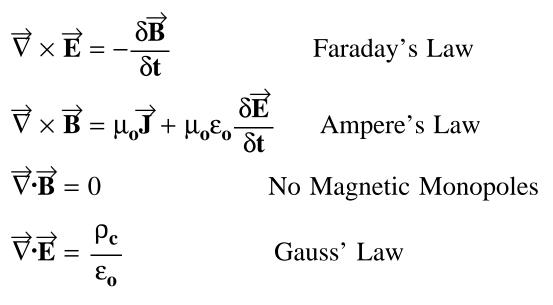
ESS515/415 E&M Review

Maxwell's Equations (MKS)



Source Terms:

 $\rho_{c} = ChargeDensity = \frac{\sum_{k=1}^{N} q_{k}}{\Delta V} = e(n_{+}-n_{-})2 \text{ species}$ (N is number of charges in ΔV volume)

$$\vec{\mathbf{J}}$$
 = Current Density = $\frac{\sum_{k=1}^{N} q_k \vec{\mathbf{v}}_k}{\Delta \mathbf{V}} = \sum_{\mathbf{s}} n_{\mathbf{s}} \mathbf{e}_{\mathbf{s}} \vec{\mathbf{v}}_{\mathbf{s}}$

References: Parks: Chapter 2 Jackson: Classical Electrodynamics Lorraine and Corson: Electromagnetic Fields and Waves $\vec{B} = \boldsymbol{m}_{o}\vec{H}$ in plasma $\boldsymbol{m} \rightarrow \boldsymbol{m}_{o}$ = permeability of free space $\vec{D} = \boldsymbol{e}_{o}\vec{E}$ where $\boldsymbol{e} \Rightarrow \boldsymbol{e}_{o}$ = permitivity of free space

$$\boldsymbol{m}_{o} \cong 4\boldsymbol{p} \times 10^{7} \cong 1.26 \times 10^{-6}$$
 henry/m
 $\boldsymbol{e}_{o} \cong 8.85 \times 10^{-12}$ farad/m

Speed of Light $c = 1/\sqrt{m_o e_o}$ in free space

Lorentz force $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ where q = Ze

Coulomb's Law

$$\vec{E}(\vec{r}) = \frac{1}{4pe_o} \sum_{i}^{N} q_i \frac{\vec{r} - \vec{r}_i}{|\vec{r} - \vec{r}_i|^3} \quad or \quad \vec{E}(\vec{r}) = \frac{1}{4pe_o} \int_{V}^{N} \frac{\vec{r} - \vec{r'}}{|\vec{r} - \vec{r'}|^3} \mathbf{r}(r') d^3r$$

Sum over point charges

integral over volume charge density

Biot-Savart Law $\vec{B}(\vec{r}) = \frac{\mathbf{m}_{o}}{4\mathbf{p}} I_{1} \oint \frac{d\vec{l}_{1} \times |\vec{r} - \vec{r}_{1}|}{|\vec{r} - \vec{r}_{1}|^{3}}$ Field at \vec{r} due to current loop I_{1} Note both \vec{E} and \vec{B} have $\frac{1}{r^{2}}$ dependence to elemental current $d\vec{l}$ or elemental charge $d\mathbf{r} = \mathbf{r}d^{3}r$ Lorentz force on a point charge \rightarrow Force/volume

for charge density $\mathbf{r}_c = e(n_+ - n_-)$ for 2 species, or $\mathbf{r}_c = \sum_s Z_s e_s n_s$ for s species

(where s=electrons, ion1, ion2, etc, Z is net ion charge, e is + or - one unit of charge)

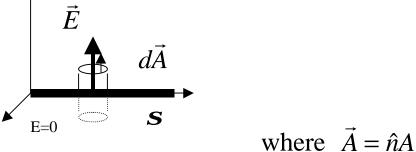
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \Rightarrow \vec{F} / vol = \mathbf{r}_c(\vec{E} + \vec{v} \times \vec{B}) = \mathbf{r}_c \vec{E} + \mathbf{r}_c \vec{v} \times \vec{B}$$
$$= \mathbf{r}_c \vec{E} + ne\vec{v} \times \vec{B} \text{ (for single species, or 1-fluid theory)}$$
In general: $\vec{F} / vol = \mathbf{r}_c \vec{E} + \vec{j} \times \vec{B}$

Divergence Theorem $\int \nabla \cdot \vec{A} d^3 r = \oint \vec{A} \cdot \hat{n} ds$

Example: \vec{E} field next to a charged conductor with surface charge \boldsymbol{s} :

Use Gauss' law
$$\int \nabla \cdot \vec{E} d^3 r = \int \frac{r d^3 r}{e_o} = \int \frac{s d^2 r}{e_o}$$

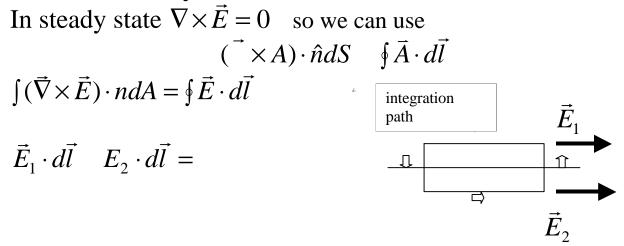
 $\oint \vec{E} \cdot \hat{n} ds = \vec{E} \cdot \vec{A} = \frac{\acute{0}}{\mathring{a}_o} A \therefore \vec{E} = \frac{\acute{0}}{\mathring{a}_o} \hat{n}$ (normal to surface A)



