1 Seismic and geodetic constraints on Cascadia slow slip

- 2 Aaron G. Wech¹, Kenneth C. Creager¹, & Timothy I. Melbourne²
- 3 ¹University of Washington, Department of Earth and Space Science, Box 351310, Seattle,
- 4 WA, 98195, USA.
- ⁵ ²Central Washington University, Department of Geological Sciences, Ellensburg, WA,
- 6 *98926, USA.*

7 Abstract: Automatically detected and located tremor epicenters from episodic tremor 8 and slip (ETS) episodes in northern Cascadia provide a high-resolution map of 9 Washington's slow slip region. Thousands of epicenters from each of the past four ETS 10 events from 2004—2008 provide detailed map-view constraints that correlate with 11 geodetic estimates of the simultaneous slow slip activity. Analysis of the latest 15-month 12 inter-ETS period also reveals ageodetic tremor activity similar both in duration and extent to ETS tremor. Epicenters from both ETS and inter-ETS tremor are bounded between the 13 14 30—45 km plate interface depth contours and locate approximately 75 km east of 15 previous estimates of the locked portion of the subducting Juan de Fuca plate. Based on 16 the high spatio-temporal correlation between tremor and slip, the tremor duration and slip 17 magnitude relationship and the similarity in map view and duration of ETS and inter-ETS 18 tremor, we suggest that the well-resolved, sharp updip edge of tremor epicenters reflects 19 a change in plate interface coupling properties. This region updip of the tremor epicenter 20 boundary likely accumulates stress with the potential for coseismic shear failure during a 21 megathrust earthquake. Alternatively, slip in this region could be accommodated by slow 22 slip events with sufficiently long recurrence intervals that none have been detected during 23 the past 10 years of GPS observations.

24 **1. Introduction**

25 The region of Cascadia extending from northern California to northern Vancouver Island is tectonically characterized by the subduction of the oceanic Juan de Fuca plate 26 27 beneath the continental North American plate. Geodetically inferred long-term 28 deformation suggests strain accumulation in the overriding crust in response to the steady 29 convergence of the subducting slab [*McCaffrey et al.*, 2008]. This deformation results 30 from interseismic coupling along an offshore portion of the subducting plate interface, 31 which is known to have exhibited multiple incidents of shear failure in the form of 32 megathrust earthquakes up to magnitude 9 [Satake et al., 2003; Goldfinger et al., 2003]. 33 Somewhere downdip of this seismogenic coupling and some zone of transition, however, 34 the pressure, temperature, composition, and/or fluid environment at the plate interface 35 enables the oceanic plate to freely subduct without any seismogenic coupling to the 36 overriding continent. It is poorly understood, though, how and where this transition is 37 realized. As a spatially constrainable mechanism for stable strain release, episodic tremor 38 and slip (ETS) provides information about this transition region.

39 ETS in northern Cascadia is characterized by the repeated coincidence of 40 seismically observed non-volcanic tremor activity [Obara, 2002] and geodetically 41 observed slow slip [Dragert et al., 2001] every 14 ± 2 months [Miller et al., 2002; Rogers 42 and Dragert, 2003]. GPS observations provide evidence of periodic reversals from the 43 ambient direction of relative plate motion suggesting fault slip along the subducting plate 44 interface. Coincident with these innocuous events, seismically observed tremor is 45 observed to correlate both spatially and temporally [Rogers and Dragert, 2003]. These 46 tremors are characterized by a lack of high frequency content relative to normal

47 earthquakes of similar size [*Obara*, 2002], which suggests that slip results from a slow,
48 low stress-drop process, probably associated with high pore fluid pressure [*Kao et al.*,
49 2005].

50 Each episode, lasting days to weeks, is observed to yield 2 - 3 cm [Szeliga et al., 51 2008] of the 4cm/yr north-easterly convergence [Wilson, 2003] of the subducting Juan de 52 Fuca plate beneath North America. These innocuous events reduce the moment available 53 for high-stress-drop failure in the slow slip region and may hold the key for better 54 understanding the spatial and temporal dynamics of Cascadia subduction. Tighter 55 constraints on the slow slip source region could facilitate better spatial estimates of the 56 freely slipping, transition, and locked segments of the subducting Juan de Fuca plate 57 relative to the dense urban centers along the fault margin. And, because slow slip 58 transfers stress to the seismogenic portion of the plate interface, [e.g. Rogers and 59 Dragert, 2003], monitoring transient events may serve in forecasting the threat of a 60 megathrust earthquake by inferring the temporal and spatial variations in the loading of 61 the seismogenic zone.

