 8, (Waddington et al ., sub),

for points upstream from its minimum (8¢ < 6,). Further downstream the oppositeistrue.

Note that 6, at a point depends only on the velocity gradient at that point, while 8¢ isafunction
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z/H

Figure 1.9: Precore slope angle contours (6 = 10°,30°, & 50°) for two core locations, 10H (solid
lines) and 20H (dashed lines). The gray line marks where 6, = 6.

of both the chosen core location, C, and the current point.

1.3.1 Precore Scale Dependence

Precores are an easy tool for determining what disturbances could appear as overturned foldsin an
ice core. All that is needed is a flow model that can calculate particle paths and travel times along
those paths. The paths are determined by the flowband geometry which in our simple example is
determined by L and H. The core location C determines shape of the precores. Thetime scale T for
the ice sheet affects the contour interval of the precores (asit does stratigraphic isochrones) but does
not changetheir shape. We can gain further insight into precores and thefolding potential by looking

at how the precore angles vary with these scaling factors.

Figure 1.9 shows how the precore angles vary with the core location C (while keeping H /L con-



20

Table 1.2: The effect of flowband geometry on precore slope angles

H/IL C/L C/H scale

/50 0.2 10 reference
/100 01 10 equivalent
1/200 0.2 20 1/2

1/50 04 20 12

1/50 0.02 1 10

stant). The solid set of lines with the core at 10H are a subset of the contours in Figure 1.8. The
dashed set arefor acoreat 20H = 0.4L. The gray lines mark where these angle contours are parallel
to the particle paths, that is where 8; = 6.

For the inner portion of this simpleice sheet, the precore shapes are controlled primarily by the
location of the core, specifically the C/H ratio. Here (out to about 0.4L) the surface slope is small
(specifically S(1— d) < 0), and the vertical velocity is dominated by the b(d) term (1.9). The
contours of 8 versus z/h and x/H show little variation when H /L is varied, aslong asC/H isheld
constant.

On the other hand if we keep the core position, C/L, constant relative to the length, the slope of
aprecore scaleswith the H/L ratio. If the length L of the modeled ice sheet is doubled, the precore
sopesarehalved. Sincethe slopeisthe tangent of the angle, the anglesfor precoresin two different
sets of model geometries are related by:

Ho L1

Figure 1.10 illustrates this H/L dependence for a vertical section through point (p) in Figure 1.8
(Table 1.2).
Thefinite perpendicular material line (FPM) of Grasemann and Vannay (1999) is similar to our

precores. They show that currently inverted metamorphic zonesin rock could have originated with
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Figure 1.10: The scaling of precore angles with variations in the H /L ratio. The heavy solid line
shows the angles along a vertical transect through point (p) on Figure 1.7. InthiscaseH/L = 1/50
and C/L = 0.2. The dashed lines show the equivalent angles for other H/L ratios (keeping C/L =
0.2). Thecurves are related by Eq. (1.18).

tilted, but otherwisenormal (cold over hot) metamorphicisotherms. The FPM isthe pre-deformation

alignment of a set of rocks sampled in the currently deformed terrane.

1.4 Deformation Gradient Tensor

Precore angles can be calculated from the finite difference slopes of the precores defined by a finite
number of particle paths. A more general approach is to calculate the deformation gradient tensor
along the particle paths, and use this to rotate segments aligned with the core. This tensor can also
be used to calculate the deformation of any disturbance that is small relative to the scale of inhomo-
geneity in the strain field.

Let dX (with components dX and dZ) be asmall segment at areference point such as (p) in Fig-
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I

dx
dx

Figure 1.11: The deformation gradient tensor F acts on dX (at the reference time) producing dx (at
the current time).

ure 1.7. The corresponding deformed segment, dx at point (q), can be expressed as alinear function
of dX:

where F(q)) is atensor mapping dX onto dx. The bracketed subscripts denote the reference and
current points. Whenit isclear which pointswe arereferring to, wewill just write F. The component
Fw = 0X/0X mapsahorizontal segment (or the horizontal component of asegment), dX, onto ahori-
zontal segment, dx. F; maps dZ onto dx (vertical to horizonta). Interms of the tensor components,
(1.19)is.
{dx] _ {FXX dX + szdz] w20
dz FxdX +F,dZ

The tensors for the deformations shown in Figure 1.1 are:

{3/2 0 ] {1 1]
@F= and (b) F = (1.21)
0 2/3 01

Weareinterestedintherotation of layer segments. If @ istheangl e of the segment at thereference

point, then the current angle, 0 satisfies:

dz = —Fx+Fztan(©)

BN(0) = = X = B Futan(0)

(1.22)
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(The negative signs result from defining angles relative to the —x coordinate.)
F can be calculated from closely spaced particle paths, much as finite strain is calculated in the

field or laboratory; however we can also calculate it using a set of differential equations.
F=L-F (1.23)

L in (1.3) is the gradient of the velocity relative to the current segment, while F is gradient of the
velocity relativeto the original segment. We can get aroughideaof wherethiscomesfrom by writing

()2 oo
dt \ 0X oX dt  o0X oxoX
See (Malvern, 1969, sec. 4.5) for details.

We solve (1.23) for F when we calculate a particle path (1.17), using | asitsinitial value. These
form a differential equation system of six variables (x, z and the four strain terms). L is calculated
with an eight point finite difference to maximize continuity. The error tolerances have to take into
account the widely differing magnitudes of the variables. Theresult isa series of F tensors, one for
each point along the particle path, relating dx at that point to dX at the path start.

The components of such a series of tensorsare shownin Figure 1.12. The particle path is shown
in panel (a). In (b) and (c) the reference point is at the surface. The diagonal components, F, and
F, start at 1, while the two shear components, F and F;, start at 0. F, remains too close to zero
to plot with the other components (it is slightly negative, with some increase in magnitude near the
terminus).

The determinant of F isjust the Jacobian determinant (Malvern, 1969, (4.5.25)) relating an in-
finitesimal deformed volume at the current point to the undeformed volume at the reference point.

Sinceiceisincompressible, thisdeterminant must be equal to oneat all points along the particle path.

While FxF; is small, F, = 1/F«. When x/L < 1/3, F is approximately linear in x. (See Ap-
pendix B.1 for details.) Thisalso meansthat F,, ~ xg/X, so that the height of a disturbance decreases
inversely with the distance traveled away from the divide. A disturbance observed at 10H would be
half as high asit was at 5H, regardless of the observation depth or slope.
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Figure 1.12: F components along a particle path (a). In (b) and (c) the reference point () is at the
surface; in (d) and (e) it is at the core, C = 0.2L. (f) 85 = tan~1(—F/Fx).
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1.4.1 Change of Reference Point

The reference point of F can be changed. Taking the inverse, F&é) (@)’ interchanges the reference
and current points, (p) and (q), in effect undoing the strain.
_p-1 _

We use such an inverse to shift the reference point from the surface, (s), to the core, (q).

Fraen = Fusen Fisia) (1.26)

The components for such a shifted set of F tensors are shown in Figure 1.12(d and €).
Since a segment aligned with the core at (q) (Figure 1.7) is vertical, its angle at other points on
the particle path was calculated from (1.22) and shown in Figure 1.12(f). Thisisthe precore slope

angle, B¢, contoured in Figure 1.8.

 F0+FzdZ g
FoaO—FedZ  —Fy

The minimum point of 8¢ along a path, where 8; = 6;, is a consequence of the variation of the

tan@f = (1.27)

velocity gradient, L, aong the path. As L changes, 8, decreases, leading to the change in rotation
direction for certain segments (section 1.1.1). On the other hand, the rapid change in 8 while it
passes through 90° (at the core), doesnot depend on L changing. Thisrapid rotation through vertical

occurs even when L is assumed to be constant (see Appendix B.3).

1.4.2 Patterns of Segment Deformation

Figure 1.13 showsthe history of afan of segmentsalong aparticle path. Ontheleft the pathisnear the
surface and pure shear dominates. Segments rotate in both directions toward horizontal. Segments
around vertical are under compression (the shaded region) while near—horizontal ones are under ex-
tension. O, starts out at 90°. As the proportion of simple shear increases, the set of angles under
compression shiftsto angles less than 09°. All segments with an angle less than that of the particle
path itself, B, continue to rotate toward 0°.

Of particular interest when considering folding are the segmentsthat are steeper than 6, but less
than vertical. We call these flippers because they initially flatten but then stop rotating and flipin the
other direction. Smaller anglesflip further downstream, but somejust 'run of of glacier’ and so may

never flip.
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Figure 1.13: Rotation of segments of various initial slope © along a particle path (Figure 1.12(a)).
The line marked 6+ is the precore angle for a core at C = 0.2L. The heavy dashed line isthe angle
of the particle path, 8,. Shading marks where segments are undergoing shortening. The darker gray
line marks the angles, 6,, that are not (momentarily) rotating.

15 SomeApplications

Even if disturbances are regularly generated along a particle path, and subsequently overturned, the
likelihood of recognizing them in a coreislow. While moving through vertical is an essentia part
of folding, disturbances spend little time in this configuration. Much more time is spent around 6;,
where the rotation rate is low. The flattening and extension of recumbent folds further reduces the
likelihood of identifying them in the small cross—section of anice core.

Herewe have treated the stratigraphic layers as simple one dimensional lines. Actual layers have
afinite thickness, which in the undisturbed orientation, is reduced by the vertical compression. If a

portion of alayer isdisturbed and overturned, it will be shortened asit rotatesthrough vertical. Atthe
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sametime, by incompressibility, it must undergo acorresponding thickening. We also expect that the
dynamic processes that create such a disturbance in the first place will ater layer thicknesses. The
tools we have described here can be used to examine how shearing redistributes mass within these

atered layers.

15.1 Predictingthe Origin Ste of Observed Folds

We can also start with an observed structure in acore, and attempt to predict whereit originated and
what its shape was. The amount of information that we can deduce about the origina disturbance
depends on how much information we can glean from the deformed structure in the core. We may
have to make some assumptions about the source. For example, if we assumethat gentlewigglesare
more likely than steeper ones, then the point where the 8; curveisminimum isthe most likely point

of origin of the disturbance.

In coressuch as GISP2, stratigraphic layerswith 5° to 20° of tilt have been observed (Alley et al.,
1995). With our deformation model, we can project these tilted layers upstream and downstream
from the observed location at 9H. Figure 1.14(a) shows the angle history of the leading edge of an
recumbent fold at depth of 0.8H = 2400m in the core. Its core angle isdightly past vertical (100°).
For comparison, a segment that clearly has not yet overturned (5°) in the core is plotted. Panel (b)
issimilar but for a20° segment at 0.88H = 2640 m depth. Because the azimuthal orientation of the
coreisunknown, we show the history for ssgmentsthat tilt 20° in both the upstream and downstream
directions. During their prior history, the minimum angles are practically the same for both segments
(about 5°). The most likely point of disturbance isabroad region around 5H. For similar segments
at adepth of 0.92H, the minimum angleis closer to 3°.

ThetimescaeT=H/ b for these computationsis 10,000 years (Table 1.1). The age of the core
observation point in Figure 1.14(a) is 25,000 years. The time from minimum value to overturn is
about 700 years. In (b) at a deeper level the age is 40,000 years, the time from minimum value to
overturn is about 1000 years, and time it takes to rotate from 20° to 160° about 200 years. These
depth age figures do not take into account the much lower accumulation rate during glacial times, so
they are smaller than measured core ages. However, the overturn times fall well within the current

interglacial period, so the deformation causing folding is not affected by the earlier accumulation
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Figure1.14: Predicted history of observed disturbancesinacoreat 9.4H (=~ GISP2). (a) 100° dightly
overturned segment at a depth of 0.8H (10° minimum value). For comparison a gentle 5° segment
has also be plotted. (b) 20° and 160° segments at 0.88H depth. (5° minimum values).

rates.

Figure 1.15 shows a similar case with a different flowband model. The bed approximates the
radar profile from the Greenland summit (Castelnau et al., 1998; Jacobel and Hodge, 1995). The
velocity profile G(x, d ) has been adapted from afinite element flowband model (Neresonet al., 1998;
Bolzan et al., 1995). Most of the difference between the two figures, once the bed slope isaccounted
for, can be attributed to the polythermal nature of the finite element model.

We could also constrain the disturbancelocation if weknew theinitial shape. If thedisturbanceis
theresult of layersdraping over atransient ' hard lump’ (Figure 1.4) it might be reasonableto assume
that the disturbance before shearing was symmetrical as depicted at point (p) in Figure 1.7. If we

observe the fold at point (q) (in a core), and measure the angles of the leading edge and trailing
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Figure 1.15: Same as Figure 1.14 but with bed and velocity profilesthat better approximate Green-
land summit area. Minimum values are (a) 15°, (b) 2 — 4°. Relative to the bed slope these minima
are(a) 15° and (b) 5— 6°. The bed dope angleis plotted at the top and bottom (centered on 180 and
0°).

edge, we can constrain the location of point (p), i.e. run the wiggle backwards from the core until
its shape becomes symmetrical.

We can approximate afold of height Az and width Ax (and trailing edge slope of Az/AX) at (q)
by aright triangle with a set of points with relative positions (Figure 1.16(a)):

(e [T

Therelative positions at an earlier time would be (using (1.20)):

. , (1.29)
0 FoAz —FxAX
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Figure 1.16: (@) An overturning disturbance (x) and a possible symmetric predecessor (¢). (b) The
time at which F,Az equals —F /2 ().

Herewe assumethat — FxAx = 0. If FAz= —FAx/2 asshownin Figure 1.16(b), the earlier distur-
banceis asymmetrical triangle with height F,Az. For smaller Az/Ax, the symmetric injection time
is earlier (e.g. in Figure 1.7 (q), this slope is 0.04, versus 0.075 in Figure 1.16). It is possible, if
Az/Ax istoo small, that no point satisfies this constraint. In this case, the observed fold could not

have originated with a symmetric wiggle.

1.6 Conclusions

The kinematics of large—scale ice sheet flow can deform gentle open folds into order disrupting re-

cumbent folds. To extend the results of Waddington et al. (sub) to disturbancesthat areinjected near
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their no rotation stability points, and to relate disturbances in the coresto injection sitesin the pres-
ence of spatially variable strain rates, we have used three concepts; 8, the strain rate stability angle,
0; the finite strain threshold angle, and precores, the core relative isochrones.

From the velocity gradient at a point, we calculate W, the kinematic vorticity number which
measures the relative mix of pure and simple shear, and 6,, the angle that is not rotating at that point.
Segments steeper than 6, are rotating toward vertical and overturning, while gentler ones are being
flattened. But because segments move along paths into regions of higher W, segments that were
not rotating will begin to overturn, i.e. the 8, criterion of Waddington et al. (sub), while it is an
approximate indicator of stability against recumbent folding, is still optimistic about downstream
stratigraphic integrity.

By calculating the finite strain deformation gradient tensor, F, along a particle path, we see how
adisturbance segment rotates over afinite interval. Given our limited understanding of the dynamic
processes that could give rise to the initial disturbances, the most useful form of the angle rotation
function specifiesavertical segment at areference (observation) point, and cal cul atesthe correspond-
ing angle at other points along the path. We have called this thefinite strain threshold angle, 6. At
any point thisis the angle of the segment that will be in the process of overturning when it reaches
the reference point.

8, isaminimum angleon the 85 curve, i.e. thegentlest segment that will overturn at thereference
point. A segment can flatten for aperiod, then reach thelocal 6, and proceed to steepen and overturn.
Since thisminimum is broad, it giveslittle indication of how soon the overturn will occur. For that,
the full B¢ calculationin this paper is needed.

For amore complex flowband model, such astheoneillustratedin Figure 1.15, 6, isharder to use.
The 8; curve has multiple 8, (zero rotation) points when there are bed undulations. These remain,
in amodified form, even when angles are specified relative to steady state isochrones. Again, the B¢
calculation in this paper is required.

Precores, or core—relative isochrones, extend the concept of the 8¢ curve to multiple particle
paths. The zero timeisochrone is defined along a hypothetical ice core, and upstream precores give
the location of the coreice at earlier times. They aso give the slope of segments that will be verti-
cal inthe core. A 8; curve with its reference point on the core gives the precore slope angle along

its path. Thus the precores and the 8; contours are a graphical way to show how steep disturbances
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must be to be overturned in the core.

While the probahility of acore containing afold increases downstream, this fold may be harder
torecognize. Theinterval during which afold isobviously overturning is small because of therapid
rotation of the overturning edge. Once a segment is overturned, it continues to rotate toward the
undisturbed isochrones. Since ice lacks reliable 'up’ indicators (Alley et al., 1995), the fold will
merge back into the otherwise undisturbed stratigraphy.

Although our examples used steady flow and a flat bed, our approach is equally applicable to
transient ice sheets on rough beds. Other processes such as shear band devel opment, or variousthree
dimensional effects can also disrupt stratigraphy. In that sense our calculations may still err on the
optimistic side when assessing stratigraphic integrity. Our analysis identifies scale parameters for
processes that could generate initial disturbances. A process that cannot generate an adequate dis-

turbance can be ruled out as a core—disrupting process.
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Chapter 2

RECUMBENT FOLDING IN ICE SHEETS- PART 2
A PROBABILITY MODEL

Abstract

To better understand apparent stratigraphic disturbances in ice cores such as GISP2, we use a two
stage model of folding to predict where overturned folds are likely to occur. In this model, a tran-
sient dynamic process injects a gentle open fold with a probabilistically described shape at a prob-
abilistically described time along a particle path. These injection probability distributions encode
our limited knowledge regarding how stratigraphy could be disturbed. The large—scale kinematics
of aflowband model of ice sheet flow gives arotation function that relates the slope of a disturbance
segment to its slope at an observation point. The probability of observing an overturned fold is the
injection probability density integrated over al segments that could rotate through vertical by the
observation time.

We examinethe consequences of anumber of injection density patterns, both along aspecific par-
ticle path and across a range of independent paths. In general, overturn probabilities increase down-
stream along a path as the injection prabability increases and gentler segments can be overturned. If
the injection is concentrated along an isochrone, the overturn probability will aso have a maximum
along anisochrone. If the near—divide disturbancescan occur deep in theice, the overturn probability
near the bed is higher. Our model cannot produce folding right at the divide. Disturbances injected

near the divide must move afew ice thickness away to be overturned.

2.1 Introduction

The interpretation of the paleoclimatic signal in ice coresis based on the assumption that the ob-
served layering in the core is in correct stratigraphic order. Post depositional processes that could

fold or otherwise alter the order of these stratigraphic layerswould introduce significant errorsin the
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interpretation, particularly if these disturbances could not be readily identified.

In Chapter 1 we modeled the formation of overturned folds in ice sheet stratigraphic layersasa
two stage process. Initially theflat stratigraphy islocally disturbed, to form gentle open folds. Then
the kinematics of the large—scale flow shears these folds, overturning certain segments. The initial
disturbance of stratigraphy must originatein transient dynamic processesand local rheological inho-
mogeneities. While various processes have been suggested (e.g. Waddington et al. (sub), Castelnau
et al. (1998)), specifics about what disturbance anglesthey can produce, and the location where they
could occur remain sketchy. As a consequence we found it more productive to start with observed
structuresin a hypothetical ice core, and calculate how they might have looked upstream. Thisim-
poses constraints on the disturbance processes, particularly on the magnitude of a disturbance they
must produce.

In this paper we use this same kinematic model of folding, together with probability theory, to
investigate where folding is most likely. This probabilistic model of folding allows us to explore
various hypotheses and intuitions regarding the dynamic disturbance processes.

We also use the disturbance notation (such as leading and trailing edge) that is discussed in sec-

tion 1.2.1 and Figure 1.4.

211 APassive Shearing Model of Folding

In Chapter 1 we used a simple ice sheet flowband model to calculate particle paths and the finite
strain deformation gradient tensor along those paths. This tensor expresses how segments of vari-
ous slopes rotate as they move down a path. In this paper, we extend this analysis by defining an
injection probability distribution and its related density. Thisinjection density, together with the de-
formation gradient tensor, enables usto cal cul ate the probahility that an overturned leading edge will
be observed at a specified point downstream.

We illustrate these calculations with numerical examples using a Vialov ice sheet flow model.
Theinitial set of examplesfocuseson probabilitiesalong one particle path. Thisalowsusto examine
the effect of the injected segment angle distribution on the observed angle probahility.

Our second set of examples compares the probability patterns across paths. The focus hereis

more on the spatial or temporal variability in theinjection process. We look at injection patterns that
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are uniform across the flowband, patterns that are concentrated along isochrones, and patterns that
arelimited to the divide zone. In appendix C we discuss aternative measures of probahility, and the

feasibility of testing these results.

2.2 Deterministic Modd of Folding

221 Veocity Modd

We use the plane strain steady state flowband model of ice flow in Chapter 1. This model draws
heavily on Vialov (1958) and Reeh (1988).

The coordinates of our flowband model are x, horizontal in the downstream direction, and z ver-
tical; u and w are the corresponding velocity components. The cross—flow coordinate and velocity

arey and v. Thebedisflat and the surfaceis S(x).

By aligning x with the flow and assuming constant flowband width and plane strain, the cross—
flow coordinate, velocity and strainrate termsare zero. Thevelocity depends on flowband geometry,
flux assumptions, and rheological assumptions. 1tscomponents, uand w, are related by incompress-

ibility.

u(x,2) = U(x) 0(z/S(x)) (21)
w(X,z) = — /Ozaxu dz (2.2)

When we assume steady state and uniform accumulation b, the depth averaged downstream veloc-
ity isT(x) = bx. The vertical profile of the horizontal velocity, (i(z/S), is based on the shallow ice

approximation with Glen’sflow law, and involvesthe fourth power of the normalized depth, 1— z/S.

We denote the length or span of the flowband by L, and its maximum thickness (at the divide,
x = 0) by H. In the examplesin this paper, the H /L ratio is 1/50, approximating the profile of Siple
Domein Antarctica. Our timescde, T = H/b, is 10,000 years.

With the flowband geometry and this vel ocity model, we cal culate particle paths using the set of
differential equations, X = u(X, z) and z= w(Xx, z), and astarting point, (o, Zp). Each point, (x(t),z(t)),

on apath is described as afunction of the initial point and travel time.
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2.2.2 Finite Srain and Segment Rotation

Along apath, we also cal cul ate the deformation gradient tensor, F(ts,t2). Thistensor describeshow
asmall structure at the point defined by timet; is strained when it movesto thet, point on the path.
See Chapter 1 and Malvern (1969)[sec. 4.5] for details.

If [dx1,dz]" isasmall segment at timet;, then at t, the deformed segment is

|:dX2] _ |:Fxx(t1,t2) dxq + sz(tl,tz) dz; (2 4)

d22 sz(tl,tz) dX1—|— Fzz(tl,tz) le

The segment angles at t; and t, satisfy

dZ]_
tend, = 2.5)
tan®, — Fa(t1,t2) — Fx(t1,t2) tanBy 26)

© —Fx(t1,t2) + Fee(t1, t2) tan®y

Here we define angles relative to horizontal upstream (—x direction) (Figure 1.4).
Using (2.6) we can define an angle rotation function in which the strained segment’s angleisa

function of the initial angle and the respective times. This function also has an inverse giving the

angle at t; as afunction of theangle at t,.

92 = y(el, t17 tz) (27&)
91 = y_l(ez,tl,tz) (27b)

In practice, the inverse function has the same form as the forward function except that it uses the
matrix inverse of F, in effect reversing the strain.

Figure 2.1 illustrates how segments rotate while moving along a particle path. Three patterns of
rotation are worth noting. If itsangleis greater than 90° (vertical), alayer rotates toward 180° (hor-
izontal downstream). If itsangleis small enough, it rotatestoward 0° (horizontal upstream). Larger
anglesin thefirst quadrant first rotate toward a minimum, then turn around and rotate to vertical and
beyond. Itisthisset of 'flippers’ that isof particular interest in studying folding.

Even in asimple flowband model such asthis, the stratigraphy is not exactly parallel to the flat
bed. In addition, the F, component of the deformation gradient tensor is slightly negative, which

means that y(0°,t3,t,) is not zero. However these deviations from horizontal are so small that we
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Figure 2.1: The evolution of aset of angles along aparticle path, y(6,t1,t2) (dashed), plotted against
travel time. The heavy solid lineis 85 = y~1(90°,t3, 1), the history for an angle that is vertical at
t, = 1. The gray line passes through the minimum point of each rotation curve.

can ignore them, and treat all angles as though they are measured relative to the steady state strati-
graphicisochrones. Inaflow model with significant bed slope, wewoul d need to di stingui sh between

horizontal and the isochrone slope.

