## Lorentz Transform of $\overrightarrow{E}$ and $\overrightarrow{B}$ fields

S' coordinate system moving along  $\hat{x}$  relative to S at speed v.

$$\vec{E}' = \vec{E} + \gamma \vec{v} \times \vec{B} + \frac{\gamma - 1}{v^2} \vec{v} \times (\vec{E} \times \vec{v})$$
  
$$\vec{E}'_{|||} = \vec{E}_{|||} \quad \text{while} \quad \vec{E}_{\text{perp}} = \gamma (\vec{E}_{\text{perp}} + \vec{v} \times \vec{B})$$
  
(note || with respect to motion)

$$\vec{B}'_{||} = \vec{B}_{|||}$$
, while  $\vec{B}'_{perp} = \gamma (\vec{B}_{perp} - \frac{1}{c^2} \vec{v} \times \vec{E})$ 

where  $\gamma = \frac{1}{\sqrt{(1 - v^2/c^2)}}$  and c = speed of light Note:  $\vec{E}$  and  $\vec{B}$  are very different, even when  $\gamma \rightarrow 1$ (i.e. nonrelavistic speeds). Example  $\rightarrow$  measuring  $\vec{E}_{perp}$  in ionosphere.

Magnetic Fields  

$$\nabla xB = most + m.60 \frac{2}{5t}$$
 Mora well  
 $\Rightarrow 0 \text{ in vacuum}$   
 $\nabla xB = 0 \Rightarrow B = -\nabla \gamma$   
 $\nabla x (\nabla \gamma) = 0$   
 $\overline{\nabla} \cdot \overline{S} = 0$  Maxwell  
 $-\overline{\nabla} \cdot \nabla \gamma = 0 = -\nabla^2 \gamma$   
 $\Rightarrow \nabla^2 \gamma = 0$  Scalar potenticol  
satisfies Captare's Egtn.  
from electrostatics, should know solution in 3-D  
 $\overline{\nabla} \cdot \overline{\gamma} = 0$   $\gamma \neq 1$ 

IN Space LN spore Solar corror, photosphere interplanetary Freedo Earth's dipolo Field Mogretospheric Mogretic Field Configuration

For Earth's dipolo field  $\gamma = -\frac{m}{4\pi} \overline{m} \cdot \nabla_r^2$ gradient in spherical coords (see sheet passed out in class, day 3) - Mo M coso 4TT TZ O=colatitude  $= -\frac{\mu_0}{4\pi} M \frac{\sin\lambda}{r^2}$ 7 = Batilule North 0 South polo or Earth  $B_r = -\frac{2\gamma}{3r} = -\frac{\mu_0 M \sin \lambda}{2\pi}$  $B_{\chi} = -\frac{1}{r}\frac{2\gamma}{2\lambda} = -\frac{\omega M}{4\pi}\frac{\cos\lambda}{r^{3}}$  $B_{\phi} = -\frac{1}{F} \frac{1}{\cos \lambda} \frac{2\gamma}{2d} = 0$  $B_r = 0$   $B = B_2 = \frac{\mu_0 M}{4\pi r^3}$ at equator  $\lambda = 0$ 



at r>Re at n=0  $B = \frac{\mu_0 M}{4\pi r^3} = B_{eq} \left(\frac{R_e}{r}\right)^3$ Beg 31,000 nT on 0.31 Gauss 1 Gauss = 10 tesla  $|B| = \sqrt{B_r^2 + B_\chi^2 + B_\phi^2}$  $= \frac{h_0 M}{M m_{max}^3} \left( 1 t 3 \sin^2 \lambda \right)^{1/2}$ ~ to dipole field falls

Equation for a field line  $\frac{dn}{Br} = \frac{n d\theta}{B \phi} = \frac{r \sin \theta d\theta}{B \phi}$ dl dq=0 plugin for Br, Bo

Integration Give  $\phi = \phi_0$  and  $r = r_0 \cos \lambda$ equation for a field line-Label for dipres field lines based on equator crossing distance r = LRe COS ) LRe l defines The "L" shell Re (Used in particle dynamics in magne to sphere Organization of text Ch. 3 - DE, B fields with No particles 4 - DE, B fields with No particles " I panticlia -> collective effect of many 5

Particles