62 Increased GPS instrumentation allows for improved imagery of the slow slip 63 region from geodetic inversions. Still, required smoothing limits the resolution of these 64 inversions. As a result, tremor epicenters promise to be the best hope for a high-65 resolution map of the slow slip region. However, while the recurring spatial and temporal 66 correlation suggests a close link between these two separate phenomena, it does not 67 require their descriptions to be synonyms for the same source process. Nevertheless, in 68 addition to the spatio-temporal correlation between tremor and slow slip [Rogers and 69 Dragert, 2003], evidence from low-frequency earthquakes comprising tremor in Japan

[Shelly et al., 2007] and polarization analysis of tremor in Cascadia [Wech and Creager,
2007] suggests tremor and slow slip are manifestations of the same shear process.
Furthermore, recent tremor and slow slip evidence suggest tremor may serve as a reliable
proxy for slow slip activity [Aguiar et al., submitted; Hiramatsu et al., 2008]. Regardless
of the ongoing discussion of Cascadia tremor depth and mechanism, if this latter
relationship between tremor and slip holds, tremor epicenters provide a high-resolution
map of the slow slip region.

77 Though macroscopic spatial and temporal correlations have been identified 78 [Rogers and Dragert, 2003; Szeliga et al., 2008; McCausland et al., 2005], a detailed 79 comparison has not been reported due to the inherent difficulties in locating tremor. 80 Tremor has been successfully located in this region [Kao et al., 2005; McCausland et al., 81 2005; Kao et al., 2007], but the high costs in computation time or labor associated with 82 these techniques have made producing a complete tremor catalog difficult. Using results 83 from a tremor autodetection and autolocation method [Wech and Creager, submitted], we 84 present a complete catalog of thousands of tremor epicenters from the July 2004, 85 September 2005, January 2007 and May 2008 ETS episodes and the February 2007— 86 April 2008 inter-ETS time window. These results strengthen the correlation between slow 87 slip and tremor by creating a high-resolution image of the slow slip region while 88 providing evidence of additional stable sliding outside ETS episodes that may bleed off 89 the remaining strain accumulation in the slow slip region.

90 2. Seismic Data and Methods

91 Tremor epicenters were automatically detected and located by employing a cross92 correlation method to generate potential epicenters before using the resulting epicenters

93 to detect tremor [*Wech and Creager*, submitted]. By automatically analyzing network 94 coherence through epicentral reliability and spatial repeatability, this method 95 simultaneously locates and obviates the labor-intensive human efforts in detecting 96 tremor. Based on data availability and quality, each ETS episode was analyzed with 97 slightly different data sets. Using data from Pacific Northwest Seismic Network (PNSN) 98 (2004-2008 ETS), Pacific Geoscience Centre (PGC) (2008 ETS), and EarthScope/Plate 99 Boundary Observatory (PBO) borehole seismometers (2005-2008 ETS), and Earthscope 100 CAFE seismometers (2007 ETS), we choose a subnet comprising about 20 stations in 101 western Washington and southern Vancouver Island based on geographic distribution and 102 tremor signal-to-noise ratios.

103 Locations are estimated with a cross-correlation method that maximizes tremor 104 signal coherency among seismic stations. For a given 5-minute time window of vertical-105 component data, we bandpass filter from 1-8 Hz, create envelope functions, low-pass 106 filter at 0.1 Hz, and decimate to 1 Hz. We obtain centroid location estimates by cross-107 correlating all station pairs and performing a 3-D grid search over potential source-108 location S-wave lag times that optimize the cross correlations [Wech and Creager, 109 submitted]. Using bootstrap error analysis and comparisons with earthquake locations we 110 estimate that our epicentral errors are up to 8 km with larger depth errors. 111 3. Geodetic methods

112 The growing density of GPS stations allows the distribution of slip from each 113 transient to be formally estimated from GPS deformation [*Szeliga et al.*, 2008]. In this 114 formulation, we specify the plate boundary surface by linearly interpolating between 115 depth contours specified by Fluck et al. [1997]. This surface is then divided into variable sized subfaults whose typical dimensions are around 25 km along strike and 15 km down
dip. Exact subfault dimensions vary with geometry. Three dimensional geometry
dominated by the bend in the subducting plate mandates that each subfault be
independently specified with a unique local strike, dip and rake, in addition to its alongstrike and downdip length.