2.2.3 Precores

The inverse angle rotation function when 6, is vertical is of sufficient interest to warrant its own

symbol.
Of (tl,tz) = y‘1(90°,t1,t2) (28)

Thelower panel in Figure 2.2 shows B (t,tc) for several particle paths, wheret. isthe time on each

path where x(tc) = 10H. These are the angle history curves of segments that would be vertical in a
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z/H

Figure 2.2: (upper) Particle paths (dotted) and contours of 6 (t,tc), the precore slope angle in de-
grees, plotted along theinner portion of anice sheet flowband. Theicedivideisontheleft (x/H = 0).
(lower) 6¢(t,tc) aong selected particle paths (marked with ¢ at the surface). Corresponding points
on both panels are marked (p), (q), (r). Thevalues of 8 at these points are 24°, 90°, and 176°.

hypothetical ice core drilled at 10 ice thicknesses from the divide. At the core they are aligned with
the core. Attimesearlier thantc, the 8¢ (t, tc) function givesthe angle of the segment that will become

vertical when it movesto the core location.

Theset of al pointsthat aret; travel time upstream from the corelocation can bethought of asthe
t, isochronerelative to the core. In Chapter 1 we called these isochrones precores. The upper panel
plots contours of the slope angle of the precores, which is 6+ (t,tc). These contours can be used to
determine whether a particular disturbance will be an overturn fold when it reaches the core. For
example, if the leading edge of a disturbance at point (p) has angle of 30°, it will rotate beyond 90°
at point (q). By point (r) it will be within afew degrees of horizontal.

The flowband framework, the ability to calculate the vel ocity, particle paths and F, and the angle
rotation function are necessary prerequisites for the probability model. The flat bed, uniform accu-
mulation, steady state, L, H, the constant flowband width, and the shallow ice rheology are specific

to our examples.
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2.3 A Probabilistic Mode of Segment Overturning

2.3.1 TheProbability Variables

When a layer segment is observed to have a disturbed orientation 6, at timet,, the inverse angle
rotation function (2.7b) identifiesthe required injection angle 6, at any injection site upstream along
the particle path. However, (2.7b) cannot tell us which of those locations is the actual source point,
or even which point is most likely to have been the source. When constructing a probability model
of folding, we need to distinguish between the probability of injecting a particular disturbance, and
the probability of observing a disturbancein acore. The two probabilities have different properties
and need different variables. Our task isto relate the two.

In the following we will frequently refer to an injected segment. Such a reference is shorthand
for the leading edge segment of an injected disturbance. Even thisisasimplification, since an actual
disturbancein the stratigraphy will involve multiple layerswhich arerotated over acontinuousrange
of angles. Theleading edge is the steepest portion which will overturn first?.

In our model, alayer observed at timet on aparticular path is said to befolded (or overturned) if
it contains asegment with angle ¢ greater than or equal to 90°, and that segment was aleading edge
(with an angle 8 less than 90°) of a disturbance injected at some earlier timet. Thisterminology is
summarized in Table 2.1.

We are describing a random phenomenon where some processinjects a disturbance at one point
and angle on the path. That disturbance is later observed at another angle. The observation point
is defined in this problem, but injection time and angle, as well as the observed angle are described
in terms of probabilities. We will refer (with some mathematical informality) to these as random
variables (Parzen, 1960, sec. 4.3, 7.1).

The link between the injected angle and the observed angle is the angle rotation function (2.7a)
@=v(0,t,1),and itsinverse, 6 = y~1(q,t,1).

Thetravel distance aong the path, or some other measure of position on the path, could be used
instead of the times, t and t. When looking across paths, the injection and observation points can be

specified either in terms of the x, z coordinates, or in terms of a particle path and travel time aongiit.

1Though much of this analysis applies, with some wording changes, to any section of a disturbance.
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Table 2.1: Injection and Observation Variables

angle time distribution density

Injection P(Ba,ta)  P(Bata)
variables 0 t
parameters 6, ta

fixedvalues  Byix trix

Observation Qe T)  q(PaT)
variable (0}
parameters @y T

2.3.2 TheInjection Prabability

The starting point for deriving the overturn probability is the specification of the probability of an
injection. For continuous random variables, probabilitiesare usually defined on intervalsrather than

at individual values. One way of defining an injection probability distributionis

P(Ba,ta) = P{,t : B, <0< 90° & t < to} (2.9)

Thisisthe probahility of the event in which a disturbance segment is injected at timet less than or
equal tot,, and at an angle 6 between 6, and vertical. Itisafunction of two jointly distributed random

variables, 6 and t.

We can derive ajoint probability density from this distribution by differentiation?.

62
p(B,t) = —MP(OJ) (2.10)

2gtrictly speaking, 8 is arandom variable, and 8, is a parameter defining a set of 0 values. Maybe the differentiation
variable should be 6.
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The probability distribution can, in turn, be expressed as an integral of the density.

ta  p90°
P(6ata) = [ [ POt dBct (2.11)
0 J6a
It isalso convenient to define two individual probability density functions
90°
Pa(ea,t)E%P(O,t): / p(6,t) d6 2.12)
Ba
and
0 ta
R(8.t) =~ 3P(O1) = [ p(E.d (213)
0
0,t —a—H 0,t) = a—P 0,t
p(’)_at (7)__663(7)

While formally, we are defining the density as aderivative of the probability distribution, in our
examples, wewill start with thejoint density and assumethat it isthe product of two or moreindepen-
dent densities. That is, p(6,t) = g(8) f(t) or p(6,t) = g(0) fx(x(t)) fAz(t)). We have chosen these
forms because they are convenient to work with, rather than because they correspond to particular
injection scenarios.

The upper bound of 90° on © restricts our attention to a leading edge segment which can over-
turn. The probability distribution could be extended to include angles up to 180° (or below 0°) (see

Appendix C.1). The angle rotation functions can handle these anglesjust as well.

2.3.3 TheOverturn Probability

The event in which an injected disturbance has overturned by observation time t on a path, can be
defined as the event in which the disturbance segment wasinjected with an angle 6 less than vertical

and was later (at T) observed (at angle @) at vertical or beyond3.
Q(90°, 1) =P{,6,t: 9>90° & B <0’ &t <1} (2.14)

If aninjectionoccursat 8 > 8¢ (t) = y~1(90°,t, 1), it will be observed at timet withangle > 90°.
The overturn probability can then be expressed as:

Q(90°, 1) =P{0,t:06¢(t) <O<WO° &t < T}

T 900 .
:/) /ef(t)p(e’t)dedt:/) Pa(6(t),t) ot (2.15)

3We will often omit the T argument in this and other functionsif we are not focusing on its variation.
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Figure 2.3: Integration areas for P(0,,t3) and Q(90°,1). (a) P(8a,ta) can be obtained by integrating
p(B,t) over therectangle defined by 0 <t <ty and 6; < 6 < 90°. (b) Q(90°,1) is obtained by in-
tegrating p(0,t) over the area bounded by 6+ (t,T). Thisis a subset of the area covered by P(0°, 1)
(which equals Q(0°,1)).

The integration area bounded by 6 (t) isillustrated in Figure 2.3. It is a subset of the rectangular
integration areafor P(0°,1).

We can defineamoregeneral observation probability distributionby using a@, thresholdin place
of 90°.

Qe 1) =P{,6,1: 0> 92 & 6<90° &t <1}
T ,£90° T
- / / P8 doct= / Pa(Ba(t),t) dt (2.16)
0 L (t 0

where 8,(t) = y"1(@a,t, 1).
The choice of 90° as the overturn threshold angleis convenient but not crucial since the rotation

through vertical israpid. Themoregeneral observation distribution can be used to calcul atethe prob-
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ability of observing near—vertical angles. For example, P{90° < ¢ < 160°} = Q(160°) — Q(90°).
Such a segment would stand out as one that isin the process of overturning, while one much closer
to 180° could be indistingui shable from undisturbed stratigraphy.

An observation probability density can be calculated by taking the derivative of Q(,, T) with
respect to the angle.

o(aT) = —%ao(cpa, N (2.17)

d [ ro
:__[) Pa(ea(t),t)dt:—/) YpaPa(Oa(t)yt)dt

[e[0Y
T 9 90° 100, 0 90°
__["9 o,t)doct = — [ 2% —/ 0,t)dodt
/o 00, /a(t)p( ) 0 0 06, Je, P,

T
. [) P(Ba,t) g%z dt

Thisdensity isthe cumulativeinjection density along the 8, (t) = y~ (¢, t, T) curve modified by how

theinjectionanglevarieswith respect totheobservationangle. 00,/0¢; is, inasense, thewidth of the

Yy~ 1(@a,t,T) function. InFigure 2.3 theintegration areafor q(90°) can be pictured astheinfinitesimal

width of the 6+ curve.

We need to keep in mind that Q(¢s,, T) isafunction of Tin adifferent sensethan ¢,. @isarandom
variable, so that integrals and derivatives across this value transform between probability densities
and distributions. T on the other hand, is a parameter which defines where the observation is being
made. It is shorthand for all the parameters that define where the observation occurs, including the
specification of path and flowband. This means that 0Q/dt is not a probability density.

We can a so define a conditional overturn probability:

~Q(90°,1)  Q(90°,1)
Qc(1) = Q00 ~ PO (2.18)

Thisisthe overturn probability relativeto the probability of there being any injected disturbanceup to

the observation time. We have found that in some cases Q¢ (1) is easier to understand than Q(90°, T)

(Appendix C.2).

2.4 ExamplesAlong a Path

We start exploring thisrelation between injection probability and overturn probability along one par-
ticle path. Fixing first the injection time and then the injection angle allows us to isol ate the effects
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Figure 2.4: Injection and overturn probabilities for the injection angle and fixed injection time.
(Ieft) The injection p(B) (stepped) and P4(0) (line) against 6. Each is scaled for maximum reso-
lution. (right) Observed q(¢) (stepped) and Q(@) (line) against ¢. The probabilities at ¢ = 90° and
8 = y1(90°) are marked with —o. (center) 8 (heavy line) and several other y(8) (dashed) curves
that map 6 onto @. The vertical gray bar att /T = 0.6 markstheinjection angle range that contributes
to the Q(90°) overturn probability.

of angle and time on the overturning process. We also pay attention to how the overturn probability

varies with the overturn threshold ¢, and the observation time 1.

24.1 Known Injection Time, Probabilistic Angle

Fixing the injection time (t;jx) alows us to focus on how the injection angle affects the overturn
probability. Formally, the time can be fixed by using the Dirac delta function, &(t — t¢ix), which is

zero everywhere except whent = tyiy.

p(6,t) = g(6) d(t —trix) (219
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The probability distributions, (2.12), (2.11), and (2.16), become

90° 90°
Pa(Ba,t) = | 9(8) Bt —trid 0O =3(t~tri0) | 0(6)d0=(t—trp) Pa(Ba) (220
a a ea f ix > la
P(6a,ta) = /t O(t —tfix) Pa(Ba) dt = Pal0) - fortist (2.21)
0 0 if trix > ta
T Pa(Ba(tfix for tyiyx <
Qe T) = /0 O(t — tfix)Pa(Ba(t)) dt = (Oaltrid) =t (2.22)

0 ifteix > 1

Baltrix) = y_l((pay ttix, T)

Figure 2.4 illustrateshow theinjection probability density maps onto the observation probability.
Theinjection density (stepped regionin theleft panel) isaportion of anormal (Gaussian) probability
density function located at timet¢j, = 0.61. This choice is based on the assumption that small angle
disturbances are more likely than large angle disturbances. We will use this same angle density in
the following examples (except when the injection angle is fixed).

Lexp(—% (9)2) for 0° < 8 < 90°

g(6) = { oV ° (2.23)

0 elsewhere

o= 0.1mtradians= 18°

Theconstant, ¢, scalesg(0) sothat itsintegral over all injection angles, P,(0°), isthetotal prob-
ability of adisturbancebeing injected at thistime. Thiscould be unity if weare considering the prob-
ability of injecting aleading edge, and one half if we count both leading and trailing edges. Techni-
cally we should also be concerned about the nonzero value of g(90°), but sincethisis 50 away from
0° any adjustments to ¢; are negligible. Since our focus is on the process and patterns of folding,
we will not fix ¢;. Plots of densities and distributions are scaled to give the best resolution and the
numerical ticks are omitted.

g(8) anditsintegral P;(6) do not haveto be continuousat all angles. 0° isthe most obviousplace
where we might want to make these functions discontinuous, either to rule out a 0° disturbance, or

to express the probability that no disturbance occurs at thistime.
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Figure 2.5: Density components from Figure 2.4.

In (a) and (b) the vertical scaleis 6, the injection angle. In (c) and (d) the vertical scaleis @, the
observation angle. (b) and (d) plot (@, 1), the observation density, which isthe product (2.24) of the
two components shown in (a) and (c), g(8) (stairs) and d8/0¢.

In this case where the injection can occur at only one time, the overturn distribution is a com-
posite function of the injection distribution and the inverse angle rotation function (2.22), Q(¢a) =
Pa(y (). Thisisillustrated in Figure 2.4 where P, (8) is plotted on the left panel, and Q(¢) on the

right. The center panel plots® = y~(¢) and indicatesthe range of injection anglesthat can overturn.

While we have omitted the numerical scaleson theright and left panels, it is easy to calculatethe
overturn probability relativeto thetotal injection probability. Inthisexample, y=(90°, t¢i, T) ~ 15°.
With o = 18°, thecumulativenormal distribution valueis0.8, which translatesto 0.4 of the P(0°, tfix)
value. Here thereis no distinction between the total injection probability and the probability so far,

aslongastsix < T.
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The observation density (2.17) simplifiesto:

alen ) = [ 9(8alt) 8t~ trn) T a
= 0(Baltrix)) aegi;:X) fortsix <t (2.24)

Figure 2.5 shows how the injection density relatesto the observation density. Theinjection den-
sity, p(8) (stepped), in (a) is the same asin Figure 2.4(left). d6/0¢ (smooth curve) has a maximum
value at the center where a segment rotates (through vertical) the fastest. Here the widest range of
injection angles contributes to a given interval of observed angles.

The peak of the product of these two termsis around 30° (in b) where both components are be-
low their maximum values, but are not close to zero. The peak around 0° is a product of the large
p(8) value and a small rise in the derivative's value. These small angles are flattened rather than
overturned.

When these same values are plotted against the observed anglein (c) and (d), the range of values
for 8 > 30° iscompressed into asmall region above = 170°, while the 6 around 13° are spread out
around @ = 90°. The product in (d) correspondsto the observed density plotted in Figure 2.4(right).

Note that the probability of observing an angle greater than y(90°) is zero. Thisis because we
have restricted ourselves to leading edges. Even if trailing edges were included there would be a
gap around y(90°) aslong asthe injection density is negligible around 90°. This separation between
flattened trailing edges and overturned leading edges becomes blurred when the injection can occur

over arange of times (compare the appendix Figure C.1 and Figure C.1).

2.4.2 Known Injection Angle, Probabilistic Time

If instead we fix theinjection angle and | et the time be the random variable, the injection density can

be written with a Dirac deltafunction on the angle:
p(6,t) = 3(6—Brix) (1) (2.25)

The corresponding distribution over 6 (2.12) is

Pa(Ba,t) = [ &(8—6rix) f(t)dO= (2.26)

/90° f(t) if B3 < efix
% 0 if8,> Bfix
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Figure 2.6: Knowninjection angle (8+x = 25°), probabilisticinjection time. (top) Theinjection den-
sity f(t) (shaded) and theinjection distribution R (t) versust. (right) The corresponding observation
distribution Q(¢) (line) and density q(¢) (shaded). The circles on the two panels mark the termsin
Q(90°) = R (tg) — R (ty). (center) Theinjection region that contributesto Q(90°) is the gray bar be-

tween the t, and ty points on the 8¢ (t,T) curve. A segment injected at t, is the first one to overturn
(at timeTo).
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The overturn probability (2.16) simplifiesto:

Qo T) = / F(t) dt (2.27)

ea(t)gefix

For our simpleflowband geometry, {6, < B+ix} istrueonasimpleinterval, [ty, tq]. Theend points
are either equal to 0 and T, or to pointsin between at which y=1(q,t,T) = B5jx. The observationinte-

gral over the interval becomes:

Qv = [ fHd=Rt) - 229)

where R (t) is defined in (2.13). It is possible, that for some values of T this interval is empty, in
which case, no segment injected at B¢, will have rotated past ¢ by T.

For more complex geometries, such aswhen the flowband bed is not flat, they~ (s, t, T) function

will have a more complex shape, and the {0, < B+ix} set may be broken into multiple intervals.

The observation density is

e % %
a0 = fitg) 30~ f(t) G

(2.29)

Figure2.6illustrateshow theinjectiondistribution, R (t), mapsonto the observation distribution,
Q(@). Theinjection density is a normal density function in time, with amean at t = 0.5t (shaded
area in top panel). The known injection angle is 8¢, = 25°. As before, several y~1(q,t, 1) curves
are plotted in the central panel, with 65 (t) highlighted. The times where 81 = 8« are marked ast,
and ty. A disturbance segment injected at B+, in the interval between these two timeswill appear as
an overturned segment at T. The probability of this event is marked with acircle on the right panel

(Q()), which is the difference of the two R (t) points marked in the upper panel (2.28).

The overturn probability for other observation angles, Q(¢), can be calculated using the corre-
sponding y~1(¢) curves. These curvessample different portionsof theinjection density, with distinct
values of t, and ty. The left-most curve equals B¢y at only one time, marked t,,,. Here, t, = ty. Cor-

responding to t, is the observation time 1,, which isthe earliest time at which a segment injected at
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B+ix can rotate through vertical. Both of these times are functions of the injection angle.

90° = Y(Btix, tm, To)
Btix =Y 1(90°, tm, To)
Q(90°,15) =R(tg) —R(ty) =0
Q(90°,1)=0 fort<To (2.30)

At T, = Y(Btix, tm, T) isthe steepest that asegment injected at B+« can be. The observation den-
sity at this@isaspike, becausethe sensitivity of t, andtq to @isgreatest at tp, wherey1(t) istangent
to the 8 = By line (2.29).

We can divide the interval between t, and ty into two regions, R, = [ty,ty] and Ry = [tm,tg]. A
segment injected in R, will flatten before overturning. A segment injected in Ry starts overturning
immediately. The earlier in R, that an injection occurs, the later it overturns. The instantaneous
rotation rate of a segment injected at t,, is zero, but becomes positive immediately.

Asinthefixed time example (of the previous section), it is possible that a segment will not over-
turn by T, resulting in a minor increase in q(¢) around 5°. For a more uniform f(t), this spike is
more prominent, but still secondary. Its value also increases when By is smaller and less likely to
overturn.

The injection density that we have used here varies slowly over time, thus most of the shape of
q(o) is attributable to dt, /0@ and dty/d¢ (2.29). It is possible to construct an injection density that
producesquitedifferent observationdensities. Aninjection density thatisconcentrated aroundt, will
resultin arelatively high density for ¢around vertical because R (t) will vary most right where 8¢ =
B:ix- Onthe other hand, if the injection density is small at ty, the principal spike in the observation
density will be more symmetric.

Figure 2.7 illustrates how the observation density (plotted as black bars) varies with the observa-
tiontime, T. Note that up to t = tm(tsix) =~ 0.6T anewly injected segment starts out being flattened,
and does not start steepening until after ty,. A segment injected after t, startssteepeningimmediately.
The probability of observing anear—vertical segment decreases further downstream, largely because
the higher rotation rate.

In earlier figures, times have been plotted relative to the observation time, T. In this, and follow-

ing figures, we plot resultsfor multiple observation timesusing areferencetime, T, that is either the
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Figure 2.7: The observation density, g(¢@, T) for arange of observation times, t, along aparticle path.
Theinjection density, f(t), is plotted in the upper panel. The region of significant injection density
is aso marked as the gray bar in the bottom panel at 6+, = 25°. Thefilled vertical lines correspond
to the shaded q(¢) curvein Figure 2.6 (right). They are plotted at the individual observation times.
These density curves have been left blank when the density is small.

flowband time scale, b/ H, or thetimeat the’ core’ (at 10H or 20H) for this path. Whilethereissome

room for confusion in this usage, the numerical values of time are not important for our purposes.

2.4.3 Both Angle and Time as Random Variables

Now we return to the case where both the injection angle and the time are random variables (2.16).
In Figure 2.8, the injection density p(6,t) is indicated by the dashed contours centered on 6 = 0°
andt/T = 0.5. Thisdensity is the product of a normal density in 6 (asin Figure 2.4) and a normal
density int, i.e. p(6,t) = g(6)f(t). The observation density q(¢, 1) is plotted as filled contours®.

4The contour intervals for the injection and observation densities do not match.
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Figure 2.8: Injection density, p(6,t) contours (dashed) and observation density, q(¢,t) contours
(filled). p(B,t) isnormal in both angle and time, with peak density at 6 = 0° andt = 0.5T. (upper)
Overturn probability, Q(90°, 1) and the cumulative injection distribution, P(0°,T).

The overturn probability distribution, Q(90°,T) in the upper panel is the integral of the contoured
density above 90°. We have also plotted the total probability of injecting a segment up to time T,
Q(0°,1) = P(0°1). Their ratio is Q¢(1) (which isabout one half at 1.5T).

In Figure 2.8 the observation density at 90° has a maximum around /T = 1. Thisis the point
where we are most likely to see a near—vertical segment. This maximum is the result of two trends,
theincreased cumul ativeinjection probability and theincreased rotation rate. Thelater (in time) that
ay (@) curve passes through vertical, the higher its cumulative injection probability is, because it
has sampled more of the injection density space, especially the higher density small angles. But the

overturning rate also is higher, reducing the time a segment spends around 90°.
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Figure2.9: Therelation between overturn probability, Q(90°) (filled contours), and 8¢ precores(con-
tours) when injectionisat tsjx. Theinjection density, p(8,t) = d(t — ttix)g(0), plots as an isochrone
(gray band near z/H = 0.6). The precore contours (51°, 32°, and 17°) for cores at 5, 10, and 15H,
just touch theinjection isochrone. Particle paths (dotted) connect the peaks of the precoresand center
lines of the probability contours.

2.5 Probabilities Across a Range of Paths

Up to this point, we have focused on the overturning along one particle path. Extending thisto cover
arange of paths, just requires evaluating the same probabilities along a representative set of paths,
treating each path independently. But displaying the probabilities requires some changes. Since we
need to deal with pointsin two dimensional space (x = [x, Z]), wewill pay lessattention to theangular
variationsin the probability densities and distributions. We will continue to use an injection density
of the form g(8) f (x), but will plot just the f(x) portion. Similarly, we will focus on the overturn

probability, Q(90°,x) (as opposed to the observation density).



25.1 Fixed Injection Time, Probabilistic Injection Angle

Figure2.9 showsQ(90°) for thecasewhen theinjectiontimeisknown and constant acrossall particle
paths. This was illustrated for one path and observation time in Figure 2.4. The location of this
injection plots as an isochrone (gray band) (t = ty).

Along each particle path, the overturn probability increases downstream, but along avertical tran-
sect across paths (such asin an ice core), the probability increases to around z/H = 0.25, and then
decreases.

At first glance, thismaximum in Q(90°) at an intermediate depth may be surprising, but compar-
ison with the 8¢ (precore angl€e) contours (Figure 2.2), gives an idea of what is happening. In Fig-
ure 2.9 we have plotted 8; contoursfor three core locations (5, 10, and 15H), ones which just touch
the injection isochrone. A segment injected at 0 = 32° at the tangent point of the middle contour
(bold), will be vertical in the core at 10H (these points are connected by a particle path). On other
paths, an injected segment will have to be steeper, if it isto become vertical at thiscorelocation. The
smaller this 0; valueisat tyy, the larger Pa(0,t+ix) is, and the larger Q(90°) will be.

A segment injected on paths closer to the divide, will be subject to more vertical compression
before being sheared, so it is less likely to overturn, while a segment injected further downstream,
will not have traveled long before reaching the core location.

For other core locations, this minimum 6¢ value is different and occurs on different paths. The
vertical maximain Q(90°) (across corelocations) appear to lie along anisochrone, though we cannot

show mathematically that this must be the case.

25.2 Fixed Angle, Probabilistic Injection Position

The precore (6¢) contours also provide insight in the case when the injection angleis fixed and the
injection time isarandom variable. As shown in Figure 2.6, the injection region that contributesto
the overturn probability at T, istheinterval wherethe 8¢ curveisbelow theinjection angle, {0¢(t) <
Btix . We described thisinterval by itstwo end points, t, and tq, further dividing it into two regions
by thety, time, R, and Ry. A segment injected at 8+, in R, initially flattens before overturning, while
oneinjected in Ry starts overturning immediately.

