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Maxwell’s Equations (MKS)
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121085.8 −×≅oε  farad/m 
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Sum over point charges                integral over volume charge density 

 
Biot-Savart Law 
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Lorentz force on a point charge →Force/volume 
 
for charge density )( −+ −= nnecρ   for 2 species, or 

∑=
s

sssc neZρ    for s species 

(where s=electrons, ion1, ion2, etc, Z is net ion 
charge, e is + or - one unit of charge) 
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Example: E

r
field next to a charged conductor with 

surface charge σ : 

Use Gauss’ law ∫ ∫ ∫==⋅∇
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Steady State Solutions for E
r

 

Faraday: ≡≈∂
∂−=×∇ 0t
BE
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steady state 

E
v

⇒  is derivable from a potential since 
0≡∇×∇ A
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So, let VE −∇=
r

where V = potential (scalar field), 
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Poisson’s Equation 
 

 
E&M Boundary Conditions: 
In steady state 0=×∇ E

r
   so we can use 
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So tt E21 =  Tangential Component of E
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continuous across a boundary in the steady state 
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Magnetic Field at boundary 
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nn BB 21 =  

Normal Component of B
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Continuous at an interface 
 
Conservation of charge 
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Note that in the steady state 0=⋅∇ J
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 which is 

analogous to Kirchoff’s Law ∑ = 0jI  
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Ohm’s law 

Simple form: EJ
rr

σ=   where σ is the conductivity 

In the steady state 0)(0 =⋅∇⇒=⋅∇ EJ
r

σ  

   so 0)( =⋅∇+⋅∇ EE
rr

σσ  

      gradient of conductivity⇑                 oερ /⇑=  

Use this to determine E
r

 given ρσ and  
 

σ  (conductivity) depends on the medium 
properties.   
In a plasma σ  is often very large ∞⇒σ .  (We 
will derive σ  for a plasma) 

 
Energy density 

Total Electric energy 
∫= rVdW 3

2

1
ρ

  (the factor of 2 
is to avoid counting charges twice, See L&C p. 72) 
 

From Poisson’s Equation Vo
2∇−= ερ  

∫ ∇−= rVdVW o
322/ε       and use the vector identity: 
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)()(  along with the 
Divergence theorem to get 
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                                                   (continued next page ...) 
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Energy Density (continued) 
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 is the electric field energy density 
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Electromagnetic energy Density 
 
 
Lenz’ Law 
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from Stoke’s Theorem: 
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   were Φ  is the magnetic flux through 
the surface and the left hand side is the E.M.F. 
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Current flows in the loop to balance any change in 
magnetic flux through the loop.   This is very useful 
in plasma physics from microscopic to macroscopic 
dimensions. 