121 Inverting for slip amounts to solving $Gs = d + \varepsilon$ where G is a Jacobian matrix of 122 Green's functions relating surface displacement to a unit of pure thrust fault slip, s is the 123 vector of dip-slip slip at each subfault, d is the observed vector of north, east and vertical slow-slip event offsets, weighted by their formal uncertainties, for each GPS station 124 125 recording an event (Table 1), and ε is the error. The number of unknown model 126 parameters greatly exceeds the number of observations so additional information is 127 required to reduce the nonuniqueness and stabilize the inversion. We apply both 128 positivity and solution smoothness constraints in our inversion process [Szeliga et al., 129 2008].

130 **3. ETS tremor descriptions**

For each ETS episode only those epicenters with error estimates under 5 km that cluster in space and time are determined to represent tremor [*Wech and Creager*, submitted]. Epicenters are color-coded by time to show migration and are only tracked up to the southern tip of Vancouver Island (Figure 1), after which they are beyond our network coverage. Time scales vary according to the beginning and end of each event. Despite variable station coverage, each episode yielded similar numbers of hours of tremor and number of epicenters (Table 1).

138 For the July 2004 ETS we detect 174 hours of tremor and 2,774 epicenters.

Tremor began on July 8th in the eastern Strait of Juan de Fuca. Averaging 11 km/day, tremor bursts spread west over the next 7 days throughout the straits to just south of southern Vancouver Island before splitting and heading southeast (ending on July 17th) and northwest (ending about September 23rd) with a late burst occurring in the northern Olvmpic Peninsula on July 25th (Figure 1).

For the September 2005 ETS we detect 197 hours of tremor and 3,118 epicenters. Tremor began on September 3rd (Figure 1), east of Vancouver Island. During the next ten days at a rate of 12 km/day, tremor bursts migrated to the southwest, stalling beneath the northern shore of the Olympic Peninsula before bifurcating and heading southeast (ending on September 15th) and northwest (ending about September 30th) as seen by

149 Wech and Creager [2007].

For the January 2007 ETS we detect 200 hours of tremor and 3,061 epicenters. Migrating at 9 km/day from central Puget Sound to Vancouver Island from January 14th– 31st and then North beyond our network's border, with a late burst occurring in southern Puget Sound on January 25th–31st (Figure 1).

For the May 2008 ETS we detect 227 hours of tremor and 3,677 epicenters migrating from central Puget Sound to Vancouver Island from May 4th-24th at 13 km/day and then North beyond our network's border, with a late burst occurring in southern Puget Sound on May 15th-17th (Figure 1).

Tremor migration varies among each episode, but common patterns can be seen between the 2004 and 2005 episodes. In each case, tremor began further downdip prior to an updip, southwest migration that resulted in bifurcation and along strike migration to the north and south. This behavior is markedly different than the migrations of the 2007

162 and 2008 tremor episodes. Though latitudinally offset by about 20 km, in each of these 163 latter cases tremor initiated in the south Puget Sound region, then migrated northward along strike with a late burst reoccurring in the southern Puget Sound. Overall, each 164 165 tremor pattern is approximately 20-25 km wide where the plate interface is 30-45 km 166 deep (Figure 1) and migrated at an average of 10-13 km/day (Table 1). The 2007 tremor 167 pattern is notably narrower, which probably more accurately represents true map-view 168 constraints due to the higher data quality of the Earthscope CAFE data set. Epicenters 169 from each episode have a well-resolved sharp updip boundary about 75 km east of 170 current estimates of the downdip edge of the locked zone [McCaffrey et al., 2007] (Figure 171 1).

172 **4. Tremor and slip**

173 Equipped with a complete catalog of tremor epicenters for each ETS episode, we 174 can compare the tremor source region with slow slip inversions. Combining these new 175 ETS geodetic inversion with complete tremor descriptions enables detailed spatial 176 comparisons between tremor and slip. Figure 2 plots the contours of all tremor epicenters 177 gridded into counts/0.1x0.1 degree bins for individual ETS events and compares these 178 against the results of the slip inversions. For each of the 4 ETS episodes, tremor and slow 179 slip are independently observed to occur in the same areas, with regions of high tremor 180 density spatially correlating extremely well with regions of concentrated slow slip 181 (Figure 2). This comparison confirms previous large-scale spatial correlations in 182 Cascadia, but the increased number of tremor epicenters from a complete catalog 183 confines ETS tremor to the slow slip region while strengthening the case for a close 184 relationship between the two phenomena.