Sincet, and tq aretimeswhere 0; (t) = B5ix, in the flowband space (X, 2) they are the 64 precore
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Figure2.10: (upper) The R, and Ry regionsfor observation pointsaong avertical core. Their bound-

arieslie on the 8¢ = By precore angle contour.

(lower) The R, and Ry regions for observation points along an isochrone (the t line at 0.15H).
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angle contourswhen the observation pointsliealong avertical core. Thisisillustrated in Figure 2.10
for coresat 5,10, and 15H. The R, and Ry regionsfor acore at 15H are shaded, while the boundaries
of these regionsfor the other cores are outlined.

The boundary between the two regions, tm(6+ix), depends only on theinjection angle, and not on
the observation point. The T5(B+ix) curve where a tm(Bix) Segment reaches vertical, is the earliest
that a segment injected at B+ix can overturn (2.30). Thus Q(90°) must be zero above this curve.

On several of the particle paths crossing these regions, we have plotted dots at regular timeinter-
vals (500 years). Their spacing is much closer deep in theice, reflecting the lower velocity and thin-
ner stratigraphic layers at depth. If the injection density is uniform in time, the number of these dots
along apath in the R, and Ry regionsis an indicator of the overturn probability at the core. Specifi-
cally, Q(90°,tc) U tq —ty. The conditional overturn probability (2.18) is Q¢(T¢) = (tqg —tu)/Tc. The
shape of thesetwo probability distributionsis showninright panel of Figure 2.10. The growth of Q.
below T, is more abrupt than for Q(90°).

More generaly, if we know the cumulative injection probability, R (B+ix,t) (2.13), aong the t,
and ty boundaries, we can calculate Q(90°, 1) from the difference (2.28).

Figure 2.10(lower) presentsthe sameinformation as Figure 2.10(upper) but the observation points
arealong anisochrone. Thetn(B+ix) andTo(B+ix) curvesare the same, but the R, and Ry regionshave

aquite different shapes. The principal for determining their boundariesis the same.

2.5.3 Probabilistic Angle and Position

In Figure 2.11 the injection density is Gaussian in angle and injection time, p(6,x) = g(0) f(t), as
in Figure 2.8. The contoursin panel (a) are for the f (t) portion. They are aligned with stratigraphic
isochrones because the density isthe samefor all particle paths. The overturn probability contours
in panel (b) are similar to those shown in Figure 2.9 for just one injection time.

Figure 2.12 issimilar to Figure 2.11, but the injection density is binormal in the x and z coordi-

nates.

P(8,t) = 9g(8) fa(x(t)) f2(z(t)) (231)

The overturn probability pattern is similar, because the injection density is still concentrated along

an isochrone (there is considerable vertical exaggeration in these plots).
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Figure 2.11: (a) Contours of an injection density, f(t), that is Gaussian in travel time. These con-
tours are aligned with isochrones. (b) Contours of the overturn probability, Q(90°,1). The patternis
similar to fixed injection time case plotted in Figure 2.9. Contour levels are not the samein the two
panels.

Figure 2.12(a) includes contours of the probahility of observing an angle in the range of 90° to
160°. Such a segment would be obviously overturned. Thisregionisanarrow band on the upstream
side of the larger overturn range. Further downstream, an overturned segment ismore likely to have

rotated beyond 160°.

In Figure 2.13 the injection region is concentrated under the divide (on the far left). Because
the injection density is significant near the bed, the overturn probability is high close to the bed. A
segment injected at depth near the divide, enters the zone of dominant simple shear beforeit is flat-
tened very much. Further downstream, the pathswith the highest injection density approach the bed,

taking with them, the overturn probability contours.
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(a) Injection density
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Figure 2.12: Overturn probability for binormal injection density in x and z coordinates. p(6,x) =
g(8) f(x) f(2). Panel (a) also has contours (heavy lines) where the probability of observing an over-
turned segment in the 90 — 160° range is largest.

Figure 2.14 combines the injection densities from Figure 2.12 and Figure 2.13. Such a pattern
might occur if two distinct processes could disturb the stratigraphy. The combined injection density
isjust the sum of the two simpler ones. The overturn probability is evaluated in the same manner
as before. This summation of injection densities is valid if they are both small enough so that the
probability of oneinjection process modifying an aready injected disturbanceis very low.

Even though the peak density in the two injection zones is comparabl e, the divide injection pro-
duces a much higher peak overturn probability. Again, the precore contours help us understand the
difference. For the 10H core, the 30° precore contour crossesthe upper injection zone, while the 10°

contour crosses a significant portion of the divide injection zone.

In Figure 2.15 theinjection density isuniformin time across the flowband, with the Gaussian an-
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Figure 2.13: Overturn probability contours for an injection region directly under the divide. The
injection density isbhinormal in x and z, with the x mean at OH, and the zmean at 0.3H. Probabilities
have not been evaluated al the way to the bed.

gledistribution as before. Asin divideinjection case (Figure 2.13) the overturn probability islargest
at the bed, but because injections can occur on al paths, the depth range of overturning increases

downstream (as in the isochrone case, Figure 2.11).

2.6 Conclusion

We have modeled the case in which a disturbance characterized by a segment angle 6, isinjected at
timet on a particle path, and observed at time T at angle @. The injection angle and time are ran-
dom variables (specified in terms of aprobability distribution). The observation timeis a parameter,
whilethe observation angleisarandom variable, whose probability distribution is determined by the

model. Itisimportant to make a clear distinction between the injection variables and the observation
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Figure 2.14: Overturn probability for a two zone injection density. The injection pattern in (a) is
the combination of the patterns from Figure 2.12 and Figure 2.13. Panel (@) includes the 10 and 30°
precore contours (dashed) from Figure 2.2. The 30° contour cuts across the upper injection region,

while the 10° contour crosses a portion of the divide region.
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Figure2.15: Overturn probability for auniform (intravel time) injection density. (a) Theouter areais
theregioninwhich p(8,x) = g(8) isuniformintime. Theinner shaded contoursshow the probability
of observing an overturned segment in the 90 — 160° range. (b) plots contours of Q(90°).
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variables, and to also clearly identify which are random variables and which are parameters.

The overturn probability isthe injection density integrated over the subset of angles that can ro-
tate through vertical by the observation time. This set is bounded by an inverse angle rotation func-
tion, the same one that is associated with the precore angle contours. This probability is a special

case of amore general observation angle distribution.

Focusing on one injection point, illustrates how the injection angle probabilities are trandlated
into observation densities by the kinematic strain. Fixing the angle and letting the injection time be
variable, highlightstherange of pointsthat can contributeto afold. In particular, an injected segment

might be flattened for awhile beforeit is overturned.

When trying to understand overturn probability patterns across paths, it isimportant to keep in
mind that the probabilities are evaluated independently along each path. At the scale we are consid-
ering, disturbances on one path do not affect those on neighboring paths. The overturn probability
increases along the path as the total injection probability increases and gentler angles can be over-
turned. These principles are built into the folding model, but are easily forgotten when looking at

probability contours on a flowband cross—section.

The precores that we developed in Chapter 1, have also proven valuable in connecting overturn
patterns with injection patterns. In general, the shallower that the precore angle is at an injection

point, the higher the overturn probability will be on the same particle path at the core.

We have observed in our examples, two basic patternsof overturn probability. If theinjectionsare
most likely along a particular isochrone, the overturn probability will aso have its maximum along
an isochrone, with increasing value downstream. The overturn probability drops off closeto the bed
in ice that comes from near the divide, because disturbances injected close to the divide experience

significant vertical compression before they move far enough from the divide to be sheared.

Onthe other hand, if theinjection densities are high at depth near the divide, the overturn pattern
has its highest probabilities close to the bed. While our model cannot produce folding right under a
fixed divide, the folding potential can be significant within afew ice thicknesses of the divide.

Except when comparing the overturn probability to the total injection probability up to the ob-
servation point, we have not attempted to put absolute numbers on the probabilities. Such numbers

would require greater specificity regarding thetotal injection probability along each path than we are
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ableto provide at this point.

The observation probability, aswe have defined it, is not directly amenableto statistical verifica-
tion, even if we had larger samplesthan the currently availableice cores. A probability cast in terms
of the number of folds per unit volume might be better from a statistical point of view, but it would
reguire abetter definition of the shape and independence of folds. Working with statistical datacould
also introduce a size dependence into the problem. The statistics for small folds that can be readily
identified in asmall ice core cross—section, may or may not, be correlated with probabilitiesfor larger
folds.

Finally, we need to keep in mind that the injection probabilities are not directly observable. With
a greater knowledge of the injection processes, we might be able to identify precursor structures,
such as rheological inhomogeneities. We might also be able to better distinguish between a newly
injected disturbance and one that has been around for awhile. All of this assumes, though, that the
distinction between the dynamic disturbance process, and the kinematic overturning processis real
and discernible. At this stagein our research this distinction is primarily a modeling convenience.
We expect that a dynamic model capable of producing theinitial disturbances, will aso handle the

large—scale flow deformation.
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Chapter 3

RECUMBENT FOLDING OF DIVIDE ARCHESIN RESPONSE
TO UNSTEADY ICE DIVIDE MIGRATION

Abstract

An arching in stratigraphic layers directly under the flow divide of ice sheets has been observed in
severa icedomes, and is predicted by modelsof ice sheet flow. We examine the possibility that such
adivide bump could be the seed for recumbent folding if the divide moves. By overlaying aportion
of awell developed divide stratigraphic arch with a set of precores (core—relative isochrones), we
model the case where the divide moves rapidly to a new position, leaving the original divide strati-
graphic arch in a flank position. A divide offset of as little as two ice thicknesses can result in the
overturning of the deepest layers as they move ten or more thicknesses further downstream. The
maturity of theinitial divide arching is moreimportant than the speed of the divide movement. The
divide must remain at one location long enough for the arch to develop in the stratigraphic column.
After the move, the original divide layers must remain on the flank long enough to be overturned. If
the location of aice sheet summit is not sufficiently constrained, as appearsto be the case in Green-
land, a mature arch might not develop, and this type of folding would not occur. The most likely

placeto find thistype of folding might be the flank of anice ridge bounded by variableice streams.

3.1 Introduction

Arching of stratigraphiclayersdirectly under an icedivide hasbeen observed with ground—penetrating
radar in several ice sheets(Conway et al., 1999; Nereson et al., 1998; Vaughan et al., 1999), and pre-
dicted by modelsof steady stateice sheet flow (Raymond, 1983; Hvidberg, 1996). Divide movement
has also been modeled (Anandakrishnan et al., 1994; Marshal and Cuffey, 2000), and inferred from
observedlayering (Nereson et al., 1998). Thismovement has been suggested asareasonwhy noarch

isobserved at the Greenland summit (Hempel and Thyssen, 1992; Hvidberg et al., 1997; Hindmarsh,
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1996).

Waddington et al. (sub) looked at stratigraphic folding near ice sheet centers as a two stage pro-
cess. Initially theflat stratigraphy islocally disturbed, forming gentle open folds. Then the kinemat-
ics of the large—scale flow shears these folds, overturning certain segments. In Chapter 1 we built
on this by modeling the kinematic deformation over finite intervals along particle paths. Missing
from that work is acomprehensive model of the transient dynamic processes that could generate the
initial disturbances. In this paper we evaluate the possibility that a divide arch might be a seed for
kinematic folding if the divide moves. As discussed in some detail in Waddington et al. (sub) and
Chapter 1, theflow at depth and away from the divideisincreasingly dominated by shear whichtends
to overturn deviations from the steady state stratigraphy.

The changing geometry of an ice sheet was proposed by Hudleston (1976) as a cause for folds
observed at the margin of the Barnes|ce Cap. Advanceor retreat of theice sheet margin could change
the flow around bed—parallel stratigraphy enough to shear it some distance further downstream. We
show that asimilar analysis can be applied to layers high above the bed and near the ice sheet center.

M odelsof ice sheetsusing power law rheology produce distinctivevelocity patternswithin afew
ice thicknesses of the divide (Raymond, 1983).Since the effective viscosity of a power law material
increases with decreasing deviatoric stress, the ice deeper under the divide tends to be more viscous
than el sawhere. Calculations of isochronesin thermo—mechanical finite element models of ice sheet
divides produce a distinctive arching of stratigraphy in aregion approximately two ice thicknesses
wide (Hvidberg, 1993, 1996; Hvidberget al., 1997). Thishasbeen called aRaymond Bump (Vaughan
et al., 1999).

Nereson et al. (1998, 1997) and Nereson (1998) observed an arch in ground—penetrating radar
layers under Siple Dome (Antarctica), and estimated the rate of divide movement from the inclina-
tion in the axis of thisarch. They also examined the possibility that the arch was the result of re-
duced accumulation due to wind scouring over the divide. While their work favored the rheol ogical
explanation, they could not rule out low accumulation asthe cause. In this paper we start with arhe-
ologically produced divide arch, but our approach would also apply to an arch caused by differentia

accumul ation.
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3.1.1 Overview

In Chapter 1 we used akinematic model of ice sheet flow to show that a gentle open disturbance of
the stratigraphic layers could be deformed into an overturned fold that would disrupt the order of
thelayersin an ice core. We introduced the concept of precores, or core—relative isochrones, which
predict the slope of segmentsthat could overturn at a particular observation’core’.

In this paper we modify that flowband model to replicate the velocities calculated by afinite el-
ement model that produces the divide arches in steady state ice sheets. This allows usto calculate
both conventional stratigraphic isochrones and precores. By overlying shifted divide stratigraphy
over precores, we show that a moving divide can be the source of folds some distance downstream.

By further modifying our model to handle an evolving geometry, wetrack the evolution of strati-
graphiclayersasthe divide movessmoothly for alimited distance. Thisallowsustolook at the effect
of the divide movement velocity on the folding potential.

We are not attempting to model folding that could be observed in a core drilled at the summit
of an ice sheet. While the seed disturbance for thisfolding is created at a divide, the folding itself

occurs well downstream, though it is conceivable that the divide could migrate over such a folded

region.

3.2 Geometry and Velocity M odel

The coordinates of our flow model are x, horizontal aligned with theflow, and z, vertical. The corre-
sponding velocity components are u and w. Although thisis not essential to our approach, for sim-
plicity we assume plane strain, with a constant flowband width, so that strain rates perpendicular to
the flowband are zero. The surface and bed functions, S(x) and B(x) (Figure 3.1), approximate the
geometry of the north flank of Siple Dome, Antarctica (Nereson, 1998). With a net accumulation,
b= 0.1myr~1, and dividethicknessH = 1000 m, themode! characteristictimeis T = H /b= 10,000
years. The position of the divide, xg;y, Wwherethe flux is zero, isinitially at x = 0.

The velocity components are calculated from

u(x,z) = a(x)a(x, 2) (3.1

w(X,z) = — /B Saxu dz (3.2
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Figure 3.1: Maturedivideisochrones. Theheavier linesareat 1T (10,000 year) intervals. The flow-
band bed and surface approximate the north flank of Siple Dome, Antarctica. Divide thickness, H,
is about 1000 meters.

uisthe mean velocity derived from standard assumptions about the flux and the flowband thickness
(Reeh, 1988, 1989). isavelocity shapefunction derived from adynamic flow model. Itisprimarily
afunction of 2= (z— B)/(S— B), thenormalized height. The vertical velocity (3.2) is derived from
the horizontal velocity by incompressibility (dxu+ d,w = 0). Velocity at thebed is zero (frozen bed).
Particle paths are calculated numerically using the pair of differential equations in position, X = u,

andz=w.

In Chapter 1 the horizontal velocity profile, G(x,2) is based on the shallow ice approximation
(Appendix A). Here we use afinite element flowband model (Nereson et al., 1998) to get a polyno-

mial approximationto U at thedivideand at 10H downstream. For other X we use aweighted average
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of these two profiles.

((x,2) =n(x)ta(2) + (1 -n(x))0t(2) (33)

Theweighting, n(x) isafunction of the distance from the divide, and is chosen to maximize the fit
between ((x, 2) in thismodel and the sourcefinite element model. For detailson thisflowband model
see appendix A, and appendix A.1.4 for details on the polynomia velocity profiles.

The flank and divide profiles are compared in Figure A.3. The flank profile, (¢ (Z2), has greater
curvature at depth than the shallow ice approximation, (;(2) = 1— (1— 2)4 (Hutter, 1983; Paterson,
1994, p. 262), because the finite element ice is polythermal, with warmer, softer ice near the bed.
The divide profile, Gg(2), on the other hand, has greater curvature near the surface when compared
to Uy (2) because the full strain rate tensor isincluded when evaluating the ice viscosity.

When the surface and bed slopes are small, the vertical velocity, w(x, z), is dominated by a — bw
term (A.23) (Reeh, 1988). The flank W; isnearly linear except close to the bed, while the divide iy
is smaller and more curved (almost quadratic) in the lower two thirds of theice. This means that
W(X, ) decreases faster with depth under the divide than on the flank. The produces the arch in the
isochrones directly under the steady divide.

Our flowband geometry and coordinate system areillustrated in Figure 3.1 and Figure A.1.

3.3 Fold Potential Assessed with Precores

Conventional isochrones plot the age of glacial ice since it accumulated at the surface. These are
contours of constant time, starting with time, t = 0, at points on the ice surface. Figure 3.1 shows
the isochrones for our model. Note the arching under the divide.

As discussed in Chapter 1, we can also calculate isochrones relative to another set of reference
points, such as the vertically aligned points at a possible core site. These contours of constant time
would show where the ice sampled in the core could have been found at earlier times. We call these
core—relative isochrones, or precores. Precoresfor acore at 20H are plotted in Figure 3.2.

Thelower set of panelsin thisfigure illustrates how precores help us assess the potential of ob-
serving recumbent foldsin acore. The fold at point (q) (the core) has a near vertical leading edge,

which should be stand out as afol d-in—the—-making if observed in a core sample. About 0.4T earlier,
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Figure 3.2: Precores (dashed) for acore at 20H (vertical line). The heavier linesareat 1T intervals.
Selected particle pathsare drawn asdotted lines. Thethreelower panelsillustratethe changein shape
of adisturbance at three points, (p), (q), and (r), long a particle path. The leading edge of thefold
at each point is aligned with the corresponding precore.

this structure would have been asymmetric open fold at point (p), with aleading edge angle of 12°.
This isthe same slope as the precore at (p). The precores show the orientation at each point along
aflowpath of a segment that will be vertical at thiscore. A segment that is stegper than the precore
will rotate past vertical beforeit reachesthe core, while a gentler segment will not reach vertical.

Herewe definethe angle 6 of asegment relativeto horizontal upstream. We usetheterm leading
edgeto refer to the portion of afold that rotates through vertical when it is deformed into an order—
disrupting Z fold, asillustrated in the (p), (q), and (r) sequence. If alayer disturbance was atrough
instead, the overturnable edge would 'trail’, but we still call it the leading edge.

One way to evaluate whether a disturbance in the stratigraphy could disrupt the order of layers
further downstream would be to superimpose that disturbance on a plot of the precores. Any portion
of the disturbance that is steeper than the precore at that point will rotate past vertical by the time it
is carried to the core location.

Consider adividethat isat 5H long enough to devel op amature divide Raymond Bump, and then
moves rapidly to OH. The original divide stratigraphy is now 5H away from the divide, and subject
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Figure 3.3: Offset (5H) surface—relativedivideisochrones(solid) overlayed on precores(dashed) for
acoreat 20H. Thegrey band outlinesthe areain which the isochrones are steeper than the precores,
indicating that they will fold by time they reach the core. Thisisaportion of the flowband shownin

Figure 3.2 with the bed (heavy line) at about z/H = 0.6.

to amuch different strain rate than that which formed the arching. How will the stratigraphy evolve

now that it isin aflank position, and moves further downstream?

In Figure 3.3 we show aportion of the precoresfrom Figure 3.2 together with the arched portion
of the isochrones from Figure 3.1. These isochrones have been offset 5H, approximating a rapid
move of the divide from 5H to OH. The precores are based on flow when X4, = OH. The region
where the isochronesin the arch are steeper than the precoresis outlined in gray. These portions of

the isochrones will rotate through vertical as they move downstream to the core site at 20H.

Figure 3.4 shows contours of the slope angle of the precores and isochronesin Figure 3.3. The
precore angle contours are roughly horizontal, with the gentlest angles at the bottom (6 = 0°). The

isochrone slope contours outline the steepest sides (shoulders) of the 5H offset divide bump. As
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Figure 3.4: Slope angle contours of the isochrones and precoresin Figure 3.3. Precore angle con-
toursin degrees (dashed lines) are roughly horizontal. The isochrone angle contours (thin lines) are
vertically aligned about x = 5H, with the leading edge angles on theright (2° intervals). Gray bands
show where precore and isochrone angles match for divide offsetsof 1, 2, 5, and 8H.

before, agray band outlines the region where the isochrones are steeper than the precores and there-
fore will be overturned in the core. Along this band, the precores and the isochrones have the same
slope. At thetop of thisoverturnable region the slope angle is about 7°. We also show the overturn-
ableregion for divide offsets of 1,2, and 8H, for which the overturnable angle range is similar. For
the smaller divide moves, the overturnable isochrones are deeper (older) whilefor the larger divide

move, shallower isochrones can be overturned.

While details of these overturnable regions, including their shape, extent, and angle range, are
sensitive to the transition from a divide to a flank velocity profile, the existence of zones in which

layers can be overturned is arobust feature of sudden divide offsets.

Figure 3.5 shows the evolution of two of the arch isochrones. These were calculated by tracking
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Figure 3.5: Thehistory of two divide arch isochrones after the divide has been offset by 5H. Agesat
thetime of thedividemoveare 1.6T (upper) and 3T (lower). The 1.6T isochroneisabove the poten-
tial folding zone, and does not show signs of folding until well past 20H. The 3T oneis overturning
by 12H. The layersare plotted at 0.5T intervals.

anumber of particles starting at the arch, using freshly offset divide flow field. The upper isochrone,
withaninitial age of 1.6T (at thetime of the sudden divide offset), does not overturn by 20H, though
it could overturn further downstream. The 3T isochroneiswell within the overturning zone, and its

leading edge becomes vertical by 12H.

34 Folding with Gradual Divide M ovement

Overlaying precores and divideisochrones identifies the portions of the stratigraphic layers that can
overturn if the divide moves, but it does not indicate how fast the divide movement must be. This
technique simulates essentially instantaneous motion. If the movement is slow enough, the stratig-

raphy should adjust to the new flow pattern without any overturning.
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Whereas Nereson et al. (1998) and Nereson and Waddington (2001) found the shape of layers
with steady divide motion, here we will include the transients associated with (a) starting from a
stationary divide at time Ty, and (b) stopping the divide migration at alater time, T,.

Tolook at the effect of the divide movement speed on the folding potential, we make the divide
position, Xgiy(t), afunction of time, and redefine the surface profile, S(x — xgjy), and the flux, Q(x —
Xdiv), to be functions of the distance from the divide. Then we can calculate particle paths for an
ice sheet with a changing geometry. The flux at the divide is O, and the surface at the divide is a
maximum with a zero gradient. The blending function, n(x — Xqiy) (3.3) (A.32), for the divide and
flank velocity profilesis also a function of this distance from the divide.

We assumethat thebedisflat (B(x) = 0) and that the surface assumesthe simpleanalytical profile
derived from the shallow ice approximation (Chapter 1 and (A.25)). Although the actual surface
evolution may not follow this simple form exactly, we expect that any differences in the resulting
flow histories have at most a small effect on the pattern of layer overturning.

Our divide movement function has the form:

5H fort< Ty
Xdiv(t) = ¢ BH— Vgt forTy<t<T,
OH fort > T, =T +AT

The divide arch isochrones can be generated and folded in a seamless manner by starting a set
of particles at the surface between 4.75H and 5.25H at timet = 0. At alater time their subsequent
positions define an isochrone. Fromt = 0tot = Ty, the layer developsthe standard Raymond Bump
centered at xg;,. Att = T; thedivideposition startsmigrating, and at T it stops. We continueto track
the particlesfort > To.

Figure 3.6 shows the evolution of this layer for four offset speeds, Vgiy. In all cases, the divide
startsto move at T; = 3T. The shape of the divide bump at the end of the move (T>) is highlighted.
The current divide position, Xgiy(t), is marked on each isochrone and under it on the bed witha’¢’.
In Figure 3.6(a) the divide moves very fast (the T, and T, isochrones are indistinguishable), and the
layer overturnsat x =~ 12H, similar to the 3T isochronein Figure 3.5.

