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What is a Plasma? 
Characteristic lengths and frequencies 

 
Plasma: gas of charged particles 
+ and - charges, but overall usually neutral  having 
kinetic energy of particles much larger than potential 
energy due to nearest neighbor. 
 
Consider a gas with n particles/volume and 
Temperature T (or energy kT, where k is Boltzman’s 
Constant k=1.38*10-23  J/oK  ) 
(Actually the overall energy of particles is  
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Therefore Quantum effects are negligible in a plasma 
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Temperature 
Consider 1-D gas in thermal equilibrium 
most probable distribution is maxwellian (WHY?) 
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f(u) is the probability function of finding poarticles 
with velocity u. 
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 is the probability of finding a particle 
with velocity u

r
 in a volume ud
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 of velocity space. 

 
Normalization for f(u) comes from 
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Thermal Eqilibrium: 
 
Why is a Maxwellian distribution the right one to describe thermal equilibrium? 
 
(from http://silas.psfc.mit.edu/introplasma/chap1.html#tth_sEc1.1 ) 
 

1.2.1  Elementary Derivation of the Boltzmann Distribution 

Basic principle of Statistical Mechanics:  
Thermal Equilibrium ↔ Most Probable State i.e. State with large number of possible 
arrangements of micro-states.  

Figure 1.4: Statistical Systems in Thermal Contact 
Consider two weakly coupled systems S1, S2 with energies E1, E2. Let g1, g2 be the 
number of microscopic states which give rise to these energies, for each system. Then the 
total number of micro-states of the combined system is (assuming states are independent)  
 

g = g1 g2 (1.10)
If the total energy of combined system is fixed E1 + E2 = Et then this can be written as a 
function of E1:  
 
 g =  g1 (E1) g2 (Et − E1)   (1.11)

 and    
dg 

dE1

=  
dg1

dE
g2 − g1

dg2

dE
  .

 
 (1.12)

 
The most probable state is that for which [dg/(dE1)] = 0 i.e.  
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(1.13)

Thus, in equilibrium, states in thermal contact have equal values of [d/dE] lng.  
One defines σ ≡ lng as the Entropy.  
And [ [d/dE] lng ]−1 = T the Temperature.  
Now suppose that we want to know the relative probability of 2 micro-states of system 1 
in equilibrium. There are, in all, g1 of these states, for each specific E1 but we want to 
know how many states of the combined system correspond to a single microstate of S1.  



Obviously that is just equal to the number of states of system 2. So, denoting the two 
values of the energies of S1 for the two microstates we are comparing by EA, EB the ratio 
of the number of combined system states for S1A and S1B is  
 

 
g2 (Et − EA) 

 
g2 (Et − EB) 

= exp[ σ(Et − EA) − σ(Et − EB) ]
 

(1.14)

Now we suppose that system S2 is large compared with S1 so that EA and EB represent 
very small changes in S2's energy, and we can Taylor expand  
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Thus we have shown that the ratio of the probability of a system (S1) being in any two 
micro-states A, B is simply  
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T  

⎤
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(1.16)

when in equilibrium with a (large) thermal "reservoir". This is the well-known 
"Boltzmann factor".  
You may notice that Boltzmann's constant is absent from this formula. That is because of 
using natural thermodynamic units for entropy (dimensionless) and temperature (energy).  
Boltzmann's constant is simply a conversion factor between the natural units of 
temperature (energy, e.g. Joules) and (e.g.) degrees Kelvin. Kelvins are based on °C 
which arbitrarily choose melting and boiling points of water and divide into 100.  
Plasma physics is done almost always using energy units for temperature. Because Joules 
are very large, usually electron-volts (eV) are used.  
 

1 eV = 11600 K = 1.6 ×10−19 Joules. (1.17)
One consequence of our Botzmann factor is that a gas of moving particles whose energy 
is 1/2 mv2 adopts the Maxwell-Boltzmann (Maxwellian) distribution of velocities ∝ exp[ 
− [(mv2)/2T] ]. 
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Average Energy 
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(for average velocity - see homework) 
 

HOW do modify f when we introduce +Q charge into Plasma? 
 
 

+ 
plasma 

- 

 

note exponent 
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in free space r̂
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Electron gains 
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now assume ions are fixed (too slow to move or respond) 
so ∞= nn i   but near the probe, e- distribution is changed 

so: electron energy = Φ+ qmv2/1 2       (where q=-e) 
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Now, let ∞→en   at large distances (so ∞→ρ at0 ) 
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ne = ∫ f(u)du = n∞eeΦ⁄kT

So, plug into Poisson:
dx2

d2Φ____ = en∞([eeΦ⁄kT] − 1)

Now we showed eΦ⁄kT < < 1 so then Taylor series
expand
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Problem set has several examples.

So, Φ = Φoe x  ⁄λD ∼∼ (const)
r
q__e r  ⁄λD, which falls

off FASTER than 1/r

This is Debye Shielding

λD is Fundamental to plasma physics: Dont Forget
It

bobholz
Cross-Out
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λD << L scale of the plasma variations

Next, we need lots of plasma particles for shielding
to work

Debye Sphere:
3
4__πλd

3no = ND

we need ND very large.

Note: Parks defines Plasma parameter g =
ND

1____ <<1

Others call ND the plasma parameter.

Next: How fast does it happen? What is the
response time of the charge distribution to the
introduction of a charge distribution?