185 Figure 3 shows contours from the combination of all tremor epicenters from the 186 past 4 ETS episodes and compares this ETS tremor map against the slow-slip sum from 187 the same 4 ETS episodes. This compilation highlights two things. First, unsurprisingly, 188 there is a very strong spatial correlation between the regions of high tremor activity and 189 increased slow slip. Second, the tremor density contours show a very sharp updip 190 boundary in the middle of the Olympic Peninsula. This updip edge is seen more easily 191 with tremor than slip, likely because of the smoothing required for geodetic inversions. 192 Given the varying seismic subnets from episode to episode and the station coverage 193 updip of this edge, the resulting edge is likely a real feature that serves as an ETS 194 boundary that may reflect some change in plate interface conditions. And, because of the 195 uncertainties in tremor epicenters, this boundary may be even sharper than indicated.

196 **5. Inter-ETS Tremor**

197 Monitoring inter-ETS tremor by hand has shown that there are many bursts of 198 tremor with no associated geodetic signal [McCausland et al., 2005]; however, there has 199 been very little location work and no complete catalog has yet characterized an inter-ETS 200 time window. Our automated tremor detection and location algorithm afforded the 201 opportunity to perform a detailed tremor study of one inter-ETS period. During the 15 202 months between the January 2007 and May 2008 ETS episodes, we identify and locate 203 numerous innocuous tremor bursts [Wech and Creager, submitted]. We keep the tremor 204 detections with bootstrap errors less than 5 km and that cluster in space and time to avoid noise and earthquakes. We obtain 182 hours of inter-ETS tremor and 2,717 epicenters 205 206 from the February 2007—April 2008 inter-ETS period (Figure 4). These tremors occur in 207 the slow slip region, spatially compliment ETS tremor (Figure 4), and account for

208	approximately 45% of the tremor detected during the entire ETS cycle [Wech and
209	Creager, submitted]. The peak of the distribution of interETS tremor is slightly downdip
210	of the peaks during ETS.
211	6. Implications
212	With our tremor catalog we have provided a detailed description of tremor
213	activity in space and time during each of the last 4 ETS episodes and shown new
214	complete evidence of a tight spatial correlation between episodic tremor and slip.
215	Comparing the spatial extent of the tremor source region with slip inversions strengthens
216	the correlation between tremor and slip, and taking this correlation a step further
217	highlights the utility of having a detailed description of tremor.
218	The tremor and slip spatial correlations of each individual ETS episode and their
219	total accumulations provide strong evidence that tremor can be used to monitor slip.
220	Alone this evidence does not establish a one to one correlation between the two
221	phenomena. However, when put together with previous tremor and slip results from
222	Japan and Cascadia, we argue that our tremor epicenters monitor and map slow slip, even
223	when the amount of slip is below the current GPS detection levels. Evidence from the
224	two most studied ETS regions, southwest Japan and northern Cascadia, suggests in
225	several ways that tremor is a proxy for slip. Estimated seismic moment from Japan
226	tremor and total duration from Cascadia tremor have been observed to be proportional to
227	the size of corresponding slow slip episodes [Hiramatsu et al., 2008; Aguiar et al.,
228	submitted]. Japanese tremor appears to be composed of low-frequency earthquakes that
229	represent thrust on the plate interface during slow slip events [Shelly et al., 2007]. In
230	Cascadia analysis of tremor polarization [Wech and Creager, 2007] combined with recent

231 tremor depth estimates [La Rocca et al., submitted] lead to the same conclusion. These 232 results combined with our spatial correlations suggest that Cascadia tremor occurs on the 233 plate interface with a thrust mechanism associated with slow slip. Therefore, we interpret 234 tremor and slip as different observations of the same physical process but on opposite 235 ends of the frequency spectrum—a spectrum that is slowly filling in. The time-scale gap 236 between tremor observed at frequencies above 1 Hz and slow slip observed over many 237 days is beginning to be filled in with observations from southwest Japan of slow events 238 radiating energy at periods of 20 seconds [Ito et al., 2007] and 200 seconds [Ide et al., 239 2008].

This interpretation thus allows us to map the slow slip region and use tremor epicenters to monitor slow slip occurrences. By extrapolating the spatial and temporal correlation between the two phenomena, tremor epicenters can supplement geodetic spatial constraints of the slow slip region. Tremor epicenters provide a high resolution map of the slow slip region, reinforced and quantified by GPS observations.