InFigure 3.6(b), the divide migration speed is 50 times slower, yet the leading edge of theformer

Raymond Bump becomesvertical only afew H further downstream (=~ 14H). At thispointitisaso
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Figure 3.6: Folding of an isochrone when a divide moves to a new position at various rates. The
divideisat 5H fromt = OT to 3T to build a near-steady state arch. It then moves at speed Vy;y to
OH. Theisochrone at the end of this move (At elapsed time) ishighlighted. Isochrones are plotted at
3.0, 3.5, 4.0, 4.5, 5.0, 6.0, and 8.0T. Vi, isexpressed inH/T = b= 0.1myr~L. Divide positionis
marked with’ ¢’ on theisochronesand x axis. The dotted linesare pathsfor three of theinitial points
(the two ends and the center).

0.5T older and a bit deeper than the overturning isochronein Figure 3.6(a). Panel (¢) continuesthis
pattern. Thereis, in effect, atrade off between shearing the arch sooner (with ahigh Vg;,) and moving
it deeper before shearing (with alower Vy;,). Thistrade off also meansthat it is difficult to evaluate
the effect of the offset speed without also varying the depth and age of the divide arch.

In Figure 3.6(d) the divide moveis slow enough that it does not overturn until closeto 20H. The
moving dividealso leavesaraised’plateau’ behindit. Onceit stopsat OH (at 5T), it starts producing

anew divide bump (the raised segment on the lowest isochrone, 8T).

Figure 3.7 shows the effect of an even slower divide speed, Vg, = 1H/T. By 6T the divide has
moved only to 2H. This speed is slow enough to produce a second arch even before the divide stops

moving. The original arch has not overturned by 8T and 25H.

In these examples the divide moves only to OH. If it continued to move in the same direction
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Figure3.7: Evolution of alayer under aslowly moving divide. Asin Figure 3.6 the divide movement
startsat 3T at x = 5H (thetopmost isochrone), and movesat aconstant velocity to theleft, stopping at
x = OH at 8T (the bottom—most isochrone (heavy line)). I1sochronesareat 3.0, 3.5, 4.0, 4.5, 5.0, 6.0,
and 8.0T. The current divide position is marked by ’ ¢’ on the relevant isochrone and at the base.

(to the left) the velocity and shearing of the former divide bump would increase. The same qual-
itative picture holds, but the profiles would be shifted further downstream and become even more
overturned. Conversely if the divide moves back (to the right) the velocity and shear of the bump
will decrease. But unlessthe divide movesbeyond its original position, the bump will remain on the

flank, and will continue to overturn.

3.5 Folding Prospects at Various Domes

It wasthe discrepancy between the GRIP and GISP2 ice coresfrom Greenland that brought theissue
of possible folding in ice sheets to prominence (Grootes et al., 1993; Alley et al., 1995). However
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this divide does not appear to be agood candidate for the folding mechanism that we analyzein this
paper, because thereis evidence of too much divide movement. Radar profiles of the current summit
show little sign of arching, raising questions about its current stability (Hempel and Thyssen, 1992;
Hvidberg et al., 1997; Hindmarsh, 1996). The position of this divideis sensitive to the dynamics of
the whole ice sheet (Anandakrishnan et al., 1994), and may, even under stable climatic conditions,
be subject to an inherent topological instability Nye (1990, 1991).

Modeling of the whole Greenland ice sheet over last glacial cycle produced a bimodal pattern
in the divide location, with a separation of about 70km between dominant glacial and interglacial
positions(Cuffey and Marshal, 2000; Marshal and Cuffey, 2000). Movement withinthe 20km model
grid sizeislesswell constrained, but the glacial position appears to be more stable. While it might
possible to construct a divide movement scenario that would fit with this reconstruction, and would
produce folding at the current near—summit ice cores, it would be quite contrived.

The examples we have presented assume plane strain, which models the flow off of a ridge or
elongated dome. With axisymmetrical flow, overturning of a divide arch may still be possible, but
the critical angles will be different due to presence of lateral spreading. Since the footprint of an
orphaned dome arch would be quite small (only afew H in diameter), thereis little chance that the
earlier divide, the current divide and the observation point (core) will line up.

The clearest examples of Raymond Bumpsin radar profilesare at the West Antarctic ridges such
as Siple Dome (Nereson and Raymond, 1997; Nereson et al., 1998), Roosevelt Island (Conway et al.,
1999), and Fletcher Promontory (Vaughan et al., 1999). These are highly elongated domes, with
ridge-likeflow (plane strain) on their flanks. Their boundariesare strongly controlled by bed topog-
raphy and the surrounding ice streams and ice shelves.

Fletcher Promontory has awell developed divide arch that is attributed to divide rheology. The
tilt of the arch crest suggests a divide movement rate of 2b. The Raymond Bump at Roosevelt Island
is (perhaps) the best devel oped arching observed to date, However thisarching is probably the result
of the thinning of a much thicker ice sheet over the past several thousand years. Its position is well
defined by bedrock platform and the surrounding ice shelf, so thereislittle likelihood of significant
divide movement in the past or future.

Thearching at Siple Domeisless mature, possibly becausethe current divide movementison the

order of 5b (Nereson and Raymond, 1997; Nereson et al., 1998). However this dome is bounded by
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activeand relicice streams(ref), so thereisthe possibility that thisdivide has experienced the kind of
stop—start motion that our model requires. If produced, recumbent folds are more likely to be found
well down on the current flanks of the domethan near the summit. Furthermorethe current geometry
of Siple Domemay not berelevant when considering the possibility thisfolding. Our folding requires
times on the order of 3T to develop a mature divide arch, and several more T to overturn it. With
T of around 10,000 years (H = 1000m, and b= 0.1m/a), 3— 5T isright in the middle of the last
glacial period. It may be that recumbent divide arches, if they exist in Antarctica, are the result of

movement of dividesthat existed during the last glacial maximum, but are not evident now.

3.6 Conclusion

Arching in the stratigraphic layer under a divide is a potential source of recumbent folding on the
flanks of anicedome. But the arching must go through three stages: development, divide offset, and
folding. The divide has to be fixed long enough for the bump to develop. with times on the order
of several T=H/ b. Then there must be a period of relatively rapid divide movement, followed by
a period in which the orphaned arch remains on the flank. The initial movement puts the arch into
anew flow regime. The following stable period is needed to actually overturn it. The fold appears
somedistance down theflank of thenew geometry. Such afoldwouldfound under adivideonly if the
divide jumped back post its old position. Divide movement is a possible mechanism for producing

foldsinicesheet stratigraphy, but it isnot apromising explanation for foldsat or near acurrent divide.
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Chapter 4

THICKNESSCHANGESIN RECUMBENT FOLDED LAYERS

Abstract

Our previous work on kinematic folding in ice sheets focused on the overturning of steepest seg-
ments of adisturbance. Here we examine the deformation of two dimensional structureswith length
and thickness. Portions of deformed stratigraphic layerswith different initial slopesare stretched by
different amounts as they rotate. Because massis conserved, they also experience different amounts
of thinning. Parts of a disturbance thin at a higher rate than the undisturbed stratigraphy, while oth-
ersthin at a slower rate even when they are flattened. The deformation of an overturning segment is
more complicated. It is shortened and thickened as it rotates toward vertical. Further rotation pro-
duces stretching and thinning. An ice core that penetrates a fold may encounter sections that are
much thinner or thicker than undisturbed stratigraphy, as well as passing through a particular layer

two or moretimes.

4.1 Introduction

Waddington et al. (sub) introduced amodel of foldinginice sheetsin which atransient dynamic pro-
cess disturbs the stratigraphy, producing gentle open folds. These can then be passively overturned
by the strong shear that characterizes the large—scale flow of theice. In Chapter 1 we elaborate on
thisprocess by cal culating the finite strain along particle paths, and applying thisto segments of var-
ious slopes, seeking to determine how steep a disturbance must be to overturn. We focused on the
leading edge of an upward disturbance, the steepest portion that would overturnfirst. However when
the samefinite strainisapplied to amore complicated disturbance such asillustrated in Figure 4.1(a),
it is apparent that more isinvolved in folding than just overturning simple segments. Since different
layershavedifferentinitial slopes, their leading edgesoverturn at different times. Even when thetop

and bottom of alayer are similar, thetrailing edge thins, while the overturning leading edge thickens.
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Figure 4.1: The deformation of a set of layers with variable amounts of initial disturbance (a). The
area of each layer is the same. Panels (b) and (c) display the same disturbance at successive points
along aparticle path.

In this paper we quantify the changesin layer thicknessthat occur as the disturbed layers deform.

4.2 Overview

We apply avelocity model and deformation gradient tensor to a simple straight—sided disturbance.
With this simple geometry we derive algebraic expressions for the thickness and width of various
portions of the layer as the fold overturns. We then generalize this disturbance by imposing a vari-
ableinitial layer thickness, and using smooth Gaussian curvesin place of straight segments. By find-
ing alarge number of particle paths, we can also look at the thickness changes for large structures,
such asthe offset divide arches modeled in Chapter 3. Finally welook at the observed folded layers
associated with stripesin the GISP2 ice core (Alley et al., 1997).
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4.3 The Deformation Gradient Tensor

Asdescribed in Chapter 1, we use a plane strain flowband model of an ice sheet to calculate theice
velocity and particle paths. x and zarethe horizontal and vertical coordinates. The bedisflat, and the
surfaceprofileisassumedto bein steady state. By keeping track of travel timesalong a set of particle
paths, we can derive a set of steady state isochrones, which coincide with stratigraphic layers.

In our passivestrain model of folding, weassumethat some unspecified processdisturbsaportion
of this steady state stratigraphy. We assume that the factors contributing to this displacement, such
as anisotropy or rheological contrasts, are transient, and do not affect subsequent deformation of the
disturbance. The disturbanceisthen passively deformed by the large—scale flow, with some portions
overturned by shear, and other parts flattened by vertical compression.

We can track the kinematic deformation of the steady state stratigraphy and any disturbance in
two ways. Oneway involves calculating alarge set of particle paths starting at various pointsin the
structure we are studying. We used this when studying the possible folding of offset divide arches
in Chapter 3. However, if we can assume that the structure is small compared to variations in the
strainfield, asecond powerful tool, the deformation gradient tensor, isavail able. Thistensor assumes
that the strain is homogeneous in a small neighborhood around a particular particle path. With a
sequence of tensorsthat can be calculated at the same time asthe particle path, it is possible to study
the deformation of an arbitrary small structure (Chapter 1).

If Xo is asmall structure (or vector or segment) at the reference point, then the same structure

after homogeneous strain, at the current point, isalinear function of itsoriginal configuration.
X1 =F-Xp (41)

where F isthe deformation gradient tensor describing this strain. This can be written in terms of the

N

If thereference and current points are the same, F istheidentity tensor, with R, and F,, being unity,

X, Z coordinate system.

FoXo 4+ Fezo
FxXo + Fz2o

(4.2)

and the other terms being zero. Asthe current point moves downstream, the R and Fy; terms grow,

while F, = 1/F. For an ice sheet with aflat bed, the F term isa small negative number.
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Waddington et al. (sub) distinguish between slopes relative to horizontal (the large—scale coor-
dinate system) and the local steady state isochrone. Their principal measure of fold susceptibility is
the slope of the segment that momentarily is not rotating relative to thisisochrone, mgi;. In Chapter
1 we glossed over this distinction because our focus was on the rotation of segments through verti-
cal, in which case, angle differences on the order of atenth of a degree are negligible. However, for
the purposes of looking at layer thicknesses during folding, it is convenient to work with anglesrel-
ative to the isochrones. With the vertical exaggeration used in Figure 4.1(c), the layers would have
anotabletilt if plotted relative to horizontal rather than the local isochrone.

For thisreason, in this paper we use avariant on F that operatesin areference framethat rotates
with the steady state isochrone.

F=R(@s)" -F-R(Bis) (4.3)

where B4, isthe steady state isochrone angle at the reference point. The corresponding steady state
isochrone angle at the current point, @, can be derived by applying F to a segment with a6;5 angle

(Chapter 1) (1.22). R(0) isthe familiar rotation tensor?.

{ cosoO sinO]
0) = (4.9

—sin® cosO

Theresult of applying F to asegment that isparallel to the referenceisochrone will be asegment
aligned with the current isochrone. The folded layers shown in Figure 4.1(b) and (c) are the result
of applying a F tensor to the disturbance in panel (a). Undisturbed steady state stratigraphy would

plot as horizontal linesin al three panels.
Plotting folds with respect to the isochrones rotates the true verticals and horizontals by 6;g,.
When the axis scaleis 1 : 1 and the bed is flat, this effect is barely noticeable. With strong verti-

cal exaggeration, thetrue horizontal rotation becomes obvious, but the rotation of the true vertical is

even less noticeable.

1The signs here are appropriate for angles defined relative to horizontal upstream, i.e. the —x axis.
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Wq

Figure 4.2: Layer geometry notation as summarized in Table 4.1. Relative values are marked with
outside arrows and gray bands. Note that the band for t4(x) is continuous, while that for tn(x) isin
two parts.

4.4 Folding a Parallelogram Distur bance

In Chapter 1 (Figure 1.4) wetook as our prototypical disturbanceasymmetricinverted’V’, asimpli-
fication of the draping of stratigraphic layersaround atransient hard lumpintheice. Inthissimplest
form the disturbance has two straight edges. In a flow with strong shear, one of these will rotate
through vertical and overturnif it is steep enough. We label thisthe leading edge. The other edgeis
the trailing edge. It just flattens, rotating toward horizontal downstream.

Inthissection, wegivethisdisturbanceauniformvertical thicknessasillustratedin Figure 4.3(a).
Initially it issymmetric, with arise of z;, and awidth of 2x;. Thevertical thickness of thelayer ish;.

These parameters and other measures of strained thickness and width are summarized in Figure 4.2
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Table 4.1: Layer geometry notation for a parallelogram disturbance. See Figure 4.2 and Figure 4.3.

hy
V4]
X1
X|
Xt

Xh

initial state

layer thickness
disturbancerise
disturbance half width
leading edge vector
trailing edge vector

initial thickness vector

X, 4
X4
Xh; Zh

deformed state

™

- X| components

™

-X; components
F - X, components

base width, X — X + Xy

thicknessrelativeto z,
peak ratio, 1+ x; /hy
leading segment

trailing segment

gross thickness at x

net thickness at x
maximum gross thickness

maximum net thickness

width relativeto x,
total, gross width
thinned

overlapping

stem
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Figure 4.3: Overturning of a parallelogram disturbance. (a) Initial symmetric disturbance. (b) L ead-
ing edge becomes vertical. (c) Overturned fold.
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and Table 4.1.

This disturbance can be thought of as being made up of two parallelograms, which we will refer
to astheleading and trailing parallel ograms. The essential geometry of these segments can be encap-
sulated with three vectors, X, X;, and Xu. Xy istheinitial thickness vector, which tracks the shearing

of aninitially vertical line through the layer.
Xh=[0h]  Xi=[-X,z] Xx=[x,z] (4.5)
The corners of the leading and trailing paralelograms are at

110,0], X1, Xn, Xi +Xn} (4.6)

{[07 0]7 Xt; Xh, Xt—i—xh}—l_[_szo]' (47)

When the strain represented by F is applied these parallelograms, these vectors become

IE 'Xh = [Xh7zh] = [FXZ7 I:ZZ] hl
IA:'XI =[x,2] = [-FuX1 + Fez1, Fzz1] (4.8)
F X = [%,2] = [FoXe + Feza, Fzi]

Figure 4.3(b, c) show this strained fold at two successive points on the path?. Thethree F tensors

10 132 1.34 1.60 2.77
(4.9
01 0 0.76 0 063

We focus on those aspects of this fold deformation that would be most apparent in a vertical ice

are:

core, especially a corethat has asmall cross—section compared to the extent of the disturbance. One
important property of afold is the thickness of the deformed layer. It is most useful to view this
relativeto thethickness of the steady state stratigraphy at the sample point. A related parameter isthe
width of various portions of the fold. This too should be viewed relative to a reference undisturbed
width. This width is a measure of the probability of the core encountering a particular part of the
fold.

2Figure E.6 showsthe finite strain Mohr circles for this overturning.
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Figure4.4: Thicknessesand widthsat sel ected points on adisturbance through time (horizontal axis).
(a) Layer thickness, z, = Fzh; (solid), and the relative trailing thickness, t; (dashed).

(b) % (solid), x, (dashed), and x; (dot dashed). x; = {—x;,0,X,} (vertical grid).

(c) Relative thicknesses. In this example the peak ratio, p = 3.

(d) Widths relative to xy,.
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441 Fold Thickness

Before calculating the thickness of afolded layer al alongitslength, it isinstructive to look at how
the thickness at selected points on the fold varies as the folding progresses. Because our initial dis-
turbance is defined by a few select vectors and parameters, we can focus on how these affect the
evolving thickness and width.

The undisturbed layer thickness evolvesas z, = F;h;. The height of the peak of the disturbance,
whichinitially isgivenby h, 4+ z;, decreasesat the samefractional rate asthe undisturbed layer thick-
ness, so the peak height relative to z, remains constant.

Fz(h1+21) p4l
== - = -1 —
p + hy

(4.10)
This p differs from our other measures of thicknessin that it is the (relative) distance between the
highest and the lowest points of the disturbance. These two points are not vertically aligned until the
leading edge steepens enough to bring the peak over undisturbed stratigraphy (when x, = —x).
The trailing edge parallelogram has an initial base width of x;. When strained, this becomes
Fzx;. But thetotal strain of x; parallel to the steady state isochroneisx = Fx X1 + Fxz z:. Sincethe
trailing parallelogram stretches more than the corresponding undisturbed stratigraphic layer, it must
also thin at a greater rate in order to preserve area. As aresult, the relative thickness of the trailing

parallelogram is the ratio of these two stretches.

= Dok (4.11)
X
It can be expressed in severa other ways.
-1
Zh X — X % Fe )
tt=————=(14+—tan 4.12
t Zn % ( P & (*.12

Appendix D.1.1 gives more details on the trailing edge calculation. z, and t; are plotted in Fig-
ure 4.4(a). t; does not depend on the initial layer thickness, hy, nor the z;/h; ratio, but rather just
on the strain and initial trailing edge angle, 6;.

This calculation is contingent on X > X, because it assumes that the top and bottom edges of
the trailing parallelogram overlap. Thisistrue early in the strain when x, is still nearly vertical and

xp small. It remainstrue for al strainsif the layer is thin enough, specificaly if z; > h;. But if the
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disturbance amplitude is smaller than the layer thickness (z; < hy) it is possible for x, to become
larger than x; with large ;. In this case, we would have to use a different parallelogram geometry
to calculate the rotated layer thickness.

Thisis not a strong limitation. Unless we are examining disturbances in single annual layers,
we can awaysfocus on athinner set of layers. In addition, folds at the scale of the finest observable
stratigraphy probably will beobservableintheir entirety in atypical ice core, and thetype of analysis
that we are doing here may not be needed. This analysis should be most valuable when trying to
understand folds that are larger than the ice core samples.

Thickness calculations for the leading parallelogram are more complicated because it can rotate
through vertical and overlap the undisturbed segment. Details of these calculations can be found in
Appendix D.1.2.

Early in the deformation, the expression for the relative thickness of the leading paralelogramis
similar to that for the trailing one.

_ X %2 _ —h«X

t
Zh X X

(4.13)

But because x; < 0, t; isgreater than unity, and increases as the leading edge gets steeper (that is, as
¥ decreases). t; reaches a maximum when x; = —x,, and decreases as the rotation proceeds further
(Figure 4.4(c), dashed line). The thickness picture becomes more complicated at this point because
the leading edge starts overlapping with portions of the undisturbed layer and the trailing parallelo-
gram.

When we talk about the combined thickness of overlapping segments, we need to distinguish
between two ways of measuring the thickness at a particular x. The net thicknessty(x), is the sum
total of the relative thicknesses of the pieces that overlap. The gross thicknessty(x), is the distance
(relative to z,) between the upper— and lower—most edges of these pieces. The two measures are the
same if the structure involves only one piece (such as the t; measure), or if the overlapping pieces
arevertically contiguous, but the net thickness will be less than the grossthicknessif there are gaps
between the overlapping pieces. The distinction between t,(x) and ty(x) isillustrated in Figure 4.2.

If afolded layer has a distinct chemical signature, the gross thickness measures the relative dis-
tance between thefirst and last encounterswith this signaturein a core, while the net thicknessisthe

relative length of core with this signature, which may not be in one piece.
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For this parallelogram fold, it isinstructive to look at the maximum values (over the length of

the fold) of these two measures.
tpn = Max tn(X) (4.14)

ton and tyg are plotted in Figure 4.4(c). Their calculation depends on the value of x| relative to X,. X
and x;, are plotted in Figure 4.4(b); vertical lines mark where x /x, = —1,0, and 1. Note that these
neat boundaries are a specia feature of this simple disturbance, which has parallel and straight top
and bottom edges.

until x, = —xy, the thickest portion of the fold is the leading parallelogram, so tp, =t;. When
X| = —Xp, tpn reachesitsmaximum, p, along the vertical diagonal of theleading parallelogram. With
further rotation, t; decreases, but t,, remains at the maximum. When theleading edge rotates beyond
vertical (x > 0), gapsdevelop in the maximum vertical section through thefold. The grossthickness
tog, remainsequal to p, buttp, startsto decline. Eventually the net thicknessbecomesty, = 14t +t;,
the undisturbed layer plus the two small contributions from the flattened and thinned trailing and
leading parallelograms.

44.2 Fold Width

Another aspect of adisturbancethat variesasit isdeformed, isthewidth of the thinned and thickened
portions. Initially in our example (Figure 4.3(a)), the leading and trailing parallelograms have the
samebase width, but by thetimetheleading edge becomesvertical, thethinned trailing parallel ogram
is much wider than the leading parallelogram (b). With further rotation, the width of the overturned
leading segment increases. 1n (c) arandomly placed core would be roughly as likely to encounter
the overlapping portion of the fold as the non-overlapping part of the trailing parallelogram.

As with the thickness, it is useful to look at fold widths relative to the width of the equivalent
undisturbed parallelogram. In our example, the disturbance has an initial width 2x; and height h;.
During deformation, itsbottom lengthis 2Fx,, but sinceit has been sheared, a better measure of its

width (or footprint) includes F;h;. Thisis our base or reference width, Xy.

Xo = % — X +Xp = 2FX1 + B (4.16)
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w; is width or footprint relative to x, of the portion of the thinned trailing edge that does not
overlap the leading edge. Before the leading edge overturns, w; is just the footprint of the trailing
parallelogram, X /x,. After overturning we have to subtract the width of the overlapping leading
parallelogram, wt = (X — X) /X = 2FX1/Xo- Wo IS the width of the overlapping region, where the
trailing and leading parallelograms overlap with the undisturbed portion. Before overturning, wg is

zero. After overturning, w, isthe sum of x and x;,.

During the early stages of overturning, ta(x) = t4(x) in the central portion of the overlapping
region. The width of this stem of the fold isws = (X, — X ) /%, until the leading edge rotates so far
that x;, > X,. The remaining part of the overturn structure might be called the points.

For x; < 0, the disturbance has the same footprint as the undisturbed layer, so the gross width,
Wy = 1. Forx > 0, wyg = W + W, increases as the peak of the disturbance moves beyond the footprint
of the undisturbed layer. These width measures are plotted in Figure 4.4(d). See Appendix D.1.4 for
details.

4.4.3 Flattening Leading Edge

In Chapter 1 we observed that aleading edge can flatten before moving into aregion where the shear
becomes strong enough to overturn it. While the focus of this paper is on the layer thickness as a

disturbance overturns, thickness variations also occur even when the leading edge is flattening.

Appendix D.1.3 presents the same initial disturbance as in Figure 4.2, but starts it further up-
stream where the simple shear is weaker. Most of the deformation we show falsin the x; < —xy
category. During this time, the leading edge angle decreases. Thus the trailing parallelogram thins

and the leading one thickens even asiit flattens.

This means that kinematic strain cannot remove all evidence of a disturbance. Such strain pre-
serves the relative vertical position. Structures are spread out, and many angles reduced, but evi-
dence of the original disturbance (which is not kinematic) will remain in the form of layer thickness

variations.
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Figure 4.5: (a) Simple similar (class 2) disturbance (asin Figure 4.3) at several stages of strain (the
line width varies with stage). (b) The net relative thicknessest,(x) (solid line) and the gross thick-
nessesty(x) (dashed). The horizontal scale isthe same on both panels.

