Ring current \sim few MA
Tail current $\sim 0.5 \mathrm{mV} / \mathrm{m}$
$\sim 40 \mathrm{nT} / 1 \mathrm{R}_{\mathrm{e}}$
$=5 \times 10^{-9} \mathrm{~A} \mathrm{~m}^{-2}$
lonosphere $\sim 1 \mu \mathrm{~A} \mathrm{~m}{ }^{-2}$ to get instabilities and potential drops ($\sim 1-10 \mathrm{kV}$)

Growth Phase : Energy is extracted from the solar wind and stored in the magnetosphere

Expansion Phase : Unloading energy from magnetosphere into ionosphere

Recovery Phase : Returning to ground state

Particles accelerated from plasma sheet

Move closer to Earth following fieldlines

No activity without southward IMF

Tail field collapse
\rightarrow field-aligned currents

Some mechanism has to prevent particles from mirroring

Potential drop develops at altitude ~ 1000 km with positive potential at lower altitudes

If infinitely conductive, couldn't develop a potential drop along fieldline

Can get potential drop if currents flowing between plasmas with different properties

2 different plasmas would be cold, dense ionospheric plasma and hot, rarified magnetospheric plasma

Field-aligned current would be the Birkeland currents

Substorm

1) IMF turns southward for 30-60 minutes
2) Ionospheric outflows and dayside magnetosphere eroded
3) Magnetic flux transported to the tail along with heavy ions (O+)
4) Plasma sheet thins and current moves earthward
5) Reconnection of the tail magnetic field
6) Plasma bubble forms near reconnection point and transported out of equatorial plane
7) Ion energized at reconnection point and injected into inner magnetosphere and ring current energizing from $\sim 100 \mathrm{eV}$ to $>10 \mathrm{keV}$ (IMF turns back northward prior to this step)
8) Reconnection point moves tailward, ionospheric ions refilling tail

Ring current generates a magnetic field that can modify the Earth's magnetic field

Ring current reduces the horizontal component of the geomagnetic field is reduced; during a storm itis further reduced

Storms last 1-5 days

The more negative $D_{\text {st }}$ the stronger the storm
$D_{\text {st }}=$ worldwide average of the equatorial horizontal disturbance

March 9-15, 1998

Storm (maybe?)

1) IMF turns southward for hour or more
2) Multiple substorms, ring current pumped up by addition of plasma and acceleration of plasma
3) lonosphere ions accelerated out of ionosphere, filing tail and ring current with heavy ions like oxygen
4) Dissipation of ring current after IMF goes northward through
5) Pitch angle scattering by waves
6) Ring current close to surface charge exchange with cold neutrals
O^{+}lost first (rapid), then H^{+}(slow)

Conductivity

Increase in energy input \rightarrow increase in field-aligned currents
\rightarrow field-aligned potential drops \rightarrow acceleration of e-into ionosphere
\rightarrow discrete arcs and enhanced conductivity \rightarrow more current drawn
\rightarrow larger potential drops \rightarrow greater conductivity

Current flows sunward across the polar cap
In auroral oval current concentrated by high conductivity into the eastward electrojet (dusk) and westward electrojet (dawn)

E (Region 1)
Hall current : caused by ExB drift motion but collisions cause ions to drift slower than electrons
 only a few Amps needed to disrupt transformer

Escape

$$
\begin{aligned}
& \frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{~m}}{\mathrm{R}_{\mathrm{e}}} \\
& \mathrm{v}_{\mathrm{esc}}=\left(\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}\right)^{\frac{1}{2}}
\end{aligned}
$$

At Earth $\mathrm{v}_{\mathrm{esc}}=11200 \mathrm{~m} / \mathrm{s}$

$$
\frac{1}{2} \mathrm{mv}^{2}=\mathrm{kT}
$$

Thermal velocity (1500 K)

$$
\begin{aligned}
& \mathrm{H}^{+}=5000 \mathrm{~m} / \mathrm{s} \\
& \mathrm{O}^{+}=1200 \mathrm{~m} / \mathrm{s} \\
& \mathrm{O}_{2}{ }^{+}=900 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Only need $1 / 6^{\text {th }}$ of distribution to be above escape velocity to get almost total loss

Magnitude of the ionospheric outflow as a function of Kp [from Yau and André, 1997.]

Sure, you have several degrees and work for NASA. But you still have to use toys to make your point.

