Collective Description of the Plasma

• Remind about Lecture 4 definition of distribution function

Liouville's Theorem

Force acting on a particle = $\vec{F} = m\vec{g} + Ze(\vec{E} + \vec{v}\times\vec{B}) = md\vec{v}/dt$ Assume fields change sufficiently smoothly so that $\vec{E}(\vec{r} + d\vec{r}, t) - \vec{E}(\vec{r}, t) \approx$ infinitessimal.

Then conservation of particles implies that $f(\vec{r}, \vec{v}, t)$ obeys a continuity equation:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \vec{\nabla} \cdot \vec{\mathbf{v}} \mathbf{f} + \vec{\nabla}_{\mathbf{v}} \cdot \frac{\vec{\mathbf{F}}}{\mathbf{m}} \mathbf{f} = 0$$

where $\vec{\nabla} \equiv \hat{\mathbf{x}} \frac{\partial}{\partial \mathbf{x}} + \hat{\mathbf{y}} \frac{\partial}{\partial \mathbf{y}} + \hat{\mathbf{z}} \frac{\partial}{\partial \mathbf{z}}$ and $\vec{\nabla}_{\mathbf{v}} = \hat{\mathbf{x}} \frac{\partial}{\partial \mathbf{v}_{\mathbf{x}}} + \hat{\mathbf{y}} \frac{\partial}{\partial \mathbf{v}_{\mathbf{y}}} + \hat{\mathbf{z}} \frac{\partial}{\partial \mathbf{v}_{\mathbf{z}}}$
Therefore: $\frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \vec{\mathbf{v}} \cdot \vec{\nabla} \mathbf{f} + \frac{\vec{\mathbf{F}}}{\mathbf{m}} \cdot \vec{\nabla}_{\mathbf{v}} \mathbf{f} + \mathbf{f} [\vec{\nabla} \cdot \vec{\mathbf{v}} + \vec{\nabla}_{\mathbf{v}} \cdot \frac{\vec{\mathbf{F}}}{\mathbf{m}}] = 0$

but $\overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{v}} = 0$ (because $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{r}}$ are independent variables) $\overrightarrow{\nabla}_{\mathbf{v}} (\mathbf{m}\overrightarrow{\mathbf{g}} + \mathbf{Z}\mathbf{e}\overrightarrow{\mathbf{E}}) = 0$ because $\overrightarrow{\mathbf{g}}, \overrightarrow{\mathbf{E}}$ do not depend on $\overrightarrow{\mathbf{v}}$, and $\overrightarrow{\nabla}_{\mathbf{v}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) = \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\nabla}_{\mathbf{v}} \times \overrightarrow{\mathbf{v}} - \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\nabla}_{\mathbf{v}} \times \overrightarrow{\mathbf{B}} = 0$ where we note that $\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}$, and $\mathbf{v}_{\mathbf{z}}$ are independent variables.

So,
$$\frac{\mathbf{d}\mathbf{f}}{\mathbf{d}\mathbf{t}} = \frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \vec{\mathbf{v}}\cdot\vec{\nabla}\mathbf{f} + \frac{\vec{\mathbf{F}}}{\mathbf{m}}\cdot\vec{\nabla}_{\mathbf{v}}\mathbf{f} = 0$$

Liouville's Theorem

Now, back to handwritten ...

df = 2f + V. Vf + F. Vf = 0
Libville's Theorem or
Cottisportess Colteman Equation
Arothen formulation of Lioville's theorem:
Let d³r d³v be volume in
$$r - v$$
 spare
(i.e. phase spare) occupied by a given set
of particles.
Then f d³r d³v = number of particles = constant
but f = const. along trajectory
s'o d³r d³v = constant following trajectory
d³r d³v = d³r m dE d R and d³r = d A vdt
Example's
Magnetic Focusing no electric Fields ... v = const
... dA d R = const
a device which does this dA reduced, ... dR increased
a device which does this for a must be compressed
of all particles => DE increases, ... d³r must
decrease is: plasma must be compressed