4.5 Layer Thickness Examples

To calculate the thickness of more complicated disturbances, we define the top and bottom surfaces
of alayer as piecewise linear functions. Then we can find the thickness all along thefold at specific
stages of the strain, though it is harder to track specific thickness propertiesas we did in the previous

section.

With a pair of piecewise linear functions, the vertical thickness of an open fold at a particular x
can be found by interpolating the height (z) and taking the difference. When the layer overturnsthe
calculation is a bit more complicated, since the interpolation needs to return multiple z values for
each boundary function. Thisis best done by dividing the function into pieces that are monotonicin

X. Taking pair—wise differences of the layer crossings gives the thickness of each of the layer pieces
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Figure 4.6: Same case as Figure 4.5 except that theinitial disturbance isnot similar. Thelayer thick-
ness at the fold hinge is less than on the flanks. This evident in the’M’ shaped thickness profile in
panel (b).

that the vertical section encounters. The sum of these differences givesthe net thickness, ty(x). The
difference between the largest and smallest heights gives the gross thickness, tg(X).

Thesetwo thickness measuresare plotted in Figure 4.5(b) for several successive stages of folding
asshown in panel (8). Until the leading edge overturns, tn(X) = tg(X) at al points on the disturbed
layer. With overturning, a difference develops between these measures in the thickened portion of
the fold. The maximum gross thickness (t,g) at each strained stageis the peak ratio p (4.10), which
is the same for the three stages. If we had plotted an earlier strained stage, t,g would be less than
p (as shown in the left—-most side of Figure 4.4(c) where x; < —X,). The flat minimum thickness at
each stageist;, the thickness of the thinned trailing segment.

Assuming that the disturbed layer initially had an uniform thicknessis asimplifying assumption.

When we generate a multilayer disturbance such asillustrated in Figure 4.1(a), it becomes apparent
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that we need layers of variable thickness to make the transition between undisturbed layers and dis-
turbed ones. Furthermore, if a section of alayer forms a transient "hard lump’ that resists vertical
compression (relative to its neighbors), it must also resist horizontal extension. This means that ad-
jacent portions of the layer might be thinned more than normal. Conversely, we expect the layers
immediately above such alump to be thinner than the undisturbed layers, with material shifting to

the flanks of the disturbance.

Figure 4.6 showsasimpleinverted 'V’ disturbancein which thetop of the layer isdisplaced less
than the bottom. To conserve area, the disturbance in the top surface must span a greater horizontal
distance than the disturbancein the bottom surface. Theleading edge parallelogramin earlier figures

is now replaced by a general quadrilateral that preserves area.

The thicknesses in Figure 4.6(b) differ from those in Figure 4.5 in several ways. The initial
thickness (heaviest line on the left) varieswith x, being thicker on the flanks of the disturbance, and
thinnest at its peak. The averaged thickness is the same as before. When strained, the trailing edge
thickness decreases more gradually, with a minimum adjacent to the junction with the leading edge.

The upper leading edge is gentler than the lower one, and does not overturn as soon.

One way of producing a smoothly curved version of this last disturbance is to use a Gaussian
curve. By using the same normalization for the top and bottom curves, but different spreads (o)
we can produce an area—preserving disturbance with a thinner hinge and wider area, as shown in

Figure 4.7. After strain, the thicknesses resemble a smoothed version of Figure 4.6(b).

45.1 Precores

Precores, or core relativeisochrones, wereintroduced in Chapter 1 as atool for predicting what dis-
turbanceswould overturn by thetimethey were observed at adownstream coresite. Figure 4.8 shows
the deformation of a more complex up—and—down fold. A precore (dashed line) is drawn across the
initial disturbance to show the orientation of material whichisvertically aligned in the strained ver-
sion. In the second wiggle, the precore cuts across the initial disturbance at three points, just as the

vertica line doesin the overturned fold.
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Figure 4.7: Layer thicknessfor a Gaussian disturbance with variable initial thickness. (a) The upper
and lower edges of the disturbance have a Gaussian shape, but the upper one has alarger spread o
and smaller amplitude. The resulting layer thickness at the hinge of the disturbanceis less than 1,
while the thickness on the flanksis greater than 1. (b) The relative layer thickness at the successive
stages.

4.6 Moving DivideL ayers

In Chapter 3, we studied the deformation of large—scale disturbances using a large set of particle
paths, as opposed to assuming that the disturbanceis small compared to the scale of variationsin the
strainfield. In Figure 4.9 we extend thisanalysisby tracking apair of (non-steady state) isochrones.
In panel (b) we plot the vertical distance between these two surfaces. In this case, the thicknessis
scaled by a constant, the maximum ice sheet thickness, rather than the evolving layer thickness re-

mote from the fold.

The ice sheet dimensions are roughly those of Siple Dome, Antarctica, with atime scale (T) of

10,000 years. Thefirst layer plotted on theleft isapproximately 3T old and its bounding isochrones
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Figure 4.8: (upper) Folding of an up—and—down fold. A precore (dashed line) in (&) on the initial
disturbance becomes vertical in the second stage.

(lower) Theinitial fold isjust the inverse of the disturbance in the upper panel, but its thickness pat-
ternis substantialy different after overturning.
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Figure 4.9: Folding of arched isochrones when the divide moves. (a) A pair of isochrones (0.2T
apart) at successivetimesteps. (b) The net (solid) and gross (dashed) vertical distance between these
isochrones, The scenario isdescribed in Figure 3.6 in Chapter 3. Thedivideisat x=5H fromt = 0T
to3T. Thenin 0.01T it movesto x = OH, putting the well-devel oped divide arch in aflank position.
Theisochrones are plotted at 3.0, 3.5, 4.0, 4.5 and 5.0T. Note the vertical exaggeration.

are0.2T apart. Thelayer thicknessis approximately uniform at this point. Up to thistime, the strain
has been predominately the pure shear that characterizes the near—divide flow of an ice sheet. After
the divide moves from 5H to OH, bed—parallel simple shear dominates at the old divide location,
overturning the layer. The thickness changes are similar to those already described, with athinning
of the trailing edge, and a thickening of the overturning leading edge.

After 5T, the stem has disappeared (X > X,). The net thickness has an’M’ shaped peak, with
adecrease in thickness at the middle of the fold. We do not see this feature in our other examples.
Its occurrence here may be the the result of the large disturbance—amplitudeto layer—thicknessratio,

but we have not studied this.
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4.7 Stripes

A few folds and tilted layers have been observed in the Greenland ice cores (Alley et al., 1995). In
Chapter 1 we cal cul ated the possible angle history of some of thesetilted layers (Figure 1.14). Using
the same flowband geometry, we can do the same for the stratigraphic layers sketched in Figure 2 in
Alley etal. (1997). Thisisoneof thefew published examplesof afoldin anicecore, andisassociated
with a unique striped pattern of grain anisotropy. These layers are shown (dightly simplified) in
Figure4.10(c). By running aparticlepath through the samplelocation (9H fromthedivideand 0.17H
up from the bed), we can calculate what this small fold would have looked like at points upstream
(panels (a) and (b)) and will ook like at a point downstream (panel (d)). The points on the particle
path were chosen to approximate the orientation of the main stripein [Figure 4] of Alley etal. (1997).

At this depth and distance from the divide, the shear strain clearly dominates, with a vorticity
number of W, = 0.998 (Figure 1.2). The shearing component of F isapproximately +2 (F) for these
panels, in contrast to ahorizontal extension (F) of only 1.05. For asimilar amount of shear (rotation
of the stripe), Alley et al. (1997)[Figure 4] seem to assume thereis more vertical compression.

While our model does not include the grain anisotropy that is crucia to the hypothesis outlined
inAlley et al. (1997), it does point to a possible problem with this explanation. It may be difficult to
produce the observed offset in these layers without rotating the stripe considerably more than their
Figure 4 suggests.

In their hypothesis, a stripe of specially oriented grains acts as a shear plane, allowing one side
to move down relative to the other.

Oneissuethat has not been addressed, is, what happensto the ice above and below the’ dropped’
section. Thelayersbelow must thin at an above—average rate, while the section above must thin at a
slower rate. There must also be a compensatory thickness change above and below the portion that
does not drop. In contrast to the formation of grabens at the earth’s surface, there is no atmosphere
or magmato flow to or from the fallen block. In other words, having aroughly vertical fault is not
enough to produce a vertical displacement.

Onepossibility isthat the displacement along the stripe occursfurther upstream, wherethe stripe
had amuch gentler slope (e.g. angles around 20°). In such an orientation, the simple shear and pure

shear would work in concert to produce slip aong the stripe. The offset would involve as much
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Figure 4.10: Possible kinematic folding of astripe in the GISP2 core. Panel (c) showsthe layers as
observed in the core (Alley et al., 1997)[Figure 2]. Panels (a) and (b) show the layers at two points
upstream, and (d) at a point downstream. The panels are labeled with the x position, and the defor-
mation gradient tensor F = [FxFz; FxF2] that producesthe. The gray bands outline the stripes. The
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F=[1.05 1.94; 0.00 0.96]

horizontal and vertical axis scales are equal, and the samein all panels.
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or more horizontal relative movement as vertical movement. This may be easier to achieve while
maintaining continuity. We might also note that Figure 4.10(a) resembl es the extensional kink band
case illustrated in Figure 20.28B of Ramsay and Huber (1983)[Vol.2, p. 427]. In that illustration,
two stripes converge toward the bottom.

Our kinematic analysis suggests that there is significant stretch along the axis of the main stripe,
particularly asit rotates beyond vertical. The length of the stripe (bounded by the two parallel gray
bands) doubles from panel (b) to (c). If the grainsin this stripe have their basal planes aligned with
the stripe, such stretch should be easily accommodated.

There may be some uncertainty in the thickness of the thick bottom layer in Figure 4.10(c). On
the left of the panel it is three times as thick as the upper layers, and on the right four times. This
difference in thickness from left to right may not be real, since it is hard to track layers through the
fold at the bottom left of the relevant photograph. We have projected the dight downward dip in
the bottom linein panels (a) and (b), trying to seeif the thickness difference is of the trailing versus

leading edge type. This probably isnot the case.

4.8 Conclusion

Our previous work focused on the overturning of a stratigraphic disturbance, which can alter the
order of stratigraphic layersin a vertical sample. The disturbance was treated as a line, or in the
simplest case, as a segment with only one property, its orientation. Real disturbances are two (or
actually three) dimensiona objects. Thus, when subjected to afinite strain, they also stretch and
their thickness changes.

From a detailed examination of a simple disturbed layer made up of parallelograms, it is evi-
dent that some portions (which we have been calling trailing edges) are thinned asthey rotate toward
horizontal. On the other hand, the leading edge (which we focused on earlier) thickens (relative to
undisturbed stratigraphy) regardless of whether it isflattened or stegpened by the shearing flow. But
it also important to note that the relative vertical position of the parts of a disturbanceis not atered

by the finite strain®.

3We have not looked at how this statement must be qualified if the structure is not small relative to the scale of inho-
mogeneitiesin the strain field.
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Our work suggeststhat, evenif adisturbanceisflattened rather than folded, thelayer thicknessin
the disturbed region can still be altered. The thickness variation may even be greater with no over-
turning than with overturning. Variationsin the initial angles and strain components are precisely

what determine whether thereis overturning or not.
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THESISCONCLUSION

Thefocusof thiswork hasbeen on how steady, large—scal eflow in anice sheet can turn seemingly
minor disturbancesin the stratigraphy into recumbent foldsthat disturb the stratigraphic order. Such
folds could introduce errors into paleoclimatic interpretations of ice cores, particularly if the folds

are not detected.

Oneof the more significant conclusionsof thiswork isthat it may bedifficult to detect recumbent
foldsin the small cross—section of atypical ice core. Because steep segmentsrotate rapidly through
vertical in the strongly shearing flow that is characteristic an ice sheet, obviously overturning folds
will be identifiable for only short distances along a particle path. Once afold has overturned it will
merge with theundisturbed stratigraphy asit isflattened and stretched. Sincetherearefew, if any, up—
down stratigraphic markers in glacial ice, distinguishing a short length of subhorizontal overturned

stratigraphy from a neighboring undisturbed segment may beimpossible.

One of my earliest discoveries when looking at the finite strain of disturbances, was that gen-
tle disturbances can be flattened for a while, and then be steepened and overturned when they move
deeper in the ice where the flow has a higher vorticity number. Thisturn around occurs at the critical
wiggle slope identified by Waddington et al. (sub). But looking at the effect of this strain on layers
of finite thickness shows that even during flattening, variations can develop in the vertical thickness
of stratigraphic layers. Thisis because the large—scale kinematic strain shears one layer relative to
another, but does not alter their vertical order. When atransient dynamic process displaces aportion
of astratigraphiclayer vertically relativeto its neighbors, the kinematics cannot reverse the displace-
ment. It can only alter the the relative horizontal position of the pieces. These thickness variations
suggest that even without overturning, we need to be cautious when making deductions from layer

thicknessesin ice cores.

Thisrelative horizontal displacement is nicely captured by the precores. At a hypothetical core,
the precoreis vertical, aligned with the core and with the leading edge of afold caught in the midst

of overturning. Anything that an upstream precore cutsacross, will becomevertical beforeit reaches
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the core. A precore can be used as a quick-and-dirty tool for identifying overturnable disturbances,
aswell asameansof visualizing the sequence of disturbed layersthat the particular corewill sample.

I have made some progressin identifying where folding can occur in an ice sheet; however, little
is known about the processes that could disturb the steady state stratigraphy in the first place. My
folding model cannot produce folds directly under adivide, but neither have | shown that folding is
impossiblethere. Disturbancesthat originate closeto adivideare the best sourcefor foldsdeepin an
near—divide core. In steady state flow, the likelihood of encountering folded stratigraphy increases
downstream. Perhaps the only surprising result of my probabilistic model is the conclusion that,
if for some reason, the disturbance process is concentrated at a particular depth, then the overturn
probability is also greatest at a deeper, but intermediate depth.

In dealing with overturn probabilities, | have focused on spatia patterns, without trying to put
specific numbers on the probabilities. This probability work needs more statistical grounding, pos-
sibly by expressing the probabilities in terms of the number of disturbances per unit volume, or by
tying the probabilitiesto observed dips and foldsin cores.

I have had some successin deriving simple scal e-independent measures of folding potential. The
underlying tools of finite strain calculation, whether using the deformation gradient tensor, or track-
ing points along multiple particle paths, can be used with more realistic and case—specific models of
iceflow.

My calculation of the rotational history of 20° dips observed in the GISP2 ice core puts these
layersin the midst of overturning. Since at deeper levels much gentler dips could be overturned, it
would be desirable to have a more detailed inventory of stratigraphic dips, and their azimuths, for
thisand other cores. With such informationit may be possible to cal culate a disturbance probability,
evenif obviousfoldsarenot visible. Of course, small folds, such asthose associated with anisotropic
stripes, deserve further analysis and modeling.

In this work, disturbed stratigraphic layers are only passive markers in the large—scale flow. |
have assumed that any rheological inhomogeneitiesthat could have given rise to the disturbance in
the first place have disappeared, or at least, are not significant when simple shear dominates the de-
formation. The closest | have come to modeling the transition from the dynamic disturbance phase
of folding to the kinematic overturning phase, is my work on orphaned Raymond Bumps. Evenin

this case, the processes that control the critical divide movement are external to the model. Overal
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my work has focused on the second stage of atwo part model of folding. | have assumed that there
are processes that are capable of disturbing the stratigraphy enough for the large-scale flow to act
onit. Animportant goal of future work will be to explore the initial dynamic processesthat disturb
layers. One way that my work will contribute to the development of disturbance modelsisto give
an idea of how big these disturbances must be. Ultimately | expect the sharp distinction between

dynamics and kinematics will be blurred.
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Appendix A

FULL VELOCITY MODEL DESCRIPTION

A.1 General Mode

Thisflowband model isessentially that devel oped by Vialov (1958) and expanded by Reeh (1988).
The polynomial form of the velocity profile draws from Nereson et al. (1998), Nereson (1998), and
Nereson and Waddington (2001).

The orthogonal coordinates are aligned with the flow of ice. x is the horizontal coordinate in
the direction of flow. zisthe vertical coordinate, and y is transverse to the flow. The corresponding
velocity componentsare u, w, and v. Because of thealignment of the coordinates, v= 0. | also assume
that the shearing components of strain in the y direction are zero (that is, there is no twisting), but
leave open the possibility that dyv isnot zero.

Theice sheet is describe by several functions of horizontal position:

B(x) thebase
S(x) theflowband surface

Q(x) flux through cross—section (per unit width)
u(x) flow band width (relative)

The thickness or height of the flowband is h(x) = S— B (omitting the obvious dependence on x
to simplify notation). These functions, in particular the surface and flux, could also vary with time,
but the ice velocity field depends only on the current geometry. Later in section A.1.4 | describe a
limited generalization that allows the divide position to change with time.

For the simplest model the base isflat (B(x) = 0). Otherwise | specify its elevation at a set of
points (taken for example from radar data) and interpolate to other points. For the surface, | use
either an analytical or a numerical solution to the steady state thickness equation, or interpolate it

from field data. Flux can also be interpolated, though as a default, | assume that the accumulation
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Figure A.1: Flowband geometry and notation.

rate is uniform and the flux is linear with x.

Theflowband width, u(x), is not an absolute measure, but rather arelative one. At any point X, |
am concerned with how the width compares with that upstream and the rate of change of the width.
In my default geometry thiswidth isuniform, u(x) = v, modeling the plane strain flow off of aridge
or ahighly elongated dome. For an axisymmetric dome, it isalinear function of x, u(x) = UX.

Oneway L(X) entersthe velocity calculations isthrough the lateral strain rate! .

!

oyv = u(x, z)% (A1)

For ridge flow thisis 0, while for adomeitisu/x.

IHere | am using the prime to denote the derivative with respect to x, v’ = du/ dx.
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Under these assumptions the velocity gradient tensor has only four or five nonzero terms.

ou O Jduu
L=0Ov=|0 odv O (A-2)

ow 0 J,w

It is convenient to work with normalized forms of the vertical coordinate

d= S%Z relative depth (A.3)
2=1-d relative height (A.4)
-1
od = - (A.5)
dyd _%[S 1-d)+Bd] = [s h'd] (A.6)

Rounding out the basic inputsis an expression, U(X, d ), for the vertical profile (shape function)
of the horizontal velocity. The source of this function should be a dynamic model that includes mo-

mentum conservation and ice rheology. The horizontal velocity can then be written as:

u(x,z) = U(x) a(x,d) (A7)
where the mean (depth averaged) horizontal velocity is

Deriving u from u (A.7) requires that the integral of G(x, d ) over the normalized thickness be

Q(x) = /Bsu(x7 z)dz= Uh/loﬁ(x, d)dd = th

Thisintegral of (2 isimportant enough to warrant its own symbol 3.

unity.

v‘v(x,ol“):/dl a(x,d)dd = [)Z ((x, 2) d2 (A.9)

2] am being abit sloppy with al my semidefiniteintegrals, assuming that [ f(x) dxisjust asclear as [ f(&) d€ without
introducing yet another symbol.

SWhileit is common to use symbols like @ for the velocity shape function, | have found it preferable to usethat symbol
for a segment angle, paralleling the my use of 8. My use of 0 and W suggests that these shape functionsare normalized
versions of the respective velocity components. An alternative to W might be g, sinceit is the profile of q(x, z).
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Wx0)=1 d;W=—0

It is also convenient to definea’ partial flux’, the flux passing below the point (X, z).

q(x,2) = /Bzu(x, z)dz= Q(x)W(x,d) (A.10)

W(X, d ) is, in effect, the vertical profile of the partial flux.

The vertical velocity can be derived from this by incompressibility,

w(X,z) = —/BZ (Oxu +0yV ) dz+w(x, B) (A.11)

w(x, B) isthevertical velocity at the base, that is, the net accumul ationrate at the base. If itisnegative
(net melting) | would also expect that thereis basal sliding, u(x,B) > 0. Here | assume that theice
isfrozen to bed so that both of these basal velocity components are zero.

Given u(x, z), the vertical velocity, w(x, z), could be calculated from (A.11) using direct numer-
ical differentiation and integration, but finding particle paths from the velocity is much faster if the
integration can be done analytically. | first expand the horizontal gradient of u(x, z)

Ou=T G+00x0 +0Ud 0 dyd (A.12)
Then substituting (A.12) and (A.1) into (A.11) gives

1 “
W= —h[ (v -+ dyu) dd
d

! 1 R 1 aA o~
- —th% U hW—Uh[ 90 dd —U/ 040 [S — Wd]dd
d d
UI 1 ~ d ~ ~
= —qv o hW—QaX/ add +US’0—Uh’/ daga dd
d 1
!
- —q%—U’hW—QaXW +uSa—uh (W+da)
!

- _q%_ufhw_anw+u[s—h'd“]—uh'w (A.13)

Thisexpression®, which uses several derivativeswith respect to x, can be expressedin other ways.

41 am alittle bothered that | have to expand on hod = [S - h’dA] to solve this, while the following derivation using
q(x, z) does not need this expansion. But isthere any other way of getting the h' term? Also this derivation is somewhat
sloppy about what happens at the d = 1 end of the definite integrals. Since | am assuming a frozen bed with (1) =
W(1) = 0 this does not matter in this case.
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Using Q= Thand Q =Uh-+uh gives

!

w=-QW+u[S(1-d)+B4d] —anw—q% (A.14)

The Q' W(X, d ) term dominates near the divide, where the surface velocity isapproximately equal
to the accumulation rate.

Theuhdyd = u[S(1-d)+B'd] term adds the effect of the surface and bed slopes. For small
d the surface slope dominates, while the bed slope dominates at depth.

The QoxW term accounts for the horizontal variation in the G(X, d ) profile (if any), while q%l
adds the effect of the flowband width variation.

Therelation between the two vel ocity components can be derived from consideration of the par-
tial flux along a particle path. The total flux below point (X, z) in the flowband is q(x, z)u(x). Along
aparticle path thismust be preserved. This meansthat if | vary (x,z) along (u,w), this quantity will

not vary. Itsdirectional derivative in the direction of flow is zero.

0=v-0{q(x,2)u(x)} = (udx +wd; ) (LQW)
—uu (Q’W+ QoW +QW%/ — Qud,d ) +w(uu)

0= (Q’W+ QoW + Qv“v%' — Qdxd ) +w
w=—QW— QdW — QW%I + QUdyd (A.15)

Thisuses 04w = —U and

d(qu) = (QWU + QUaxW + QWu') dx+ QuAZW (axd‘ dx — % dz)

=v (Q’W+ QoW +vi%l — QUdyd ) dx+u (QG%) dz

The tangent to the particle path (flow line?) satisfies 0 = —w(x,z) dx+ u(x,z) dz.

Given the prominence of the derivatives of these geometric inputsin the calculation of the ver-
tical velocity, and even more so, the importance of the velocity derivatives in calculating the finite
strain, differentiation should be as smooth and consistent as possible. Where analytical expressions

for both thevariableand itsderivativeare available, it isbest to use both. If the variableis defined by
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aset of points, | prefer to use asplineinterpolation to calcul ate both its value and its derivative. Nu-
merical derivatives based on linear interpolation are too discontinuous for my purposes, especially

when calculating velocity gradients.

A1l The Shallow Ice Approximation

| can specify thegeometry functions, in particular thevelocity profile, G(x, d ) andthe surface, §(x), in
two ways. Oneway isto adopt these functions from a combination of field dataand amore complete
dynamic flowband model (appendix A.1.4). The other is make anumber of assumptions and derive
simpler analytical functions.