3

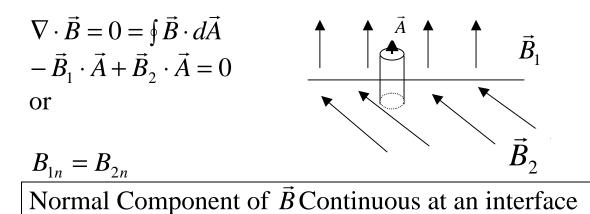
Steady State Solutions for \vec{E} Faraday: $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \approx 0 \equiv \text{steady state}$ $\Rightarrow \vec{E}$ is derivable from a potential since $\nabla \times \nabla \vec{A} \equiv 0$ So, let $\vec{E} = -\nabla V$ where V = potential (scalar field),From Gauss' Law $\nabla \cdot \vec{E} = \frac{1}{e_o} \Rightarrow \nabla^2 V = -\frac{r}{e_o}$ Poisson's Equation

E&M Boundary Conditions:



So $_{1t} = E_{2t}$ Tangential Component of \vec{E} is continuous across a boundary in the steady state

Magnetic Field at boundary



Conservation of charge

Look at $\nabla \times \vec{B} = \mathbf{m}_{o}\vec{J} + \mathbf{m}_{o}\mathbf{e}_{o}\frac{\partial \vec{E}}{\partial t}$ take the divergence, remembering that $\nabla \cdot (\nabla \times \vec{A}) \equiv 0$ $0 = \mathbf{m}_{o}\nabla \cdot \vec{J} + \mathbf{m}_{o}\mathbf{e}_{o}\frac{\partial \nabla \cdot \vec{E}}{\partial t}$, but $\nabla \cdot \vec{E} = \frac{\mathbf{r}}{\mathbf{e}_{o}}$, so $0 = \nabla \cdot \vec{J} + \frac{\partial \mathbf{r}}{\partial t}$ Conservation of Charge

Note that in the steady state $\nabla \cdot \vec{J} = 0$ which is analogous to Kirchoff's Law $\sum I_j = 0$

Ohm's law

Simple form: $\vec{J} = \boldsymbol{s}\vec{E}$ where \boldsymbol{s} is the conductivity In the steady state $\nabla \cdot J = 0 \implies \nabla \cdot (\boldsymbol{s}\vec{E}) = 0$ $so \nabla \boldsymbol{s} \cdot \vec{E} + \boldsymbol{s}(\nabla \cdot \vec{E}) = 0$ gradient of conductivity $\widehat{\uparrow} = \boldsymbol{r}/\boldsymbol{e}_o$ Use this to determine \vec{E} given \boldsymbol{s} and \boldsymbol{r}

s (conductivity) depends on the medium properties. In a plasma **s** is often very large $\mathbf{s} \Rightarrow \infty$. (We will derive **s** for a plasma)

Energy density

 $W = \frac{1}{2} \int \mathbf{r} V d^3 r$ (the factor of 2 is to avoid counting charges twice, See L&C p. 72)

From Poisson's Equation $\mathbf{r} = -\mathbf{e}_o \nabla^2 V$ $W = -\mathbf{e}_o / 2 \int V \nabla^2 V d^3 r$ and use the vector identity: $\vec{\nabla} \cdot (f\vec{A}) = f (\nabla \cdot A) + \vec{A} \cdot \nabla f$ along with the Divergence theorem to get

 $W = \frac{\boldsymbol{e}_o}{2} \int E^2 d^3 r \qquad \text{(continued next page ...)}$

Energy Density (continued)

so
$$\mathbf{e}_{E} = \frac{\mathbf{e}_{o}E^{2}}{2}$$
 is the electric field energy density
Similarly for B-field
 $\mathbf{e}_{B} = \frac{B^{2}}{2m_{o}}$
 $\mathbf{e}_{EM} = \frac{\mathbf{e}_{o}E^{2}}{2} + \frac{B^{2}}{2m_{o}}$
So we have
Electromagnetic energy Density

Lenz' Law $\int \nabla \times \vec{E} \cdot d\vec{A} = -\frac{\partial}{\partial t} \int \vec{B} \cdot dA$ from Stoke's Theorem: $\oint \vec{E} \cdot dl = -\frac{\partial}{\partial t} \Phi$ were Φ is the magnetic flux through the surface and the left hand side is the E.M.F. $1 \in \vec{A} = -\frac{\partial}{\partial t} A$

$$\vec{J} = \mathbf{s}\vec{E}_{\text{SO}} \frac{1}{\mathbf{s}} \oint J \cdot d\vec{l} = -\frac{\partial}{\partial t} \Phi$$

Current flows in the loop to balance any change in magnetic flux through the loop. This is very useful in plasma physics from microscopic to macroscopic dimensions.