GPHYS 515/415 Problem set 1

Due Wednesday Jan 15, 2014

Read Parks Chapters 2 and 3

Problems:

1. Calculate the average velocity, average speed and average energy of a system of particles in equilibrium with distribution function given by $\mathrm{f}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)=\mathrm{A} \exp \left(-E / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$ where E is the kinetic plus potential energy $E=1 / 2 \mathrm{~m} \mathbf{v}^{2}+\Phi$, if
a) $\Phi(x, y, z)=0$, and
b) $\Phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=\operatorname{mgz}$ (g is the acceleration of gravity at $1 \mathrm{R}_{\mathrm{E}}$)

Note $v^{2}=v_{x}{ }^{2}+v_{y}{ }^{2}+v_{z}{ }^{2}$ and A is the normalization $\left(m / 2 \pi k_{B} T\right)^{3 / 2}, k_{B}$ is the Boltzman constant and T is the temperature
2. Determine numerical values for the average velocity, average speed and average energy in problem 1a) if
a) the particles are electrons, and if
b) the particles are oxygen ions $\left(\mathrm{O}^{+}\right)$for $\mathrm{T}=0^{\circ} \mathrm{K}, \mathrm{T}=300^{\circ} \mathrm{K}\left(86^{\circ} \mathrm{F}\right)$, and $\mathrm{T}=1000^{\circ} \mathrm{K}$. Express the values of average energy both in joules and in electron volts ($1 \mathrm{eV}=1$ Volt times $1.6 \times 10-19$ Coul.)
3. Parks Question 5, p. 49 (about a flowing Maxwellian)
4. For a uniform Maxwellian distribuition find the fraction of the particle density for which particles have speeds greater than the average speed. Compute the average speed of those particles which have average speed greater than the average speed of the total system.