Ananalytical valuefor U can bederived by assuming that theiceisisothermal, and using the shal-
low ice approximation (Hutter, 1983; Paterson, 1994) with Glen’s flow law. This flow law assumes
that thedeviatoric stress, T, and the strainrate, €, are related by € = At". Aisatemperature—dependent
flow parameter, and n = 3istheflow law exponent. Sincein atypical ice sheet, the horizontal extent
is much larger than the thickness, the shearing component, d,u, is the largest term of the velocity

gradient (A.2), over much of the flowband. The flow law can then be approximated by:

0,U R 28y, ~ 2ATY, = —2A(pg)"S""hd" (A.16)

Tw=—pgShd  shear stress (A.17)
S isthe surface gradient. Integrating this upward from the bed (d = 1) givesthe horizontal velocity:

z
u=— —2A(pg)”S’”h”/ d"dz
B

_ 2 A(pg)nsnhn+l (1_d\n+l> IUO(CT)

— 1

U(x) = —75A(pg)"S"h"™*! (A.18)

G(d) = 242 (1 d"1) (A.19)
~ 1 ~ N

Ww(d) z/& a(d)dd = 1- 22§ 4 L dn+2 (A.20)

The %ﬁ = 2 scaling on G is needed so that W(0) = 1. In this case G and W are functions of the nor-

malized depth only, and o0,w = 0.
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Al2 Seady Sate

A surface profile consistent with this 0(& ) can be derived from the steady state expression for the

flux:

Q(X) = —75A(pg)"S"h™+? = —C,S"h™? (A.21)

T n+2

The flow parameter, C,, could be generalized to include a depth averaged temperature dependence
and dow variationin x (Reeh, 1988). The expression for  would not assimpleas (A.19) in thiscase.
In steady state, the accumulation upstream from a point equals the flux through the flowband
cross—section at this point. Allowing for variation in the flowband width, thisflux is
X .
Q)= g7 . BEW(E) e (A.22)
Xgiv IS the flowband divide where the flux is zero.
The flowband width can be combined with the flux gradient term, giving a different expression
for the vertical velocity (Reeh, 1988).
(VRS - 1. V.
= —— b(§)dE+ —uvb=—-—Q+b
Q=7 | v(EbEdE+ ub= 7O+

W= —bW—q(x,2) 9,W + uhd,d (A.23)

Theflux expression (A.21), can be written as a differential equation in §(x).

1/n 1 —-(n+2)/n
() (%) a2

This can be solved numerically for ageneral bed geometry, flowband width, and flux (Anandakrish-
nan et al., 1994). Care has to be taken with the sign of flux, and the sign of (S—B).

A.13 Seady Sate, Uniform Accumulation Geometry

The steady state flux (A.22) can be further simplified by assuming that the accumulation, b(x), is
uniform, and the flowband width is a simple function of length, u(x) = ux™1. Then Q(x) = bx/m.
For aridgewith uniformwidth (m= 1), Q = bx, whilefor dome, m= 2, v islinear inx, and Q = bx/2.

The uniform accumulation assumption requires that | specify the length or horizontal extent of

the flowband, L, in order to determine the model geometry. A uniform accumulation together with
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afinitelength impliesthat the terminusis a calving front that can handle any flux. The conditions at
such aterminus are not realistic, but they do not adversely affect the model a short distance inland.
L could also be thought of asavirtual or effective length. If an ice sheet terminatesin anice stream
(such as Siple Dome does) or a narrow ablation zone, the terminus profile would be different, but
this model would still be useful from some distance inland back to the divide.

In the simple case of aflat bed and uniform accumulation, the S(x) differential equation (A.24)
can be solved analytically giving:

S =H (1— (t) il) " (A.25)

The derivation of (A.25) is:

Q(x) = bx/m=—C,S"S*2  Cy= :2,A(pg)"

Cixi =-SS™  Cy = (b/mCy)

Sl

Cixndx= —S'* dS

Cin ( L+n ) n 2(1+n

n — Const n
n+1 X 2(n+1)
1+n

ifSL)y=0  Const=L"n

e (1))

S=H (1— (7) 1L)m

2"-1(n+42)bLi+"
mA(pg)"

H2(1+n) _ ZHCTLH” _

The maximum thickness, H = h(0), in this solution is related to the other parameters (L, b, m,
and A) by:
(zn—l(n+2)b|_n+1) D
B A(pg)"m

(A.26)

x scales with L, while z and S scale with H. With atypical H/L ratio of 1/50 or smaller, the
surface slope, S (for x < 0.5L) issmall. Thetimescaleissetby T = H/b. The velocities, u and w,
scalewith L/T and H/T (= b), respectively.
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For an axisymmetric dome, m= 2, and flux is half the ridge flow. By replacing the rectangular
accumulation area of the ridge case with a pie shaped piece, the effective integrated upstream accu-

mulation rate is halved. The steady state surface height is decreased by a factor of 21/8,

A.1.4 Moving Divide Details

To explorethe effect of amoving icedivide, | have extended the above vel ocity model by specifying

the divide position as a function of time, and redefining the geometry variables

X1 = X— Xgiv(t) (A.27)

Sk)  bw) QXY =Qk)= [ b(xdx (A.28)

0

The flowband width, if not uniform, should also be a function of x;.

Theweighting functions (A.32) for blending divide and flank vel ocity profilesare also afunction
of this distance from the divide.

The surface function (A.25), is derived assuming steady state, uniform accumulation, flat bed,
isothermal, and shallow ice Glen’sflow law rheology. The velocity profiles (Figure A.2) are derived
from a finite element model, with polythermal ice. All of the strain rate terms are included in the

effective strain rate in the FEM.

A.2 Polynomial Velocity Profiles

Another source of model geometry and vel ocity profilesisamore complete dynamic flow model.
While such a model could itself could be used to calculate velocity gradients, particle paths, and
deformation gradient tensors, a kinematic model such as | have described has been preferred when
studying alternative scenarios. An examplewould be the study of divide movement (Nereson, 1998;
Nereson et al., 1998). Potential advantages of a kinematic (or semi—dynamic) model include cal-
culation speed, ease of varying the geometry, and smoother varying values. To some degree, these
advantages are disappearing as computing speeds increase.

The bed, surface and flux data from another model or field data can be used in a model such as
this in a piecewise linear form, though, because of the importance of gradients such as S(x) and

B'(x) | have found that a smoother interpolation such as splinesis preferable. Thisis especially true
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when calculating the vel ocity gradient and deformation gradient tensorswhich use derivatives of the
velocity.

The velocity profiles, G(x,2) and W(x, ), can also be derived from another model. Whereas the
shallow ice profiles, (A.19) and (A.20), assume that the ice is isothermal and that 0,u dominates
throughout, profiles taken from afinite element model can include the effect of the ice temperature
and the full effective strain rate.

Inthefollowing, thed and f subscripts identify the divide and flank profiles respectively. | also
use the normalized height, Z (A.4), instead of the normalized depth, d.

Nereson et al. (1998) (also Bolzan et al. (1995); Nereson (1998)) fitted Chebyshev polynomi-
as, Ta(§), to the horizontal velocity at two x points of a finite element model, one near the divide,
and the other ten ice thickness down the flank. These profiles, (4(2) and (5 (2) are plotted in Fig-
ure A.2(a). The isothermal laminar flow approximation, G (2) (A.19), isincluded for comparison.
The curvature at depth is greater for G than for (; because the finite element model is polythermal,
withwarmer, softer ice at the base. The curvature of (4 in the upper iceisgreater becauseit takesinto
account the effect of pure shear in softening theice. The corresponding vertical vel ocity profiles can
be calculated by algebraic ’integration’ of the polynomial coefficients. Wy(2) and W (2) are plotted
in Figure A.2(b).

The velocity profiles at x are weighted sums of the divide and flank profiles.

G(x,2) = Z{ n;(x)0;j(2) (A.29)
j=d.f

N(X,2) = (X)W (z .30

W(x,2) J_:Z“m(x)wj(z) (A.30)

OxW(x,2) = Ed nj (X)W (2) (A.31)
j=d.f

The blending weights are based on the distant from the divide, x; = X — Xgiv(X, t). Initially, working
from Nereson et al. (1998), | used aweighting function that is the sum of several Gaussian curves,
with g; and ¢; parameters.

g = e (/o)

Na=>e Nt =1-ng (A.32)

na=y —2exi/0f  nf=-ny (A.33)
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Figure A.2: Divide and flank velocity shape functions, (a) divide Gy (solid), flank s (dashed),
isothermal shallow ice (; (dot dashed). (b) corresponding integrals, W(2) (A.9) .

Since the velocity profile varieswith x, the dxW(x, Z) term is nonzero, and needsto be included when
evauating w(x, z) (A.13).

Currently, I am following Nereson and Waddington (2001) and using a different form of this
weighting function that gives more consideration to how the weighting figures in the calculation of
w(X, z). Near the divide, the bed and surface slopes are negligible. If we also assume that the accu-

mulation is uniform (Q = bx), the equation for w(X, 2),(A.14), simplifiesto
W= —b(W+xdW) = —b % [N (X) +x0xn;j (x) | W; (2) (A.34)
j=d.f

Thisn;j(x) +x0xn;j(x) isan effective weighting function from w(x, z), and should stay inthe O to 1
range. Withthengin(A.32),n+xn' = S &(1— 2x;/0?), which hasthe possibility of going negative.



120

z/H

0.2 RNS= —— 09 ———— _

x/H

FigureA.3: G(x, ) contours, comparison of profilesusedin thismodel (solid) and profilesfromfinite
element model (dashed). Contoursare at 0.1 intervals.
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0=[0205 1.0H c=[0.7,0.2 0.1]

X1

\/EGi

The effective weighting for w(x, z) in this case is areasonable looking Gaussian.

Xi:

Na(x) = IZcig[%erf(xi)

Na(¥) +x3na(x) = Y ciexp(—x)

Here | use several ¢; and o; to better control the transition from divide to flank®.
The quality of theapproximation of ((x, 2) is shownin Figure A.3, whereboth the approximation

and the underlying finite element profiles are contoured.

5Nereson and Waddington (2001) use only one set of o.
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A.2.1 Profile Refinements

| use the cosine version of the Chebyshev polynomial evaluation. Denoting the G (either divide or

flank) coefficients by a,, and the corresponding W ones by A, then
=~ (A.35)

Tn(§) = cos(n cos™ %) (A.36)

(2 = Jao+ -Z anTn(8)  W(2) = iAo+ _Z ATa ()

TE) =1 TE)=% TE=2>-1 T =43-3¢

2, and Z, (A.35) are the lower and upper bounds of Z, and serve to map 2 on to the Chebyshev
polynomial range, [—11]. Initialy | used 2 = 0and %, = 1, whichisthe normal rangefor 2. However,
because the Chebyshev polynomials all approach their bounds (+1) with aslope of 1 or grester, this
means that ((2) oscillates at both bounds.

Because the surface of the ice sheet is stressfree, ideally 9,0 should be O for 2= 18. Oneway to
achieve this with the Chebyshev polynomialsisto calculate the coefficients with 2, = 2, and reflect
the profilesabout 2= 1 (e.g. ((2) = G(2—2) for 2> 1). Thismakes both G and W symmetric about
2= 1. Atthispoint, & = 0, and Ty has zero dope for odd n. This also the removes the oscillations
near the surface.

Another advantage of this extended Z range isthat it gives computationally reasonable velocity
valuesfor points abovethe flowband surface. Itiseasier to evaluate particle paths near the surface if
the differential equation solver can smoothly project the path above the surface. Without this range
extension, the above surface velocities are highly unpredictable, since the Chebyshev polynomials
head off to + outside the +1 range.

Thederivation of (4 from finite element model datawarrants some additional comments. Strictly
spesking, at the divide u(Xgiy, Z) = 0 because Q(Xgiv) = U(Xgiv) = 0. Thiswould be true if the finite
element model had asymmetry boundary at the divide. However, if the model spansthedivide, it is

likely that the nodes nearest the divide will have small, but nonzero horizontal velocities. A profile

6thisistrue for the shallow ice profile, (A.19)
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taken from these nodes may be quite noisy. Oneway around thisis to average the velocity datafor a
couple of sets of nodes around the divide. Ancther optionisto start with the vertical velocity profile,

which should be quite close to W(Xgiy, ), and calculate (Xgiy, 2) = 03W .

A.2.2 Divide Arching Explanations

A common explanation of the Raymond Bump focuses on the deep divide ice being subjected to a
low deviatoric stress, and hence being stiffer, and behaving like a hard lump. But what isit stiffer
than? It is gtiffer than the flank ice, but it is not stiffer than the corresponding ice in the shallow ice
approximation. It may be more accurate to say that the shallow ice model does not produce a divide
arch because it makes the near surface ice too stiff, especially near the divide. On the other hand,
the linear ice model (n = 1) does not produce a divide arch because it makes the deep divide ice too
soft. When saying someiceis stiffer or softer, we need to be careful what we are comparing it to.
Another thing to be aware of when trying to explain the divide arch is the interaction between
the velocity profiles and the steady state surface and flux assumptions. The steady state shallow ice
surface S(x) (A.25) has a zero slope at x = 0, and a zero curvature, d?S(x) /dx?. For n = 1, this
curvature is nonzero, but for n = 3 it iszero. This means that the n = 3 divideis flat but sharp. It
needs to be sharp to move the required flux away from the divide with ice that gets infinitely stiff
right at thedivide. | suspect, though have not proven, that a steady state profile withn = 3 and using
the full strain rate tensor in the viscosity calculation will not be as sharp as the shallow ice version.
It may even have anonzero curvature at the divide. Thismay be difficult to proveif the only model

that can implement this full rheology is a discrete approximation one (like finite el ements).
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Appendix B

CORE REFERENTIAL STUDY DETAILS

B.1 TheApproximate Linearity of Fyx Along a Path

For our simple geometry, where T = bx/h, the position X(t) along aflowpath can be expressed asthe
exponential of an integral.

xzu:bﬁxa %:exp(/otgﬁdt) (B.1)

See (1.1) insection 1.2.2. Thisisnot asimple exponentia in time, since U decreases along the flow-
path, making x more linear than would be expected from a simple exponential.
The K term of F, asafunction of time along a path, can be approximated by a similar exponen-

tial. Starting with the differential equation for F (1.23)

I':xx ~ OxU Fyy VS EA (B.2)
~ ! _X(t)
Fe(t) ~ exp (/0 axudt) ~ 30 (B.3)

Here we assume that F, 0xw, 0x( , and h' are small. All these hold best in the inner third of our ice

sheet model.

B.2 The Determinant of F
Using (1.20) and the algebra of differential forms

= |F|dXdz

/dxdz:/ IF|dXdZ
Y \Y
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Figure B.1: Precore slope angles (solid) calculated from the ’constant strain rate’ approximation,
using rates at the core location (10H). Precore slope contours (dotted) are included for comparison

Thisusesthe basic differential form products, dx? = 0; dz* = 0; dxdz= — dzdx. Thisisfor theplane
strain, constant flowband width case. If the flowband width can vary, we would have to include a

dy = Ry dY term.

B.3 Homogeneous Strain Rate Approximation

Over a short distance along a particle path, we can assume that the velocity gradient matrix is ap-
proximately constant. It isthen possible to get an analytical expression for F as a function of time

(Ramberg, 1975)[equations 33, 38]. In the neighborhood of the core, the equations are (t = O at the



core) (again using (1.23))

tanBs =~
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This approximation captures the rapid rotation of the precores angles near the core. Further away

the variation in the velocity gradient must be taken into account. A similar approximationisused in

Waddington et al. (sub) to estimate segment overturn times.
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Appendix C

PROBABILITY MODEL DETAILS

C.1 The Separation between Trailing and L eading Edges

Figure C.1(left) plotsthe observation density for the fixed time case as plotted in Figure 2.4, with the
addition of asimilar injectiondensity for thetrailing edge (8 > 90°) att = t+;x (the upper dashed con-
tour). Theleading edge density (lower dashed contours) splitsinto two observation parts, flattened
and overturned. Thetrailing edge injection density (upper dashed contours) becomes aflattened ob-
servation density close to 180°. In this case, the flattened trailing edge and the overturned leading
edge regions remain distinct, though increasingly, both are compressed into a narrow angle range

near 180°.

When the same dual injection angledensity isrunwith aGaussianinjectiontime (Figure C.1(right)),
the distinction between overturned leading edge and flattened trailing edge densities is blurred. For
any one injection time the distinction is sharp, but each injection time puts the division at a different

place®.

C.2 Conditional Probability

Figure C.2 shows how the observation density changes when it is calculated relative to theinjection
probability so far. The injection density is Gaussian in angle and time (as in Figure 2.8), but the

variancein the time density is large, approximating a uniform density in time.
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Figure C.1: Injection density contours (dashed) and observation density contours (solid) for an in-
jection angle density that includes both leading (lower set) and trailing edges (upper set). Contours

asinFigure2.8.
(left) Injection at afixed time, t;jx = 0.75T.
(right) Injection and observation density contours asin Figure 2.8.

C21 Qc(T)andT,(6)

Figure C.3(a) displays the conditional overturn probability, Q:(T) (2.18). Overlaying this are con-
tours of To(04) (dashed). Asillustrated in Figure 2.6 and Figure 2.10 thistimeisthefirst observation
point (on a path) at which a segment injected at 6, will rotateto 90°. Conversely, 6, isthe smallest

angle that will overturn by t,(6,). It isthelowest point on the 6+ (t, To) curve.

In (2.15) we evaluated the double integral for Q, first over injection angle, and then over time.
We could instead start with the injection time.

90° 90°
/ p(O,t)dOdt:/OO (R(ty) — Ri(ty)) dO (C.1)

B¢ (1)<6

Q0’1 = |

0°

11t is tempting to argue that if we could get alarge enough statistical sample of segment angles, we might be able to
distinguish between trailing edges and overturned leading ones if the injection point were fixed. But the conditions that
would have to be satisfied for thisto be true are so stringent that it probably is not feasible.
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Figure C.2: Comparisonof Q(90°,1) and Q¢(T) with injection density that isnearly uniformin time.
(Ieft) Injection and observation probabilities asin Figure 2.8, except the variance over timeislarge,
p(B,t) (dashed contours); q(¢@, 1) (filled contours).

(right) Same but the observation probabilities are relative to the total injection probability so far.
q(e, 1) /P(0° 1) (filled contours).

For an uniform injection density (in time) the injection distribution becomes:

p(8,t) = g(6) (C2
90°

Pa(Bayt) = Pa(6a) = /9 9(6) d6 (C3)

P(Ba ta) = /0 © pu(82) d = taPa(6a 1) (C4)

P(0) =1  P(0°ta) = ta (C5)

Theoverturn distribution is
90°
Q0" 1) = [ 9(6) (te(8,1) ~1u(6,1)) O (C6)

and the conditional distributionis

90° 90°
Q1) = /0 o) BV O D) 4y / 0)Qun(6,1) do ()

where Q14(0,T) isthe conditional overturn probability for a fixed injection angle, 6 as evaluated at
the end of section 2.5.2. Thisoverturn prabability istheintegral of the probability dueto individua
injection angles (evaluated over the range of possible injection times) weighted by the probability
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Figure C.3: Uniform injection density in time asin Figure 2.15. (a) Contours of Q. (shaded); T,
contours (heavy dashed lines). (b) Q(90°) contours (shaded)

density for each angle. Sincetheconditional probability for agiveninjection angleincreasesabruptly

under the 1o, it is not surprising that the contours of 1, approximately parallel those of Q¢(T).

Thisanalysis suggests, but does not prove, that the overturn probability pattern is dominated by
theinjectiondensity over time. Thedetailsabout theangle density may belessimportant. Evaluating
the fixed injection angle case for just afew angles may be enough to approximate the effect of the

whole injection density.
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C.3 Unresolved Probability | ssues

C.3.1 Scaling thelnjection Density

In Chapter 2 we built the injection probability distribution from mathematically simple probability
densitieswith angle and position random variables. Theinjection angleiseither fixed or hasa Gaus-
sian distribution with a mean of 0°. Our position random variable, the travel time along a specific
path, is either fixed, uniform, or Gaussian in distribution. But functions such as these only define
how the density varies over angle and time, leaving considerable room for scaling of the values.

Perhapsthe easiest way to scale probability densitiesisto equate thetotal probability distribution
(the integral of the density over all possible outcomes) to unity. The problem then becomes one of
choosing the possible range of the random variables. As discussed in section 2.4.1 we can restrict
0 to the 0° to 90° range (aleading edge), or let it span up to 180° (which includes both leading and
trailing edges). Its probability distribution can also account for the probability that no disturbance
occurs a a point.

Similarly the range of possible injection times does not have clear limits in the downstream di-
rection. The usefulness of our ice sheet flow model decreases as we approach the terminus, so we
have not tried to calculate paths and probabilities much beyond 30 ice thicknesses. Nor have we
pushed the limits of thetravel timesfor paths particularly closeto thedivide. Thewide rangein pos-
sibletravel timesalong various particle paths complicates any attempt to define a uniform injection
density across paths.

Because of this difficulty in assigning meaningful scaling factorsto injection densities, we have
omitted the axisticks and contour levelswhen plotting both injection and observation densities and
distributions. 1t is easier, though, to be specific about the values of the conditional probability as
defined in Qc(T) (2.18).

C.3.2 Injections per Unit Volume

Another approach to setting probability levels is to cast them in terms that are more amenable to
statistical testing. For example, we could talk about the number of independent injectionsor fol ds per
unit volume. Trand ating between thismeasure of probability and what we have been using should, in

theory, be simple; just shrink the’ unit’ volume down until only the count of 0 or 1 injectionsremains
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significant. But there are a number of complications that need to be considered, such as (1) how we
define the unit volume, (2) what do we count as a disturbance or fold, and (3) how independent must
the disturbances be.

If acore sample has multipleindependent folds, they will be small relativeto the sampled section
(which is on the order of several centimeters) and should be readily identifiable. Such small folds
would not disrupt the layer counting because their effect on layers should be obvious. Larger folds
that are only partially visible in a sample are more likely to cause errors in the stratigraphic inter-
pretation. If only the centra portion of a wide overturned fold is visible in the sample, the folding
might not be recognized, and the corresponding stratigraphic sequence could end up being counted
multiple times. When working with the deformation gradient tensor, both large and small structures
are deformed in the same way (aslong asthey are small relative to the vel ocity field variations), but
the rheological inhomogeneities that could give rise to the disturbances in the first place might not
be so scaleinvariant. The statisticsfor millimeter sized disturbances might not help in predicting the
presence of disturbancesten centimeterslong.

Thecleanest interpretation of our probability mathematicsisthat, at most onedisturbance will be
injected along apath and be observed at the observation time. Theinjection probability densitiesthat
we have used imply this, though we might be able to construct an injection probability that would
include the possibility of one injection modifying an earlier one. But if the segments under consid-
eration are truly infinitesimal, it is reasonable to assume that the probability of the second injection
occuring right on top of the first (in time and space) is very low.

Instead of counting the number of disturbances per volume, we might measure the fraction of the
volume that is disturbed. Thiswould require three (or more) random variables, the angle, position,
and volume (or cross—sectional area) of a disturbance. The volume specification might involve the
number of stratigraphic layers and a measure of its length. We would aso need a measure of how
much of thevolumeisoverturned at an observation point. The region does not have oneangle; rather
there will be atransition from the undisturbed stratigraphy to the most disturbed portions near the
center. Asthe structure is sheared, the steepest portion overturns first, while the periphery flattens.
As the deformation proceeds, more and more of the volume is caught up in the fold, changing the

proportion that is overturned.
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Appendix D

THICKNESSCHANGESDETAILS

D.1 Leading and Trailing Parallelogram M athematics

In the (slowly) rotating frame aligned with the steady state isochrone, F has the matrix form:

= e
= (D.1)
Fr Fz 0 1/

The F, termis0 becausea segment aligned with the isochrone at the reference point remains aligned

el

The R, termisthereciprocal of the Ky, term because, under plane strain, areais conserved and | |3| =

with the isochrone at the current point.

1
In the reference configuration, Xy, X;, and x; are vectors defining a symmetric disturbance as il-
lustrated in Figure 4.3(a). h, isthelayer thickness, z; isthe amplitude of the disturbance, and 2x, is
itswidth® .
Xp = [0, hy] B = 90° Xn| =h
X =[-x,z] 6 =tan? ()Z(—i) x| =1/X2+2

Xt = [x1,21] 8 =6 Xt = [xi] (D.2)

When strained by F these become

F-x = [~Fo + Feza, Fzzi]

1Following Chapter 1 we define angles relativeto —x axis.
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F. Xt = [FoX1 + Fez1, Frzi]

The strained angles and lengths are

F . S—
%:_tan—l (F_ZZ) |F-Xh| :hl FXZZ—I_ Fzzz
Xz

Fzz1 ~
—tan 1 — %~ F-x|= —FoXy + Fpzq)2+ (Fpzq)?
0 (Fxxxl—szzl) | I| \/( xxX1 le) +(zzl)
F 4] S
= tan ! —Z=— F-xi| =1/ (F Faez1)2+ (Frz1)2 D.3
® (Fxxxl‘H:szl) |F - | \/( Xt + Fez1) %+ (Fz21) (D.3)

For the special situation in Figure 4.3(b), F-x; isvertical, s0 0 = —ax, 4+ Bz. Thisimpliesthat

z7=0/x andB=0ax/z =acoth.

