Lorentz Transform of $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{B}}$ fields

S^{\prime} coordinate system moving along $\hat{\mathrm{x}}$ relative to S at speed v .
$\overrightarrow{\mathrm{E}}^{\prime}=\overrightarrow{\mathrm{E}}+\gamma \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}}+\frac{\gamma-1}{v^{2}} \vec{v} \times(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{v}})$
$\overrightarrow{\mathrm{E}}_{| |}^{\prime}=\overrightarrow{\mathrm{E}}_{| |} \quad$ while $\overrightarrow{\mathrm{E}}_{\text {perp }}=\gamma\left(\overrightarrow{\mathrm{E}}_{\text {perp }}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}}\right)$ (note || with respect to motion)
$\overrightarrow{\mathrm{B}}_{| |}^{\prime}=\overrightarrow{\mathrm{B}}_{| |}$, while $\overrightarrow{\mathrm{B}}_{\text {perp }}^{\prime}=\gamma\left(\overrightarrow{\mathrm{B}}_{\text {perp }}-\frac{1}{\mathrm{c}^{2}} \overrightarrow{\times} \times \vec{E}\right)$
where $\gamma=\frac{1}{\sqrt{\left(1-v^{2} / c^{2}\right)}}$ and $c=$ speed of light
Note: $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{B}}$ are very different, even when γ--> 1 (i.e. nonrelavistic speeds).

Example --> measuring $\overrightarrow{\mathrm{E}}_{\text {perp }}$ in ionosphere.

Magneti Fields

$$
\nabla \times B=\mu_{0} A+\mu_{0} \epsilon_{0} \xrightarrow{\partial \underline{E}}
$$

Maxwell

- insteady state

$$
\begin{aligned}
& \nabla \times B=0 \quad \Rightarrow \quad B=-\nabla \psi \\
& \nabla \times(\nabla \psi) \equiv 0 \\
& \bar{\nabla} \cdot \bar{B}=0 \\
& -\nabla \cdot \nabla \psi=0=-\nabla^{2} \psi
\end{aligned}
$$

$$
\Rightarrow \nabla^{2} \psi=0 \quad \text { scalar potentias }
$$

satisfies laplare's Egth.
from elcctrostatios, should know solution in 3-D togiven by $\psi<\frac{1}{r^{2}}$

In Space
Show Solar corora, photosphere examples inteplanetan Frelds inteplanetam Frelds
Eantn's dipole field Morquetosphenic magreti Field comfijuatio

For Earths dipre field

$$
\psi=-\frac{\mu_{0}}{4 \pi} \vec{m} \cdot \underbrace{\nabla \frac{1}{r}}
$$

gradient in spherical coonds <see sheet passed out it class, day)

$$
\begin{array}{ll}
=-\frac{\mu_{0}}{4 \pi} M \frac{M \cos \theta}{r^{2}} & \theta=\text { colatitude } \\
=-\frac{\mu_{0}}{4 \pi} m \frac{\sin \lambda}{r^{2}} & \lambda=\text { batitude }
\end{array}
$$

 south pole r Earth

$$
\begin{aligned}
& B_{r}=-\frac{\partial \psi}{\partial r}=-\frac{\mu_{0} M}{2 \pi} \frac{\sin \lambda}{r^{3}} \\
& B_{\lambda}=-\frac{1}{r} \frac{2 \psi}{\partial \lambda}=-\frac{\mu_{0} M}{4 \pi} \frac{\cos \lambda}{r^{3}} \\
& B_{\phi}=-\frac{1}{r} \frac{1}{\cos \lambda} \frac{2 \psi}{2 \phi}=0
\end{aligned}
$$

at equator $\lambda=0 \quad B_{r}=0 \quad B=B_{\lambda} \hat{z}=\frac{\mu_{0} M}{4 \pi r^{3}}$
B at $1 \operatorname{Re}$ at equator $=B_{\text {eq }}$

$$
B_{\text {eq }}=\frac{\mu_{0} m}{4 \pi R_{e}^{3}} \quad \text { so }|M|=\frac{4 \pi R_{e}^{3} B_{\text {eq }}}{\mu_{0}}
$$

at $r>\operatorname{Re}$ at $\lambda=0$

$$
|B|=\frac{\mu_{0} M}{4 \pi r^{3}}=B_{\text {eq }}\left(\frac{R_{e}}{r}\right)^{3}
$$

Beg 31,000n T Gauss $=10^{-4}$ or tesla 0.31 Gauss

$$
\begin{aligned}
|B|= & \sqrt{B_{r}^{2}+B_{x}^{2}+B_{\phi}^{2}} \\
= & \frac{\mu_{0} m}{4 \pi r^{3}}\left(1+3 \sin ^{2} \lambda\right)^{1 / 2} \\
& \propto \frac{1}{r^{3}} \quad \begin{array}{l}
\text { dipole field falls } \\
\quad \text { of l as } \frac{1}{r^{3}}
\end{array}
\end{aligned}
$$

Equation for a field line

$$
\begin{aligned}
& \overline{d l} \times \bar{B}=0 \quad \text { definition } \\
& \frac{d r}{B_{r}}=\frac{r d \theta}{B_{\theta}}=\frac{r \sin \theta d \phi}{B_{\phi}}
\end{aligned}
$$

Ha flux tube
$d \phi=0 \quad$ Plugin for B_{r}, B_{o}
integration
Gins $\phi=\phi_{0}$ and $r=r_{0} \cos ^{2} \lambda$
equation for a field lime
Label for dipre field lives based on equator crossing distance

$$
r=L_{\phi} R_{e} \cos ^{2} \lambda
$$

defines the "L "shell
(used in pantile dynamos in moire to sphere

Organization of text
Ch. $3 \rightarrow E, B$ fields with No pantiles $4 \rightarrow \cdots \quad \cdots \quad 1$ particle $5 \rightarrow$ collective effects of many particles

