
Collective Description of the Plasma

• Remind about Lecture 4 definition of distribution function

Liouville’s Theorem

Force acting on a particle = F
→

= mg→ + Ze(E
→ + v→×B

→
) = mdv→⁄dt

Assume fields change sufficiently smoothly so that

E
→

(r→ + dr→, t) − E
→

(r→,t) ∼∼ infinitessimal.

Then conservation of particles implies that f(r→, v→,t) obeys a continuity

equation:
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Therefore:
∂t
∂f_ __ + v→.∇→f +

m
F
→
_ __ .∇→vf + f [ ∇→.v→ + ∇→v

.
m
F
→
_ __ ] = 0

but ∇→.v→ = 0 (because v→ and r→ are independent variables)

∇→v ( mg→ + ZeE
→

) = 0 because g→, E
→

do not depend on v→, and

∇→v
.(v→×B

→
) = B

→.∇→v×v→ − v→.∇→v×B
→ = 0 where we note that vx, vy, andvz are

independent variables.

So,
dt
df_ __ =

∂t
∂f_ __ + v→.∇→f +

m
F
→
_ __ .∇→vf = 0

       Liouville’s Theorem 

Now, back to handwritten ...






