Foxn = [B,1/a] hy %:*mAC%)

F-x=1[01/a]z=[0,1/B]x. @ =90

Fox = [20,1/B] % m:—mrﬂgﬁ) (D.4)

D.1.1 Trailing Parallelogram Thickness

One of the more compact ways of deriving an expression for the vertical thickness of the trailing
parallelogram uses the notion of a directed area from geometric algebra (Hestenes, 1986) (aso Ap-

pendix E). The directed area of the parallelogram defined by two vectors, x; and Xz is
X1 A X2 = (X161 4 21€2) A (X281 + 22€2)
= (X2 —21%) €18 (D.5)

where the A (wedge) product is a generalization of the anti-commutative tensor cross product. e;
and & are orthonormal vectors, and e;e, = e; A & isthe unit bivector, or unit directed area.

The area of theinitia trailing parallelogram defined by x; and x, (D.2) is
Xt AXh = (Xthy) €& (D.6)

After deformation the areais the same,

(F-xt) A (F-Xn) = (%2Zh — ZX%) €162. (D.7)
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If X > Xn, the upper and lower surfaces (the ones parallel to F - x;) of the trailing edge overlap
vertically. In this case an equivalent parallelogram can be defined by F - x; and the vertical vector
(t:izn) e, wheret; istherelative vertical height. Itsareais (xtiz,) e1e;.

Equating the three parallelogram areas gives two expressions for t;.

= 2% _ g 2% (D.8)
Xt Zn Xt Zn
= hixa  hixp FRaXg (D.9)

%z xFh %
In (D.9) Fxq isthe stretched base of the undisturbed layer segment (withinitial length x1), and x; is
the base of the stretched trailing segment. Theratio of the two horizonta stretchesis the inverse of
the two vertical stretches because the areais unchanged.

The condition that X > X, implies that FX; > Fe(hy — 7). Early inthe strain, thisis satisfied
because R iscloseto 1 and Ky, closeto 0. Further downstream F, can be larger than F«. However,
if hy < z, this condition is satisfied regardless of how large F,/Fu gets. In this detailed analysis,
we assume that thisis the case.

Examples with h; > z;, suggest that the trailing segment still thins relative to the undisturbed
layer, but not quite as much as given by Figure D.9.

Thisrelative thickness can be expressed in several other ways

g @ 1/ 2
tt=1- g, 7 (zh tht) (D.10)
E -1
t = (1+ —thanet) (D.11)
P

The last expression tells us that t; depends on the strain (Fy,/Fu), and the initial trailing edge angle

(6¢), but not on the layer thickness or the disturbanceto thickness ratio.

D.1.2 Leading Parallelogram Thickness

Theinitial areafor the leading parallelogramis

Xp AX| = (&) A (=X181+2160) = hiXg e1€; (D.12)

Xn isontheleft in thisproduct, so that we go around the parallelogramin the positive, anti—clockwise

direction, just asin the e; A e, product.
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After deformation by F the leading edge areais

(F-X)A(F-X)= (X2 —Zn X) e1& (D.13)

Aswith the trailing edge we can calculatet; from the area of an equivalent vertical-sided paral-
lelogram, but because x; can rotate through a wide angle range, we need to take care to choose the
right base vector.

Initially in our examples, X, < —x. A vertical line through this parallelogram connects the two

x| sides, but not the xy, sides (thisis similar to the trailing edge case).

(tzn&2) A (XE1+28) = —Xt1Z, €168

h -F

f = — X1 _ Thedt (D.14)
X Zn X

t :le_ﬂ (D.15)
—X Z X Zn

When the leading edge rotates close to vertical, specifically when —x, < % < x,, avertical line

connects the two x;, sides instead.

(Xne1+ Zn&2) A (11Zn€2) = XntiZn €1€2

= MXa_ Poa (D.16)
XnZh Xh

= nATHmX (D.17)

XnZh

When the leading edgeis vertical, x = 0and t; = z/z,.

With further rotation, x, < X, and the leading edge again is the correct base vector.
(—tizn€2) A (X€1+26) =Xtz e
= X _ Poxa (D.18)
X Zn X
tl:xha—zhm:_(l_ﬂ) (D.19)
X Zn Zn X

There is a sign change here (compared to the trailing edge and initial leading edge cases) because
F X, liesto the SW of the F - x; vector. The corresponding vertical—sided parallelogram is defined
by —t,zne; and F - X;.

The full maximum fold thickness, t,g, isacombination of this leading edge thickness, a portion

of the overlapping trailing edge, and a portion of an undisturbed layer.
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Inthefollowing, t, ist) plusthe thickness of the undisturbed stratigraphy directly underneathit.
The maximum net thickness, t,,, adds the thickness of the overlapping trailing edge, if any, totp.
_ _ 4% 4 . .
Whenx = —Xy, t =1— — = 1+ — = p, the maximum thickness.
ZnX Z
For a steeper leading edge, —x, < x < 0. t; starts decreasing, but due to a growing overlap,
When the leading edge is vertical, x = 0, = 7 /z,, and tp, = p.
For 0 < X < Xn, tpg = P, and

4% — X4

ton = 1+
on ZnX

(D.20)

For awell overturned leading edge, X, < X, and tp, = 141t +t;.

D.1.3 Flattening Leading Edge

A caseinwhich the leading edge flattens for awhile until the shear becomes strong enough to over-
turnitisillustrated in Figure D.1 and Figure D.2.
Early in the strain, when the thickness of both segments of the parallel—sided fold is given by the

gpacing between the x; and x; vectors, it is

FocXe ( Fxz Zl)
tzizl/ 1+ —— D.21
! FoXa + Fez1 Fex X1 ( )
—FoXe ( Fe Zl)
t:—:l/ 122 D.22
! —FoX1 + Feza Fox X1 ( )

Under pure shear, F; = 0, and both t; and t; are one. For modest F; > 0, t; is abit less than one,
whilet, isabit larger than one. Thisis a consequence of the angles of the two segments, not their
direction of rotation.

Thefirst strained stage in Figure D.1 is agood example of acasein whichtpg < p. Therelative
height of the peak of the disturbance above the baselineis p, but no part of the disturbed layer has
this thickness. But at the second strained stage the disturbance peak has sheared enough that it is

now above part of the undisturbed layer, so tpg = p.
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FigureD.1: Thicknessvariation of aflattening disturbance. Theinitial disturbancedimensionsmatch
those in Figure 4.3, but it occurs further upstream, and is subject to more pure shear. In the second
and third snapshots, the leading edge has flattened before overturning in the fourth.

D.1.4 Fold Width Details

The reference, or base, widthis
Xp = X + X — X = Fx2X1 + By (D.23)

Thisisthe width of the undisturbed layer, including the shearing of itsinitial thickness, that is, the x
component of F-[2x; hy].
Thewidth calculations differ depending on whether the leading edge has overturned or not. Be-

fore overturning, x, < 0 and

W non—overlapping trailing segment (D.24)

*
Xo
W =0 overlapping region (D.25)



138

0.5} - ©-4(a)

1 (b)

O)
<)

14

o5 -~ @

180
135

0 10 20 30 40 50

Figure D.2: Trailing and |eading edge variation over time for the disturbancein Figure D.1. Panels
asinFigure4.4, with the addition (€) of vector angles, F - x; (solid), F - x; (dashed), and F - x;, (dotted).
Theleading edgeinitially flattens, and starts to steepen just before x, = —x, about at time step 28.
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Ws = ﬁ thickening stem (D.26)

Wg=W+Ws=1 gross relative width (D.27)

If x;, > O, the leading edge is overturned, and

X —X Xn  2XF
W = —_1_0_ D.28
Xy Xy Xy ( )
wo = S tX _ —hoatPe(t2) (D.29)
Xy Xy
Xh— X FoX1 + Fe(h1—z1) -
5= "% X (D.30)
X+ Xh X
9 b X X (D.31)
e+ Fe(hi+2)
Xp

Several patterns in Figure 4.4(d) are peculiar to a subset of parameters. The fact that w, = w
when x; = Xy isaconsequence of our choosing z; = X; = 2h;. When the leading edge overturns, w,

starts increasing while w; decreases. They become equal when

R 3x
ZFXXX]_ = — FXXX]_ + sz(h1—|— Zl); F—XZ = hl +121
XX

With our initial dimensions, this condition is satisfied when R, = 2k and X; = Xy,
In this example, before overturning w; increases while ws decreases as the disturbance moves
downstream. This occurs because hy < 2z;. If hy = 2z, the two relative widths would be the same.

_ hexit+tbhezn  Foat+Feza

1 _1
B 2Fx1 + Feha -2 FoX1 + Fez1 2

If hy > 224, itisws that increases.

D.2 Fold Classification

We have referred to some of our disturbancesas similar. Thisisone of several ways that structural
geologists classify folds.
Perhaps the two most significant classes are parallel folds and similar folds. In parallel foldsthe

layer thicknessperpendicular to thelayer boundary isconstant. Thesearetypical of folded competent
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layersin high contrast contexts. In similar folds, the thickness is constant parallel to the fold axis.
The top and bottom boundaries of the layer are identical. One of the early papers on folding in ice
sheets specifically discusses similar folds (Hudleston, 1976).

A more detailed classification of foldsis based on the degree of curvature of the inner and outer
arcs of thefold (Ramsay and Huber, 1983, Vol. 2). A related tool isthe construction of dip isogons.
These are lines that join points where the surfaces have an identical orientation, that is, lines con-
necting points of equal slope (slope contours).

InClass1folds, theinner arc curvatureisgreater than the outer. Thedip isogons convergetoward
the inner arc. These folds are further sub-classified based on limb and hinge thicknesses perpendic-
ular to the boundary. Parallel (concentric) folds are Class 1b, with equal hinge and limb thicknesses.
Class 1c folds, with alarger hinge thickness, are attributed to flattening of parallel folds.

Class 2 folds are similar folds, with equal inner and outer arc curvatures. The dip isogons are
paralel. In class 3 folds, theinner arc curvature is |ess than the outer.

Under homogeneous strain, dip isogon classes should remain the same. Isogons connect surface
points with matching material angles. Under homogeneous strain, segments with the same angle
rotate at the same rate. This means the isogons themselves are passive markers in the material, and
arestrained by the F just likethe stratigraphiclayer markers. If twoisogonshavethe sameorientation
intheinitial state, they retain that orientation after strain. Inparticular, similar folds(parallel isogons)
remain similar.

In Figure D.3 the middle layer is Class 2, with parallel isogons. Aboveit, in the center, the fold
is Class 1, with convergent isogons toward the fold core, and limbs thicker than the hinge. Below

thefold is Class 3. The reverse bend on the flank is Class 3 above and Class 1 bel ow.
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FigureD.3: Multiplelayerswithvariable o (gray lines) and dip isogons(lines). Under homogeneous
strain, isogons deform with the stratigraphic layers.
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Appendix E

MOHR/MEANSCIRCLES

E.1 Tensorsand Mohr Circle

The Mohr circleisawell established tool for depicting deviatoric stress and strain rate tensors and
solving for their eigenvalues (Malvern, 1969)[sec.3.5]. This application has been extended by struc-
tural geol ogiststo nonsymmetrictensorssuch asthevel ocity gradient and deformation gradient (Means
et al., 1980; Bobyarchick, 1986; Passchier, 1988). Thisgeneralized Mohr circle plotstherelative ef-

fect of alinear operator (tensor) on vectors of various orientations.

Let fx = f(x) be the result of applying the linear operator f to the unit vector x in 2D (R?).
This vector can be written as the sum of two vectors, one parallel to the original x and the other

perpendicular to it.

fx=fx |+ fx, (E.D

If the point (| fx[,[fx_|) is plotted for al orientations of X, the pointslie on acircle.

Theresult of applying the velocity gradient tensor, L = [u, to a small unit displacement vector
oX, isadeformation rate vector du, whose components parallel and perpendicular to the displacement

areits strain rate, €, and rotation rate, . The Mohr circle plots & versus €.

The application of the deformation gradient tensor, F, to a small segment, dX, produces a de-
formed segment, dx. The Mohr circle representation of F plots the orientation and magnitude of
dx relative to those of dX. The Cartesian coordinates of this point are the magnitudes the parallel
and perpendicular components of dx relative to dX, while the polar coordinates are the stretch and

rotation of dx relativeto dX, which are usually more useful.

In this chapter | attempt to explain this generalized Mohr circle using Geometric Algebra.
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E.1.1 Geometric Algebra

Geometric Algebra (GA) unifiesthe scalars, vectors, and inner and outer products of vector algebra.
Based on the work of Grassmann, Hamilton, and Clifford its principal recent developer is David
Hestenes (Hestenes, 1986; Hestenes and Sobczyk, 1984). Good summaries can be found in Baylis
(1996), Lasenby et al. (1996), and Gull et al. (1996). Perhapsthefullest application of GA to contin-
uum mechanics is McRobie and Lasenby (1999). The use of Mohr circles to solve for eigenvalues
and vectors of symmetric linear operatorsis described using GA in Hestenes (1986)[chap.5]. | build
on this, extending it to nonsymmetric operators.

In GA, scalars, vectors and " higher objects can be added to form multivectors. The multivector
of particular interest to us isthe result of the geometric product of two vectors, which unites the dot

and cross products of vector algebra.
X1X2 = X1 - X2+ X1 A X2 (EZ)

X1 - X2 iSthe scalar dot product. The wedge product, X3 A X2, iSa bivector, the area swept out by the
two vectors x; and x,. While the dot product of vectors commutes, the wedge product, which is a
generalization of the vector cross product, anti-commutes. Hestenesrefersto thissum of ascalar and
abivector asa spinor.

Whilethe geometric product can beformally definedintermsof itsalgebraic properties(Hestenes
and Sobczyk, 1984), thinking of the product as the sum of the dot and wedge products of vectorsis
sufficient for our purposes. GA extends seamlessly to higher dimensions, but | will focus on R?.

Ideally in GA one should be able to work without reference to any coordinate system, how-
ever given our familiarity with vector notation, it is convenient work with an orthonormal basis,
two perpendicular unit vectors, which | call e; and e,. Another vector can then be expressed as

X = X1€1 + Xo€. The properties of e; and e, include

e12 = e22 =1 €16 = —66
(e1&)% = e = —ere &8 = —1
e-e2=0 eAre=0

€6, isthe unit bivector. Becauseits squareisthe scalar —1, it is convenient to writeit asi. Thisis
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an allusion to the imaginary number v/—1. There are significant similarities between GA spinorsin
R? and complex numbers.

In R?, i isunique, and referred to as a pseudo-scalar. A general R multivector is the sum of a
scalar, vectors, and a bivector.

Aswith complex numbers, multiplying by i produces a rotation.

el =ee =6 (E3)

&l = ©616 = —€266; = —€; (E4)

The vector perpendicular to X isXi = —xoe; + X, €. Thisleft multiplication by i resultsin clockwise
rotation by 90°. Right multiplication rotates it anticlockwise (ie; = —e).

The GA exponential €9 is similar to the complex exponential. If the angle between e; and x is

@, X can be expressed in terms of an exponential
X=¢ere? (E.5)

Here the exponential is actually a spinor, ascalar plus a bivector. Multiplication of this spinor by a

vector produces another vector.
d? = cos@+ising (E.6)
X =r(cos@e;+sin@e;) =re;(cos@+ising) (E.7)

More generally, xr €9 is a vector with an angle of @ (in the anticlockwise direction) relative to
vector X, and length r|x|. When dealing with disturbance folding, it is convenient to talk about an-
gles clockwise from upstream horizontal. If 8 is such an angle, and e, is aigned with horizonta

downstream, then a vector can be expressed as
X=—ere®

=e;rd® = e;rd ™% = g,ré™e ™% = r(— cosPe; +sinbe,) (E.8)

E.1.2 The Circle Representation of a Linear Operator

In GA the concept of linear operatorsissimilar to that in linear algebraand tensor mathematics, with

perhaps, an even greater effort to work without reference to a coordinate system where possible.
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Let f be alinear operator. When applied to x the result is another vector which | denote fx =
f(x)L. Itslinear property is expressed by f(ax; +bxy) = af (xq) +bf(xy).
Using the e; and e, basis, the effect of f on a vector can be expressed in a manner similar to

tensor coordinate notation
fx = (axg 4 bx)er + (cx +dxz) & (E.9)

Thevalues of a, b, ¢, and d depend on the choice of basis. The operator could be defined in terms of
these scalar components, or these components could be derived from the application of the operator

to the basis.

fe,—ae +ce feo— be+de

¥

To keep notation simple | assume in the following discussion that x is a unit vector (xx = 1).

fe-e; fer-e
fe,-e fer-e

(E.10)

The geometric product of fx and x is
fxx= fx-x+ fXAX (E.11)
For our pair of basis vectors this product is

fere, = aere; +cerep = a—ic
fe,eo =beey+deye, =d+ib (E.12)

For x expressed in the same basis
fxx = (x4 + (b4 C)xpxo + dx3) +i(—0x + (a— d)x1 X + bx3) (E.13)

Since X2 4 %4 = 1, this can also be written

_(a+d  b+c a—d . (b-c a-d b+c
fxx—( TR A y1)+|( st e YI) (E.14)

wherey; =X —x% Yo = 24X (E.15)

1In GA alinear operator on vectors can be extended to multivectors, with its action on a pseudo-scalar providing a
definition for the determinant, | f|.
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y; and y, come from squaring e;x = €.

e1X = €1(X1€1 + X&) = X1 +iXp

a20 _ (X1+iX2)2 =X =X +i2x %0 = Y1 +iyo

With x; = cos@ and x, = sin@ (E.15) are the familiar double angle sine and cosine formulas.

fxx can be plotted in spinor space, with the scalar part (fx - x) along the horizontal axis, and the
bivector part (fx AX) aong thevertical axis. Thisisakin to plotting apoint in complex space, on the
real and imaginary axes. Sincethey; andy, used in (E.14) satisfy y2 +y3 = 1, these fxx pointslie
oncircle. Thepoints fe, e; and fe, & defineadiameter of thiscircle. Itscenteris%(fe1e1—|- fere),
andtheradiusis A, = 3| fe;e; — fer ).

There are a couple of ways of interpreting this fxx product. Oneisthat it gives the magnitude

of the components of fx that are parallel and perpendicular to x,

fx = fx+ fx, (E.16)
= (fx)xx = (fxx)x= (fx-x) x4+ (fXAX)X

fx = (fx-x)x fx, = (fxAX)x (E.17)

Changing the order of the product changesthe sign of just the perpendicular (wedge) part.

An equivalent way of writing these components using tensor notation is

[ x| = fx-x [fX, | =|fxxX| (E.18)

The exponential form of the fxx spinor gives the magnitude, A, and orientation (or rotation) of

fx relativeto x, ¢.

XX = MA@ = A cos@y +iAgSingy

AxCOS@ = XX iIAxsing@ = fXAX (E.19)
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The product fxx can be represented as several different combinations of spinors.

fXX = A€® + YA €% + yo)id®
= feye+ Xe2A €% + X X2\ g%
= fexer+ (X +ixyX) 2\ €®
fere = Ac€® + A €%
ferey = A€® — A\ e®

Ac€® isthecircle center. A, isthecircleradius, while ¢, isthe angle of the diameter between e, and

&. 2\ i€® isthe diameter perpendicular to this.

3((a+d)+i(b—0))
A% = J((a—d)—i(c+b))

If f istheidentity operator, fx = x, and fxx=X-x+XAXx= 1+ 0i. ItsMohr circleisa point

(1) on the horizontal (scalar) axis.

E.2 Velocity Gradient Tensor and Circle

For avelocity gradient tensor, L, the linear operator is

du=Lx=(x-Oju
= (X101U1 +X202U1) €1 + (X101 Up + X202Up) € (E.20)
LXX=¢€+iw (E.21)

= (OUXE 4 (O2U+ O W) Xq X + O WH3) + i (—OxWXe + (OxU — OoW) Xq Xp + O7UX3)

The scalar component for the Lxx product is the stretching rate of x, €. The bivector part is @,
the rotation rate of x.

The w— € plot (Lister and Williams, 1983) in Figure E.1(a) is the Mohr circle representation of
avelocity gradient. Panel (b) isamore physical representation indicating the direction of rotation of
the corresponding segment angles and range of angles that are undergoing compression (€ < 0, the
shaded arc).
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InFigure E.1(a) plotsrotation, c (vertical)?. against straining, £ (horizontal). Twodefining points
for thecircleare: Le; e; = dyu—idyw and L e, e, = d,w+id,u. The anglesof the physical segments
() relative to horizontal (downstream) are measured around fe, e, or as double angles around the
center. Attheangleslabeled B thereisno stretching, € = 0. Inthiscase, with plane strain, they match
the rotation rate extrema ((max). The A’'s mark the segmentsthat are not rotating, w= 0.

E.2.1 Matching Rotation Rate

Waddington et al. (sub) suggest looking at the rotation rates of segmentsrelativeto that of the steady
state isochrones. The segment that is rotating at the same rate is, in some sense, stable. Gentler
segments will be flattening, while steeper ones will steepen and possibly overturn. In Chapter 1 we
show that the matching rotation rate criteriais overly conservative. Because the velocity gradient
changes as a segment moves along a particle path, it can actually change direction of rotation. The
‘stability’ angleis more of aturn—around angle.

Whatever its usefulnessin predicting what disturbanceswill overturn and when, it isinstructive
to calculate what segment is momentarily stationary relative to theisochrone (or any other reference

angle). This problem can be expressed as the problem of finding a unit vector x; such that
LX1 AXy = LXgAXg= Gy (E.22)

where X is the unit reference vector (the one aligned with the isochrone).

Given our ey,e, basis, and the bivector part of (E.13), (E.22) can be expanded into

—0x§ + (a—d) Xy % + bxg = G
—c+(a-dym+bm? =iy (1+m?) m=

X |

(—c—Gy) + (a—d)m+ (b—cxp)m? =0

Thisisaquadratic equationin m= x,/x; = —tan@. There are two angles that satisfy this equation,
oneof whichisthat of theisochroneitself, 8. Thesum of thetwo solutionsto thequadraticissimpler

than either of individual solutions.
a—d

T (E.23)

tanBg+tanB; = —myg—m; =

2clockwise, decreasing @ on top, increasing 6. 0 is relative to horizontal upstream.
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(b)

Figure E.1: (a) Mohr circle for avelocity gradient operator and the corresponding (b) physical rep-
resentation. The angle convention here (¢) usesthe supplement of the 0 (relativeto x upstream) used
el sewherewhen talking about the rotation of leading edges. Anglesin the shaded areaare undergoing

compression (& < 0).
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Figure E.2: Mohr circle for calculating the angle, 04, that is not rotating with respect to the surface
isochrone, 6. € and w of the 6y and 8, segments are plotted as circles near the bottom of the Mohr
circle. Theinscribed right triangleillustrates the equation (E.24) for 6g + 6;. The hexagonal points
outside the Mohr circle can be used with equation (E.23) to givetan8y+ tan6,.

Alternatively, using the double angle equation (E.14) for w gives asolution in terms of the sum

of the two angles.

a—d b+c _a—d b+c
2 )/12——2 Y11 = > Yo2 — > Yo1

a—d _ Yun—Yor €0s2081 — cos20g B 25|n(91—|— 90) Sin(el — 90)
b+c - Y12 — Yoz - sin20, +sin26, - 2COS<91—|— 90) Sin(el — 90)
Figure E.2 illustrates the derivation of (E.23) and (E.24).

—tan(6p+6;) (E24)

But in GA (and tensor a gebra) we can choose any coordinate set that is convenient. In this spirit,

the Mohr circle could be defined by the isochrone and the vector perpendicular to it, Xg and Xgi.

L XoXo = LXg - Xg+ LXo A Xg (E.25)

L (Xoi) (Xoi) =L (Xoi) +Xol +L (Xoi) A Xl (E26)
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From the Mohr circle in Figure E.3 it is evident that the x, product shares components with each

defining product.

