Evidence of Solar Wind: Comets

Solar wind ripping off the tail of a comet

Slow Solar Wind

- Slow Solar Wind (dotted red lines)
- 200-600 km/s
- Very Low Density: about 5-10 particles (electrons and protons) per cm³ at 1AU
- Highly variable, can change by factor of 2 in 24 hrs
- Lower latitudes, thus affects the planets more than fast wind
- Associated with closed field lines

Extreme UV from SOHO Spacecraft

Slow Solar Wind

 Slow solar wind originates from closed magnetic field lines at base of helmet streamers that are confined to low latitudes

Fast Solar Wind

- Fast Solar Wind (solid red lines)
- ~ 750 km/s
- Very Low Density: about half as dense as the slow solar wind
- Associated with open field lines (coronal holes)

Extreme UV from SOHO Spacecraft

Coronal Holes

• A coronal hole is a region of very low plasma density in the corona that shows up as a dark region in X-ray images.

• The correspond to regions of the solar magnetic field that extend radially away from the photosphere (no looping).

• The low plasma density is due to the radial nature of the field, plasma escapes by moving along the magnetic field.

• The result is a directed beam of very high velocity plasma.

Parker Spiral

- Sun rotates (~25 day period at equator)
- Solar wind flows out radially with magnetic field "frozen" in it
- Field lines tied to the sun, so rotation results in a spiral magnetic field
- Resultant field is like a lawn sprinkler
- Eugene Parker theorized this in the 1950's

Parker Spiral and the Planets

- At increasing distances from the sun, the magnetic field gets more and more twisted
- 45⁰ at Earth
- 90⁰ at Jupiter's orbit (~10 AU)

Where does the solar wind stop?

- Other stars have winds too, called stellar winds
- Hence, universe is not really a vacuum.
- Tenuous magnetized plasma (and a little dust) known as the local interstellar medium (LISM) fills interstellar space.
- But "near" to our sun, the solar wind dominates over the LISM.
- This bubble where the solar wind dominates is known as the heliosphere

Sun's galactic rotation period = 250 million years

Spiral arm rotation period = 50 million years

The boundary between the solar wind and interstellar medium

The two magnetized plasmas "bounce" off of each other in the outer solar system. At the boundary:

- <u>Bow shock</u>: region where the LISM begins to slow
- 2. <u>Termination shock</u>: region where the solar wind begins to slow
- 3. <u>Heliopause</u>: region where the solar wind and LISM are in balance

Heliopause is well past orbit of Pluto

Do we know exactly where the heliopause is located?

- Voyager I and II spacecrafts
- Launched in 1977
- First close-up images of Jupiter, Saturn, Uranus, Neptune
- Presently about 104 and 84 AU from earth (or 13/11 light hours)

Do we know exactly where the heliopause is located?

- Voyager I passed the termination shock in 2004, *maybe*.
- Voyager II passed the termination shock <u>five times</u> in 2007.
- The boundaries are not static, but depend on solar activity (solar wind, CMEs...)
- Scientists are waiting for them cross the heliopause