2

•

> Vlasov now coordile

· · · ·

If there were collisions (which cause discontinuous changes in \overline{v} and therefore wall a particle "jump" from one area in phase space to another, \overline{O} I, \overline{E} , \overline{E} fields which vary appreciably within $d\overline{r}$, then continuity equation because $\partial f = \overline{v} \cdot \overline{v} f + \nabla v \cdot (\overline{F} f) = (\frac{\varepsilon}{\varepsilon} f)$ Boltzman $\overline{\delta} t + \overline{v} \cdot \overline{v} f + \nabla v \cdot (\overline{F} f) = (\frac{\varepsilon}{\varepsilon} f)_{c}$ equation \overline{F} includes only the effects of smooth Fields

Neglective These effects Then fis
determined by The collisionless Bultzman
Equation (Vlasov Equation)
$$\frac{\partial f}{\partial t} + \overline{\nabla} \cdot \overline{\partial} f + \frac{2e}{m} (\overline{E} + \overline{\nabla} \times \overline{B}) \cdot \overline{\nabla}_{V} f = 0$$

Now, Eand D are determined by Markwells equation $\overline{\nabla} \cdot \overline{E} = \frac{P_{c}}{F_{0}}$ $\overline{\nabla} \cdot \overline{E} = -\frac{\partial \overline{B}}{\partial r}$ $\overline{\nabla} \cdot \overline{B} = 0$ $\overline{\nabla} \cdot \overline{B} = 0$ $\overline{\nabla} \cdot \overline{B} = 105$ TNO = LOJ + MOG DE (treat all changes and currents explicitly - do not introduce D and H) pe = change density = ZZae d'v fa J = Zze (d' V U fa = that Current Density Sum and panticle speces Za = - 1 for electors =+1 " protono etc

· · · ·

These equations plus the Vlasov equation are The complete set of equations discribing a collisionless plasma.

Collective Description of Plasma contra fa (r, v, t) distribution function of species a Ma mass of ponticle of species a (Z = -1 for electrons) Ere Then na = Sdr fa. number density of species on na Va = Sdr v fa number Aux density where Va bulk velocity, or center-of-mass velocity of species a > Mass density of plasma as a whole: p = Z mana = Z ma Sduta (note me will use pe Frichange den > momentum density of Plasma: (mass flux durate) $p\vec{V} = \sum m_a n_a V_a = \sum m_a \int d^3 v \vec{v} f_a$ V = bulk velocity of center-orman velocities of entire plasma (in general not coincident with any of the Va) > Electric current density J = Z Zaena Va = Z Zae Sdu v fa

Kinetic Tensor Ka=Sdufa pu= Sdufama u PŪ is The direct product (NOT the dot product) of the two vectors Κ represents set of 9 quantities (Kxx Kxy Kxz) notation: Kyx Kyy Kyz Kzx Kzy Kzz) Krow column where $k_{xx} = \int d^3 v f p_y v_x$, $k_{xy} = \int d^3 v f p_x v_y$ etc... K can also bewritten $K_{ij} = \int d^3 v f p_i v_j$ $\substack{i=1,2,3\\j=1,2,3}$ (on elso i=x,y,z j=x,y,z) Note only 6 of the 9 components are independent Since $K_{ij} = K_{ji}$ (K is a symmetric tensor) unit tenia $1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = S_{ij}$ where $S_{ij} = 1$ for i = j (Kronecken delta) Physical significance of Kinetic Aeron: Let $\hat{\mu}$ = normal to some surface Then the vector $\vec{K}_{\alpha} \cdot \hat{n} = (d^3 v f_{\alpha} \cdot \vec{p} (\vec{v} \cdot \hat{n}))$ Continued ->

Kin then represents the flux density
of momentum crossing the surface
Thus, in particular with
$$\hat{n} = \hat{x}$$

Note that it
$$T$$
 is some tonon (not recessarily
symmetric) and U some reduct, then
 $T:U = (T_{xx}U_{y} + T_{xy}U_{y} + T_{zz}U_{z})^{2} + (T_{zy}U_{y} + T_{zz}U_{z})^{2}$
 $U:T = (T_{xx}U_{y} + T_{yy}U_{y} + T_{zz}U_{z})^{2} + (T_{zy}U_{x} + T_{yy}U_{y} + T_{zz}U_{z})^{2}$
 $U:T = (T_{xx}U_{y} + T_{yx}U_{y} + T_{zx}U_{z})^{2} + (T_{xz}U_{x} + T_{yz}U_{y} + T_{zz}U_{z})^{2}$
 $U:T = (T_{xy}U_{x} + T_{yy}U_{y} + T_{zy}U_{z})^{2} + (T_{xz}U_{x} + T_{yz}U_{y} + T_{zz}U_{z})^{2}$
 $U:T + T:U = T is not symmetric
Shorter votation $T:U \rightarrow T_{ij}U_{j}$ (repeated
 $U:T \rightarrow T_{ji}U_{j}$
 $if T = T_{ji}U_{j}$
 $if T = U; T_{ij}U_{j}$ (summed over i and is)
 $U:T = U; T_{ij}U_{j}$ (summed over i and is)$