245 **7. Conclusions**

246 Ultimately this leads us to two important conclusions. First, combining tremor 247 epicenters from all four ETS episodes provides a high-resolution map of the slow slip 248 region (Figure 3) which maps a region of strain release to accommodate the northeasterly 249 4cm/yr convergence of the subducting Juan de Fuca plate beneath North America. Our 250 epicenters show evidence of a very sharp updip edge to the slow-slip region. We interpret 251 this boundary to represent a change in the physical properties at the plate interface that 252 inhibits updip ETS-like behavior. Second, finding 45% of tremor activity during an ETS 253 cycle to occur between ETS events suggests that the mapped slow slip region is, in the

254 long term, accommodating all of the relative plate motion. With typical slip of 2-3 cm 255 every 14 months, ETS only accounts for 45-65% of the plate convergence rate of 4 256 cm/vr. The inter-ETS tremor, which we propose represents slip at levels below current 257 GPS resolution, accommodates the remaining strain build up. Of course, we have only 258 had the opportunity to study one inter-ETS period, but inter-ETS bursts have long been 259 observed. Together with the updip edge observed with the past cumulative ETS tremor 260 map and the growing understanding that tremor and slip are the same phenomena, this 261 result implies slow slip occurs in the freely slipping region and tremor epicenters 262 demarcate the downdip edge of the transition zone.

263 If tremor accommodates all of the converging plate motion, it raises an important 264 question about how stress is released updip of the sharp ETS boundary and downdip of 265 the seismogenic zone. It is possible that slip might be accommodated by coseismic shear 266 failure during a megathrust earthquake, postseismic afterslip associated with a megathrust 267 rupture, large slow slip events with repeat intervals longer than continuous GPS has been 268 available, or a combination of all of these. By further constraining this transition zone 269 with more ETS and inter-ETS observations using increased instrumentation and higher 270 quality data, we can begin to answer this question and better understand the seismic 271 hazards from a megathrust earthquake downdip of the seismogenic zone.

Event	Number of Epicenters	Duration (hrs)	Migration (km/day)	Slip (cm)	M _w
July 2004	2,774	173.7	10.9	2.3	6.6
September 2005	3,118	196.8	11.8	3.1	6.7
January 2007	3,061	199.8	9.4	3.9	6.6
May 2008	3,677	226.7	13.3	2.9	6.5
February 2007— April 2008	2,717	181.5	11.3	NA	NA

Table 1. Tremor location (columns 2-4) and geodetic slip (columns 5-6) information for

273 each ETS episode and one inter-ETS episode.

Figure 1. Tremor locations from the 4 ETS episodes showing tremor epicenters (dots
color coded by time), station distribution (triangles) and plate interface geometry

277 (contoured at 10-km intervals) from McCrorey et al., [2004].

278

Figure 2. Total tremor contours (left) compared with geodetic slip estimates (right) for
each of the 4 most recent ETS episodes. Tremor contours show number of tremor
epicenters per 0.1 by 0.1 degree bin.

Figure 3. Sum of all tremor epicenters per 0.1 by 0.1 degree bin (left) and of plate-

284 interface slip (right) over 4 ETS episodes.

Figure 4. Sum of all tremor epicenters per 0.1 by 0.1 degree bin for all four ETS episodes

287 (left) and for one inter-ETS period (right).

- 288 Acknowledgements: This material is based on work supported by the National Science
- 289 Foundation and the USGS. Primary seismic data were supplied by PNSN, PGC,
- 290 Earthscope and PBO seismometers. We thank Robert Crosson for his envelope
- 291 processing. We also thank John Vidale, Justin Rubinstein Weston Thelen and Justin
- 292 Sweet for valuable discussion.