LX1X1 =LX1- X1+ LXgAXg

= L(XQI) -Xol + LXg A Xg (E.27)

The segment that is rotating with xo hasthe same strain rate asthe segment perpendicular toit. Inthe
incompressible, plane strain case (ridge flow) this strain rate is the negative of the isochrone strain
rate, —¢€o.
| could also argue for (E.27) by noting that the points L XgXg, L (Xoi) (Xoi), and Lx; X; form an
inscribed triangle, with one side being a diameter. Theangle at L x; X, isthen aright angle. Since x;
and X have the same wedge product, one side of this triangle is horizontal (in spinor space). Con-
sequently the x; to Xgi side must be vertical, and have the same dot product.
The relation between xg and x4 is given by their geometric product, XoX, = Xg - X1+ Xg A X1 =
COS(o; + i SiN@y:. The angle between these two segments, @y, is®
L Xo - Xo — L (Xoi) - (Xoi)
—i (LXp AXo— L (Xoi) A (Xoi))
_ €&—& & —&
Wo—wy  Gp— 0

tan o =

(E.29)

€0 and Gy are the strain rate and rotation rate for xo, and €, and @, the valuesfor Xgi. €.+ it isthe
Mohr circle center point, the average of any two diameter points.

The 6, segment is easy to identify in the velocity gradient Mohr circle, where the rotation rates
are explicitly plotted. In the more physical representations of the strain rate, such asthe incremental
strain ellipsg, it is easier to identify straining rates. But since the 61 segment has the same € as the
0, the angle between those two segments and the minor and major strain rate axes (Emn and €max) IS
thesame. Thisrelationissuggested by the dashed linesin FigureE.3. It alsoillustrated in Figure E.4

which isthe incremental strain ellipse for the symmetric strain rate tensor® for the L.

3The denominator —i is needed to convert it to ascalar. Using +i would change the sign.

4The symmetric tensor is better than the velocity gradient in this case because the minimum and maximum & do not
rotate.
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Figure E.3: Mohr circle for calculating the angle that is not rotating with respect to the surface
isochrones. Segment 8, has the same rotation rate at isochrone segment 8y. The inscribed right tri-
angle illustrates the equation (E.28) for @p;. The dashed lines show that the angle between x; and
€min IS the same as the angle between x|, and €.

E.2.2 \orticity Number

The L Mohr circle also illustrates the kinematic vorticity number W, which is a measure of mix of

pure and simple shear in avelocity field (Means et al., 1980; Passchier, 1988; Bobyarchick, 1986).
W = /& (E.29)

where @ is the bulk rotation rate, obtained by breaking the velocity gradient tensor into symmetric
and anti-symmetric tensors, and £ isameasure of the strain rate. Several measuresof this component
arepossible, but half the difference between the maximum and minimum strain rates (€max — Emin) /2

is asimple common one®.

5For plane strain this equals the effective strain rate (the 2nd invariant of the strain-rate tensor).
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Figure E.4: Physical representation of casein Figure E.3. The éllipse is the incremental symmetric
strain, corresponding to the velocity gradient in the previous figure. This does not represent the full
rotation present in the gradient.

In the Mohr circle, W= QX the height of the circle center, and £ = Ar, itsradius. The (isalso

the rotation rate of €.

© _ b—c (E.30)
Ar

N T Voo

The vorticity number could also be described as the ratio of the mean rotation rate ((T)) to half
the range of the rotation rates. For pure shear the mean rotation rate is 0. Half the segments rotate
one way and half the other. For simple shear, the mean equals the (half) the range. All segments
rotate one way, except for onethat does not rotate. If wy > 1 the bulk rotation islarge enough that all
segments, regardless of angle, are rotating. So W is a measure of what proportion of the segments

rotate each way.
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Figure E.5: Mohr circles at various points along a flowpath, showing progression from pure shear
(smallest circle centered on horizontal axis) to increasing simple shear (larger circles).

E.2.3 ChangeinL Mohr Circles Along a Path

For aflat bed, thevel ocity gradient Mohr circles (A ppendix E) changeinaquite orderly manner along
aflowpath (Figure E.5). Near the surface pure shear dominates and the circleis centered on w = 0;
with depth, the shear grows, while the vertical compression remains about the same. One defining
point of the circle, (dxu, —0xw) (strain rate and rotation of a horizontal segment) remains about the

same. Theother point, (d,w, d,u) movesverticaly, asd,uincreases, and d,w remains about the same.

E.3 Finite Strain Mohr Circle

For the deformation gradient tensor F, the linear operator expression Fx is the strained version of x.
Fxx can beinterpreted in terms of the parts of Fx that are parallel and perpendicular to x (E.16), but
it generally is more useful to look at this product in its polar (exponential) form, A% (E.19). Ay is
the stretch of Fx, and ¢ the rotation from x to Fx.
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For pure shear, F hasthetensor form, {% 1%} . Thisplotsasacirclewithacenterat (a+1/a)/2+
i0. The point with unit stretch and no rotation, 1+ 10, isin theinterior of thiscircle.

When shear is added to this, F = {g 1%} . TheMohr circleis centered at (o +1/a)/2+iB/2.
Theradiusis such that the circle does not quite touch the origin. The stretch of ahorizontal segment
is a with no rotation. The stretch of an initially vertical segment is 3, and itsrotation is amost 90°
(to horizontal).

Figure E.6 plots the Mohr circles for the two deformations illustrated in Figure 4.3 (b) and (c).
For theinitial configuration, F=1I , and the Mohr circleisjust the point 1+i0. Since thisis IE, the
gradient tensor in the rotating frame aligned with the isochrones, F = 0.

Thecircleisdefined by the points R — iF and F + i Fyz, labeled as Xis, and Xp. TheXjg, point is
on the horizontal Mohr axis. The xy, point is (initially) perpendicular to theisochronein the physica
plane, and twice thisin the Mohr plane.

Becausetheinitial fold is symmetric, the angles of x; and x; relative to the defining diameter are
the same, but in opposite directions. Since | happened to make them 90° apart (45° and 135°) they
form a diameter themselves.

In Figure E.6(a) the three vectors have rotated in the same direction, with x,, rotating the most.
The rotation for x; and x; is close to the same, and they are close to having the minimum (1/2) and
maximum (2) stretch. x; hasrotated to vertical so that itsinitial angle and the rotation sum to 90°,
though this cannot be read directly from the Mohr circle.

A small portion of thiscircleis below the horizontal axis (clockwise from X;s). This represents
low angleleading segmentsthat have been flattened by this strain. About half of these flattened seg-
ments have been stretched (outside the unit circle) and half compressed.

In (b) x; hasrotated more than 90°. Its stretch is now closeto one, so it has lengthened relative
toitsstatein (a). x; hasrotated further than x, though it will never rotate past xp.

The angles and lengths of these vectors are given in (D.4). With specific numerical values of

zZ=X=2andB=0~ %, the vector rotation and stretch values are



156

Xt

(@)

%5
: Xiso

£ 132 134
0.00 0.76

Q o)

X

£ 1.60 2.77
0.00 0.63

Figure E.6: Mohr circles for Figure 4.3(b) and (c). The circle is defined by the strain of the unit
horizontal and vertical vectors, marked as X5, and x,. The strain of the leading and trailing edge
vectorsismarked as x; and x;. The dotted circles mark stretch of 1,2, and 3 (polar radius).
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These rotation and stretch values can be read off the polar coordinatesin Figure E.6(a).

E.3.1 Symmetric Srain Rate and Deformation Gradient Tensors

One nice feature of the finite strain Mohr circle isthat it illustrates the polar decomposition of the
tensor. The nonsymmetric F can be decomposed into arotation and asymmetric deformation, R-RS.
Thisisthefinite equivalent of splitting avelocity gradient into arotationrate and strain ratetensor. In
the rate case these combine additively. In the finite case they combine multiplicatively, and it makes
adifferencewhich order the strain and the rotation occur in. Thusthereisboth aright and left stretch
tensor®.

Intherate case, the symmetric strain ratetensor hasthe sameradius asthe nonsymmetric vel ocity
gradient, but itis centered on theg axis, with w= 0. Therotation rate thenistheheight of the gradient
circle above this axis.

For the finite case, the rotation transformation involves a rotation about the origin.

6The Cartesian and polar interpretations of a Mohr circle merge when theratecircleis viewed asan infinitesimal finite
strain circle - that is, a very small one centered on (1,0), the point of unit finite strain. Slight horizontal motion is
equivalent to aslight radial motion, and adlight vertical motion is equivalent to a slight rotational motion.
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Some variantson F are (Malvern, 1969)

C=F'.F Green deformation tensor
RS=+C right stretch tensor
R=F/RS rotation tensor
F=R-RS
F=LS-R left stretch tensor
B~ l=(F1t.F1? Cauchy deformation tensor
LS=vB
U = eigenvectors(C) principal axes
L2 = eigenvalues(C) principal values

E.3.2 3D Operators

There have been attempts to extend the Mohr circle concept to full three dimensional tensors (Trea-
gus, 1990). While certain properties of symmetric three dimensional tensors can be depicted with
a set of three Mohr circles, it has been harder to find simple geometric patterns in the operation of
nonsymmetric tensors.

The fxx product extends to R® quite easily. Whether this yields further insight into the problem
of depicting three dimensional linear operators has yet to be determined. In R? the unit bivector is
unique, whilein R the set of bivectors is spanned by three linearly independent bivectors. If e, ey,

and e; are abasisfor vectors, the basisfor bivectorsis

l1=663 Ir=6e6 Iz=e6

Each can be thought of as a differently oriented face of a unit cube. In R®, the fxx spinor is the

sum of ascalar and a bivector. Assuch it isa4 dimensional object. It can aso be expressed as an
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exponential, where the rotation occurs in the (bivector) ¢ plane and with the angle magnitude | ¢|.

fXX=Ag+A = Ae® (E.31)
A = A1+ Aziz+Agis
®= (i1 + iz + @aiz
fx and x both lie in the plane defined by @. In general for alinear operator this plane of rotation will

vary with x, though there are some operators, such asthe 2D one | have described in more detail, for

which the plane has the same orientation, even if its area (bivector magnitude) differs.
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Appendix F

BED UNDULATIONSAND SEGMENT ROTATION

Abstract

These are working notes clustered around the complications posed by bed undulations. When using
aflat bed model, | have ignored the distinction between horizontal and isochrones, but when bed
undulations are significant | need to distinguish between how segments rotate rel ative to horizontal
and relativeto theisochrones. Here |l exploretheimplications of thisdistinction, and evaluate where
the 6, (zerorotation angle) can be extended to this case. | also seek graphical and mathematical tools
for grasping the extra complexity the bed undulations introduce. The mean 6, shows some promise

asaturn—around criteria, though, inthelong run, thisdoes not repl ace thefinite strain 8; calculation.

F.1 F andL inthelsochroneFrame

When working with segment anglesthat are of the same order of magnitude as the isochrone angle,
it isconvenient to use areference frame that is aligned with the isochrone. In Chapter 4 | introduced

F (4.3), avariant on the deformation gradient tensor that operatesin this rotating frame.

F=R(8i%)'  F-R(Oix) (F1)
cos® snb

= (F2)
—sin® cosb6

Oix istheisochrone angle at the reference point, and iy, the angle at the current point.
The velocity gradient tensor L and deformation gradient tensor F arerelated by F = L - F (1.23).
Similarly the velocity gradient in therotating frame L isrelated to therotating F. L can be calculated

from F and its derivative.

[=F.F? (F3)
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Expanding theright side

[ = % (R(Biso)! - F-R(Gisn)) - (R(Biso)' - F-R(Gtsp))
= (R(8iso)' - F-R(Oiso) + R(Biso)" - FR(Ois0) ) - (R(Oisn)" - F 71 R(Biso))
= (R(8iso)' - L - F+R(Biso)' - F) - (F1- R(Biso) )
= R(Big)' L - R(Biso) + R(Biso)' - R(Biso) (F4)
. . {sine cosG] {cose sinO] {0 1] .
R(0)'-R(B) =0 : = 8 (F5)
cos®@ —sno —sinB coso 1 0

Thus L can also be calculated by translating L into the isochrone frame and removing the rotation

rate of the isochrone.

1|
Wiso (F6)

L = R(Biso)' - L - R(Bis0) + {0
10

The 2x component of L is zero like the corresponding component of F.
The Mohr circles for L and L are offset vertically by (. They aso have different defining
diameters, the global horizontal and vertical for L, and the isochrone and the segment perpendicular

toit for L. Thecircleradiusisthe samein both cases.

F.2 Sinusoidal Bed

Figure F.1 shows the variation in the F components when the flowband bed is sinusoidal. In refer-
ence to Figure F.1(d) and (€), varying the position of the corerelative to the bed undulations makes
asignificant difference in the shape of the R curve, while the other curvesretain their general char-
acter, including 6s. When B' is close to zero, F is generally increasing asin the flat bed case. For
B’ > 0, F isdecreasing asit passes through 1, with a maximum about half way to the surface. For
B’ < 0, R is shaped more like K, with aminimum upstream. It may even go negative. Interpreting
this behavior may betricky. R givesthe horizonta length (at points upstream) of something that is
currently horizontal. A negative Fy saysthat the horizontal segment at the core could have been a

leading edge upstream. Thisis plausibleif the isochrone at the core has a negative enough slope.
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Figure F.1: F components along a particle path (a). In (b) and (c) the reference point (x) is at the
surface; in (d) and (e) itisat the core, C = 0.2L. (f) 6 = tan~*(—F/Fy).
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Figure F.2 shows the same components, but for a deeper path. Perhaps the most significant dif-
ference (beyond the generally large strain values due to alonger travel time) liesin the shape of Fi
in panel (e).

Figure F.3 is the same path, but shows the components of F. The core relative components |ook
much more like the flat bed ones (Figure 1.12). Ky has some wiggles, but no major change in shape
depending on core isochrone slope. 8; isamost devoid of local wiggles—with just slight rises over
the bed dips.

Oneway of looking at how L and L vary along apathisto plot selected pointson their respective
Mohr circles at successive points along the path. Figure F.4 plots the horizontal and vertical defin-
ing points, the isochrone and its perpendicular, and the 6, point. | have compared such figures for
both deep and shallow paths. These can a so be compared to the sequence for flow over aflat bed in
Figure E.5.

For a shallow path (with d ~ 0.6) the vorticity number oscillations are larger than for deeper
Oones.

The horizontal segment tends to have the same w oscillation range as 6y and 6, but for shallow
paths, its € oscillation range is smaller. For deep pathsits range is significantly larger.

0, oscillates (in the €, t plane) in amirror image to 6. Its w matches (by definition), but its €
varies in the opposite direction. In fact, for plane strain, is just has the opposite sign. It is the € of
the 8y + 90° segment.

For the shallow path, with the more limited w range of the horizontal segment, the mirror image
character of the 6; dominates, and it actually oscillates out of phase with 8y. For a deep path, the
strong oscillation of the horizontal w dominates the oscillation of both 6 and 64, so they tend to be
in phase with each other. For intermediate depths the range of the horizontal and 8, are about the
same, resulting in a subdued angle oscillation for ©;.

Over asine bed, the spinor points, €+ i, for most (if not all) anglesmove inloops (when plotted
for successive points on the path). Those for 0°, 6y and 8, are amost circular. That for 90° moves
upward as it loops, reflecting the strong growth in the shear component, o,u.

When the same spinor is calculated in the isochrone frame (using L) the spinor point movement
changes. For 6y and 6, the spinor moves back and forth on aline with w = 0. The spinor for 6

loops upward. The spinor for for the (global) 0° has flattened loops, amost like squashed flower
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Figure F2: F components along a deeper particle path (a) starting at x/H = 0.5. In (b) and (c) the
reference point (x) isat the surface; in (d) and (€) it isat thecore, C= 0.2L. (f) 85 = tan~*(—F»/Fx).
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Figure F.3: F componentsalong a particle path (a) starting at x/H = 0.5. In (b) and (c) the reference
point (x) is at the surface; in (d) and (e) it is at the core, C = 0.2L. (f) 0¢ = tan~1(—F/Fx).
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Figure F.4: Rotation and strain rates along a portion of a path (starting at (500m, 1000m)) over asine
bed.

(Ieft) Two Mohr circles (zoomed), plus defining diameters (solid), 8i, — 0, diameters (dashed), and
pointsin between. Oscillating near the bottom are x;, 6, and 6;. 8, hasalarge w like x,.

(right 1) Zoom on w = 0 region, equal axis; X; (solid) and Bjg, (—o)

(right 2) Zoom on 6, (left) and 6;, (right); bed parallel vector (dashed).

(right 3) Bis, (solid), 1 (solid), bed angle (dashed) v. x.
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petals. The resulting figure may not be ainformative.

The segment rotation rateis (using (E.13) and (E.14))

W= —ccos’0+ (a—d)cosBsinB+bsin’0

b-c a-d . b+c
=5 + Tsmze— Tcosze (F7)

For 6 oscillating in the +0.4 radians range, sin20 is ailmost linear, oscillating in step with 6. cos26

is at the top of the cosine arc, so it oscillates at the double the frequency of 8.

F2.1 The [S(1-d)+B'd] Isochrone Approximation

Over aflat bed, the velocity gradient Mohr circles changein an orderly manner, growing in diameter
((¢1— €3)/2) and moving up (W approaching 1) ( Figure E.5). When there are bed undulations, this
orderly changeis modified. Most notably, the strain rates of the defining points oscillate.
Wherethe flowpath runs approximately parallel to the undul ating bed there are a number of sim-
plifying approximationsthat give someinsight.
8, the isochrone slope angle might be approximated by:

Bo~ —My~ — [S(1—d)+B'd] = —hd.d (F8)

This seems to hold true for quite a range of the flowpath. | have verified this numerically. It also
makes sense; at the surface, isochrones should be paralld to the surface; close to bed, they should
approximatethe bed shape - with thebig caveat, that thereisno basal melting (or add on). In between,
| expect some blending of the two. Linear isagood first guess.

Inthe following | show that the difference between 8, and 8 is approximately

o4
h 1-d
8; — 8y ~ tan(6; — Bg) ~ (i - h’) = (F9)

For plane strain, 0,w = —0dyu. If dxw, 6y and 0, are all small, the equation for 8; + 6 (E.24)

reducesto

205U

0,+6g~ tan(el—l—eo) ~ FXY
z

Withu=t(x)a(d), du=—30;0 and dxu=UG+TUd40xd

o

a
adu

o

—2hod = —2h— 4

0,+69=-2h = ad”ﬁ

+ 26

o |
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Expandingon®, U=9%-ufand h¥=h¥ N

h T Q
0 a
0, =-2h— 20 0
1 Qa&a+ a&A—I- o
With the shallow ice laminar flow model 6= 3(1-d*) and 50 = —i=d
d 4d
4 4
Qo1-d* 1-d
elzh— — —h — —1—90
Q 2d° 2d°
Q1-d* 1-4d* -
=h 5 —(S-B)—= - [S(1-d)+Bd]
Q 2d 2d
~4 4 4
Q1-d 1-d R 1-d* .
= -3 —+(1-d) | +B — —d
Q 2° 2d° °

For aflowband with uniform accumulation the flux term becomesQ =bx. € = %

Q

~4 ~4 4 "

elz(b—h') L% taonp (13 ) g (13 ) 5080
Focusing on B and B' terms gives

~4
0, ~ (E—S—I—BI) 1_,\2 —S’(l— ")_B/d‘
X
2d

~4 ~4
2d 2xd

The oscillationsin Sand S are subdued compared to the bed oscillations. The effect of B isalso

dampened by the 1/x term. Thusthe oscillationsin 8; are dominated by those of B'.

The coefficient of B' in (F.10) is plotted in Figure F5. It is—1 for d = 1 (bed). Itis 0 ford =

(1/3)4~ 0.76, and 1 for d ~ 0.64.

Closeto thebed, (1—d*)/d° issmall, s08; — By ~ 0. 8; variesin phasewith B' and 8. Closer

to the surface (1 —d ") /d” islarger, so thex/h — i and —B' dominates. 6; then isout of phase with

the bed and the isochrones. There is an intermediate depth in which the B’ terms cancel, and 6, has

rather subdued undulations. Specifically, 3(1— d%/d°~d, thatisd ~ 3-1/4 = .76. Thisis specific

to our n = 3 laminar flow approximation, and plane flow.
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0.5 ,

(1-3d")/(2d")
Figure F.5: The B’ (F.10) coefficient versus normalized depth

| can calculate a similar expression for the particle path angle. For the uniform accumulation,

shallow icelaminar flow thisis:

u=T0l=—0 w=-b¥+u[S(1-d)+Bd]

W:_Eﬂ [S(1-d)+8d]
u x 0

4h ~
fp ~ —§(1—d)+mo

o S

PN
4750+d o8 d)
5(1—d%

(F11)

For d closeto 1 (near the bed), W/0 =~ 0, so that (F.11) is dominated by the B' term. The parti-

cle path starts out (at the surface) with less stretching and greater rotation (decreasing 6). But with

depth it becomes subparallel to the isochrones, which in turn are subparallel to the bed (m¢, — mg

approaches0_).

The particle path slope, my,, is always more negative than the isochrone slope, my. The path
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always cuts across the isochrones in the same direction, downward, from surface side to bed side.

F.3 Conclusion

— There are severa formulas for the angle that rotates along with the isochrones.

— Closeto the bed, al segments tend toward being subparallel to the bed.

— Further from the bed the 8; angle moves out of phase.

— Over an undulating bed the 8, and 6, criterialoose value in predicting overturn events

— But 0, based on a smoothed bed may retain some usefulness.

— The generalized Mohr circle is a valuable tool in understanding these segment rotation rate

i Ssues.
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Appendix G

NOTATION

kinematic vorticity number.

rotation rate.

strain rate.

principal strain rates.

strain rate stability angle.

horizontal coordinate (downstream).
vertical coordinate.

coordinate orthogonal to x and z.
horizontal velocity component.
vertical velocity component.

= 0, transverse velocity component.

velocity gradient tensor; dxu iS acomponent.

length of flowband, from divide to terminus.

thickness at the divide.

accumulation rate.

=H/b, time scale.

time.

surface profile.

surface slope, gradient of §(x).

bed profile (B(x) = 0).

= S— B, thickness.

= (S—2)/h, normalized depth.

flux through flowband cross—section at x.

mean horizontal velocity.
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S o
S~ —~~~

o, N
= =

>

dX, dx

Ug, Ut
Wa, Wi
Nd; Nt
Tn(€)

vertical profile of u(x,z).

vertically integrated 0.

flow parameter.

ice density times gravity acceleration.
x coordinate of ahypothetical ice core.
precore slope angle.

deformation (position) gradient tensor.
F with X reference point, x current point.
one of the components of F.

reference and current segments.
reference and current segment angles.

angle of the particle path.

Additionsfor full flow model description, Appendix A
flowband relative width.

=1—d, normalized height.

partial flux, flux below (x,z).

effective strain rate and deviatoric stress.

shear strain rate term.

shear stressterm.

= 3, Glen'sflow law exponent

flowband width exponent.

divide position

= X — Xgiy, position relative to the divide.

divide and flank 0.

divide and flank W.

divide and flank blending function.

Chebyshev polynomial.

boundaries of the 2 range mapped onto § = [—1 1].



Zp, W, - -

— T

Added prabability notation for Chapter 2
position vector, [X, Z.

injection angle and time.
observation angle and time.
forward angle rotation function.
inverse angle rotation function.
precore slope angle = y~1(90°,t,T).
injection probability distribution.
injection praobability density.

p(6,t) integrated over 6.

p(6,t) integrated over t.
observation probability distribution.
overturn probability.

conditional, Q(90°,1)/P(0°,T).
observation probability density.
Gaussian density function in angle.
Dirac deltafunction.

afixed injection angle.

afixed injection time.

upstream and downstream boundaries of the injection region.

"minimum’ injection time.
overturn time corresponding to ty,.
region betweent, and ty,.

region betweenty, and ty.

Added thickness notation for Chapter 4
SeeTable 4.1.

F tensor aligned with the rotating isochrone frame.

L tensor aligned with the rotating isochrone frame.

rotation tensor.
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X1X2

X1 X2
X1 AX2
€1, &

I =ee
a+ib
do

fx

il

fx
XX
fee, fee
Ar
Ace®
Xo

Xol

X1

807('%
€1,00

'SC7 (*)C

Added notation for Appendix E

geometric product of two vectors.

scalar dot product of two vectors.

bivector wedge product of two vectors.

an orthonormal basis.

unit bivector in this basis.

spinor, sum of ascalar and a bivector.

= cos@+ising, unit spinor (exponential notation).
= f(x), application of linear operator f to x.
component of fx parallel to x.

component of fx perpendicular to x.

spinor representation of action of f on x.
apair of defining points for the f Mohr circle.
= I|fere; — fepey| circleradius.

= 1(fere1 + fep &) circle center.

vector aligned with isochrone, angle 6g.

vector perpendicular to isochrone, angle 6 .

vector with same rotation rate asisochrone, angle ;.

angle between xp and x;.
strain and rotation rates for xg.
strain and rotation rates for Xgi.

strain and rotation rates for the circle center.
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