also U.T. v = UiTi, v; ingeneral v.T. v = U.T. v Kinetic tensor is defined in some have of reference in the particular Ko. defined in The have of reference moving with The center-or-moss velocity of the whole plasma is called The PRESSURE Tenso Pa = Sdivfaptit where $\overline{\vec{p}}^{\star} = \overline{\vec{p}} - m_a \overline{V}$ $\overline{\vec{v}}^{\star} = \overline{\vec{v}} - \overline{V}$ (V defined on) poge 1 (from now on * will designate quantities reference) to The plasma center-of-wass framed reference) Pa. partial pressure of species a P = Z Pa = Z ma Sd³ ta v^{*} v^{*} pressure tenson og wholo plasma

· · · ·

Note that partial pressure Pa is defined with respect to The center-or-mass theme of The entire plasha, not mu curta or mass have of Species a. It is possible to define a pressure tensor in peties a with respect to the center of mass trame of species a ; but then the different Po are defined wRT different tranco and cannot be added to get pressure tensor of entire plasma. EXAMPLES of special pressure tersons (A) It $f(\bar{n}, \bar{v}, t)$ is isotropic (i.e. $f(\bar{r}, \bar{v}, t) = f(\bar{r}, \bar{v}, t)$ f(F,v,t)Then $m \int d^3v f v_x^2 = m \int d^3v f v_y^2 = m \int d^3v f U_y^2 \equiv f$ Sdr fuxuy =0 Sdr fryvz =0 ek then $\vec{P} = \begin{pmatrix} P & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{pmatrix} = \vec{P} \cdot \vec{1}$ Where P is a scalar a isotropic pressure (corresponding to the ordinary notion of press.

(B) If for how axial symmetry atom
(san) the magnetic field direction B
and it
$$B = \hat{z}$$

 $M \int d^{3}v f v_{y}^{2} = m \int d^{3}v f v_{y}^{2} \equiv P_{\perp}$
 $m \int d^{3}v f v_{y}^{2} = m \int d^{3}v f v_{y}^{2} \equiv P_{\perp}$
 $M \int d^{3}v f v_{y}^{2} = m \int d^{3}v f v_{y}^{2} \equiv P_{\perp}$
 $\int d^{3}v f v_{y}v_{y} \equiv 0$ etc
then $\widehat{P} = \begin{pmatrix} P_{\perp} & 0 & 0 \\ 0 & 0 & P_{\perp} \end{pmatrix}$ to write this in
any coordinant system (\widehat{B} not receasely along \overline{z})
 $rewrite$
 $\widehat{P} = \begin{pmatrix} P_{\perp} & 0 & 0 \\ 0 & 0 & P_{\perp} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & P_{\perp} - P_{\perp} \end{pmatrix}$
 $\equiv P_{\perp} \widehat{I} + (P_{\parallel} - P_{\perp}) \frac{\widehat{B} \widehat{P}}{\widehat{B}^{2}}$
 $n P_{\perp} = P_{\perp} S_{\perp} \sum (P_{\parallel} - P_{\perp}) \frac{\widehat{B} \widehat{P}}{\widehat{B}^{2}}$
 $note P_{\perp} V_{\perp} = \sum_{p_{\perp} v_{\perp}} \sum_{p_{\perp} v_{\perp}} \sum_{p_{\perp} v_{\perp}} p_{\text{system}} dvalan$
 $i \cdot P_{\perp} = \int d^{3}v f \frac{1}{2} P_{\perp} v_{\perp} \sum_{p_{\perp}} P_{\perp} = P_{\text{equal dialan}}$
 $P_{\perp} = P_{\text{add}} \int \frac{1}{2} P_{\perp} = P_{\text{equal dialan}}$

[0

5 - -- - -- -

۰.

(C) for a Maxwellian distribution $\tilde{P} = nkT \tilde{1}$

|(

Next: Summation of Single ponticle quiding renter motions to obtain electrical current.