ESS 415/515 Problem set 6 Due Friday Feb 14

Read Parks Chapter 5.

1. Parks Chapter 5 prob 2, page 208.

2. An isothermal plasma with temperature T is confined between the planes $x = \pm a$ in a magnetic field **B** = B**z**_{hat}. The density distribution is given by $n = n_0(1 - (\sin(\pi x/2a))^2)$.

a. **Derive** an expression for the magnetization current density \mathbf{j}_{M} as a function of x.

b. **Draw** a diagram showing the density profile and the direction of j_M on both sides of the midplane if **B** is out of the paper.

c. Evaluate j_M at x=a/2 if Bo = 0.4×10⁻⁴nT, kBT_e = 3eV and a=100 km (e.g. in the ionosphere).

3. **Determine** the electron partial pressure tensor $\overleftrightarrow{\mathbf{p}}_{\mathbf{z}}$ components for an isotropic

plasma with $\mathbf{B} = B\mathbf{z}_{hat}$ with electron temperatures of $T_{e\parallel} = 1$ keV, $T_{e\perp} = 10$ keV and density ne = 104 cm-3. Show specifically that the off diagonal elements are zero.

4. A cylindrically symmetric plasma column in a uniform B field has $n(r) = noexp(-r2/ro^2)$ and $n_i = n_e = n_oexp(e\phi/KTe)$

(a) Show that the $V_B = \frac{B^2}{B^2}$ drift and the electron Diamagnetic drift V_{De} are equal and

opposite, where
$$V_{De} \equiv -\frac{\nabla P \times \vec{B}}{qnB^2}$$

(b) **Show** that the plasma rotates as a solid body.

(c) In the frame which rotates with velocity VE, some plasma waves (drift waves) propagate with a phase velocity $v\phi = 0.5V_{De}$. What is v_{ϕ} in the lab frame? On a diagram of the r - θ plane, **draw** arrows indicating the relative magnitudes and directions of V_B, V_{De}, and V_{ϕ} in the lab frame.