293 **References**

- 294 Aguiar, A. C., T. I. Melbourne, and C. Scrivner, Moment rate during Cascadia tremor
- 295 constrained by GPS, J. Geophys. Res., submitted.
- 296 Dragert, H., K. Wang, and T. S. James (2001), A silent slip event on the deeper Cascadia
- subduction interface, *Science*, 292, 1525-1528, doi:10.1126/science.1060152.
- 298 Goldfinger, C., et al. (2003), Holocene earthquake records from the Cascadia subduction
- zone and northern San Andreas Fault based on precise dating of offshore turbidites.,
- 300 *Annual Review of Earth and Planetary Sciences*, 31, 555–577.
- 301 Hiramatsu, Y., T. Watanabe, and K. Obara (2008), Deep low-frequency tremors as a
- 302 proxy for slip monitoring at plate interface, *Geophys. Res. Lett.*, 35, L13304,
- 303 doi:10.1029/2008GL034342.
- 304 Ide, S., K. Imanishi, Y. Yoshida, G. C. Beroza, and D. R. Shelly (2008), Bridging the gap
- 305 between seismically and geodetically detected slow earthquakes, *Geophys. Res. Lett.*,
- 306 35, L10305, doi:10.1029/2008GL034014.
- 307 Ito, Y., K. Obara, K. Shiomi, S. Sekine, and H. Hirose (2007), Slow earthquakes
- 308 coincident with episodic tremors and slow slip events, *Science*, 315, 503–506.
- 309 Kao, H., S. Shan, H. Dragert, G. Rogers, J. F. Cassidy, and K. Ramachandran (2005), A
- 310 wide depth distribution of seismic tremors along the northern Cascadia margin, *Nature*,
- 311 436, 841-844, doi:10.1038/nature03903.
- 312 Kao, H., P. J. Thompson, G. Rogers, H. Dragert, and G. Spence (2007), Automatic
- detection and characterization of seismic tremors in northern Cascadia, *Geophys. Res.*
- 314 *Lett.*, 34, L16313, doi:10.1029/2007GL030822.
- 315 La Rocca, M., K. C. Creager, D. Galluzzo, S. Malone, J. E. Vidale, J. R. Sweet, A.G.

- 316 Wech (2008), Precise location of tremor from high-frequency S-P time difference,
- 317 *Science*, submitted.
- 318 McCaffrey, R., A. I. Qamar, R. W. King, R. Wells, G. Khazaradze, C. A. Williams, C.
- 319 W. Stevens, J. J. Vollick, and P. C. Zwick (2007), Fault locking, block rotation and
- 320 crustal deformation in the Pacific Northwest, *Geophys. J. Int.*, 169(3), 1315 1340.
- 321 McCrory, P. A., J. L. Blair, D. H. Oppenheimer, and S. R. Walter (2004), Depth to the
- Juan de Fuca slab beneath the Cascadia subduction margin: A 3-D model for sorting
- 323 earthquakes, U. S. Geol. Surv. Data Ser., 91.
- 324 McCausland, W., S. Malone, and D. Johnson (2005), Temporal and spatial occurrence of
- deep non-volcanic tremor: From Washington to northern California, *Geophys. Res.*
- 326 *Lett.*, 32, L24311, doi:10.1029/2005GL024349.
- 327 Miller, M. M., T. Melbourne, D. J. Johnson, and W. Q. Sumner (2002), Periodic Slow
- Earthquakes from the Cascadia Subduction Zone, *Science*, 295, 2423.
- 329 Obara, K. (2002), Nonvolcanic Deep Tremor Associated with Subduction in Southwest
- 330 Japan, *Science*, 296, 1679-1681.
- 331 Rogers, G., and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction
- zone: The chatter of silent slip, *Science*, 300, 1942 1943,
- doi:10.1126/science.1084783.
- 334 Satake, K., K. Wang, and B. F. Atwater (2003), Fault slip and seismic moment of the
- 335 1700 Cascadia earthquake inferred from Japanese tsunami descriptions, J. Geophys.
- 336 *Res.*, 108 (B11), 2535, doi:10.1029/2003JB002521.
- 337 Shelly, D. R., G. C. Beroza, and S. Ide (2007), Non-volcanic tremor and low-frequency
- 338 earthquake swarms, *Nature*, 446, 305-307, doi:10.1038/nature05666.

- 339 Szeliga, W., T. Melbourne, M. Santillan, and M. Miller (2008), GPS constraints on 34
- slow slip events within the Cascadia subduction zone, 1997 2005, J. Geophys. Res.,
- 341 113, B04404, doi:10.1029/2007JB004948.
- 342 Wech, A. G., and K. C. Creager (2007), Cascadia tremor polarization evidence for plate
- 343 interface slip, *Geophys. Res. Lett.*, 34, L22306, doi:10.1029/2007GL031167.
- 344 Wech, A. G., and K. C. Creager (2008), Automatic detection and location of Cascadia
- 345 tremor, Geophys. Res. Lett., submitted.
- 346 Wilson, D. S. (1993), Confidence intervals for motion and deformation of the Juan de
- 347 Fuca Plate, J. Geophys. Res., 98 (B9), 16,053–16,071.