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Seismic Consequences of Warm
Versus Cool Subduction

Metamorphism: Examples from
Southwest and Northeast Japan

Simon M. Peacock1* and Kelin Wang2

Warm and cool subduction zones exhibit differences in seismicity, seismic
structure, and arc magmatism, which reflect differences in metamorphic re-
actions occurring in subducting oceanic crust. In southwest Japan, arc volcanism
is sparse and intraslab earthquakes extend to 65 kilometers depth; in northeast
Japan, arc volcanism is more common and intraslab earthquakes reach 200
kilometers depth. Thermal-petrologic models predict that oceanic crust sub-
ducting beneath southwest Japan is 300° to 500°C warmer than beneath
northeast Japan, resulting in shallower eclogite transformation and slab de-
hydration reactions, and possible slab melting.

During subduction, variably hydrated basalts
and gabbros of the oceanic crust transform to
eclogite, a relatively dense rock consisting
primarily of garnet and omphacite (Na-Ca
clinopyroxene). The transformation of hy-
drated metabasalt to eclogite releases sub-
stantial amounts of H2O (1) and increases the
density of subducting slabs (2). Kirby et al.
(3) proposed that dehydration reactions trig-
ger intermediate-depth (50 to 300 km) in-
traslab earthquakes and suggested that deeper
intraslab earthquakes observed in cold sub-
duction zones may reflect kinetic hindrance
of eclogite formation. In a given subduction
zone, the depth and nature of eclogite forma-
tion and slab dehydration reactions depends
on the pressure (P)–temperature (T ) condi-
tions encountered by the subducting oceanic
crust. Temperatures at depth in subduction
zones vary because of variations in conver-
gence rate, thermal structure (age and sedi-
ment thickness) of the incoming lithosphere,
and possibly rates of shear heating (4). We
present thermal models for the subduction
zones of southwest (SW) and northeast (NE)
Japan and examine the metamorphic evolu-
tion of subducting oceanic crust.

In many subduction zones, detailed seis-
mic investigations reveal the presence of a
thin (#10 km thick), low seismic-velocity
layer coinciding with the zone of thrust and

intermediate-depth earthquakes (3, 5, 6). The
seismic velocity of eclogite is comparable to
mantle peridotite, thus the dipping low seis-
mic-velocity layer is generally interpreted as
subducted oceanic crust that has not trans-
formed to eclogite (3). Beneath SW Japan,
subducted oceanic crust of the Philippine Sea
plate is marked by a layer with low P-wave
(VP $ 6.6 to 6.9 km s%1) and S-wave (VS $
3.8 to 3.9 km s%1) velocity which extends to
60 km depth (7). Beneath NE Japan, the
low-velocity layer, representing subducted
oceanic crust of the Pacific plate, persists to
150 km depth and has slightly higher VP "
7.5 km s%1 (5, 8). Beneath SW Japan, the
maximum depth of intraslab earthquakes is
"50 to 65 km (9). In NE Japan, intraslab
earthquake activity peaks at 125 km depth
and extends to 200 km depth (3), and deep
earthquakes occur down to 670 km depth (5).

Abundant Holocene volcanism occurs in
NE Japan (Fig. 1) with a well-defined volcanic
front located "100 km above the top of the
subducting Pacific plate (5). Most NE Japan arc
lavas exhibit calc-alkaline geochemistry, which
reflects partial melting in the mantle wedge
triggered by the infiltration of aqueous fluids
derived from the subducting slab (10). In SW
Japan, Holocene volcanism is relatively sparse.
Andesite and dacite erupted at Daisen and
Sambe volcanoes in SW Japan (Fig. 1) are
geochemically similar to adakites (11), which
are interpreted to represent partial melts of sub-
ducted oceanic crust (12).

To understand subduction-zone processes
operating at 50 to 200 km depth, we constructed
two-dimensional, finite-element heat-transfer
models for NE and SW Japan along the profiles
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depicted in Fig. 1 (13). The geometry of the
subducting plates was constrained by seismic
reflection studies (14) and Wadati-Benioff zone
seismicity (5, 15). Existing surface heat flux
data were used to estimate the rate of shear

heating (Qsh) along the subduction thrust;
Qsh $ 0 W m%2 for SW Japan and 0.029 W
m%2 for NE Japan down to 70 km depth.
Sediment thickness at the trench is 1.4 km for
SW Japan and 0.35 km for NE Japan (15). For

NE Japan, we calculated the steady-state ther-
mal structure for 130-million-year-old (Ma)
oceanic lithosphere subducting at 91 mm
year%1 (Fig. 2A). For SW Japan, the subduction
of the fossil Shikoku Ridge beginning at 15 Ma
(16) requires transient heat-transfer solutions
(17). For SW Japan, we present the thermal
structure resulting from subduction at a rate of
45 mm year%1 for 15 million years, during
which the age of the incoming plate increases
from 0 to 15 Ma (Fig. 2B). For the initial
temperature condition, we used the steady-state
solution for a 100-Ma slab subducting at 45 mm
year%1. On the basis of sensitivity tests using
different parameters, we estimate uncertainties
in the calculated thermal structure of subducted
oceanic crust to be &50 to 100°C, primarily due
to uncertainties in the mantle-wedge flow mod-
el and thermal properties.

The subducting Pacific plate beneath NE
Japan is cooler than the subducting Philippine
Sea plate beneath SW Japan (Fig. 2). At 50
km depth, the calculated temperature along
the slab/mantle interface is only 200°C for
NE Japan, compared to 500°C for SW Japan.
Beneath the volcanic front, the slab/mantle
interface temperature is 500°C in NE Japan,
compared to '800°C in SW Japan. In both
subduction zones, maximum mantle-wedge
temperatures beneath the volcanic front are
"1200°C.

To predict the sequence of metamorphic
reactions within the subducting oceanic crust,
we combined calculated P-T paths with a pet-
rogenetic grid for metabasalts (Fig. 3). The
eclogite metamorphic facies is bounded by the
blueschist facies at low temperatures and by
the amphibolite and granulite facies at high
temperatures (Fig. 3A). The temperature-de-
pendent blueschist 3 eclogite transition in-
volves garnet-forming dehydration reactions,
which release up to 5 weight % H2O (1). In
contrast, the amphibolite/granulite 3 eclogite
transition involves the pressure-dependent an-
hydrous reaction of plagioclase to form ompha-
cite ( quartz. At T # "900°C, hydrous min-
erals, including lawsonite, chlorite, amphibole,
zoisite, and chlorotoid, are stable in the eclogite
facies even though the primary minerals that
define the eclogite facies, garnet and ompha-
cite, are anhydrous (Fig. 3A) (18, 19). Thus,
subducting oceanic crust that transforms to ec-
logite has the capacity to transport H2O to
greater depths. Partial melting in basaltic com-
positions is possible at temperatures as low as
650°C (Fig. 3A).

Pacific oceanic crust subducting beneath
NE Japan passes through the lawsonite-blue-
schist facies (Fig. 3B). The top of the crust
intersects the eclogite facies at "110 km
depth, whereas the base of the crust may not
intersect the eclogite facies until depths '160
km, beyond the limits of our model (Fig. 3B).
In contrast, Philippine Sea oceanic crust sub-
ducting beneath SW Japan passes through the

Fig. 1. Tectonic map of Japan
showing Holocene volcanoes
(solid triangles) (20), trench-
es (lines marked with open
triangles), and location of
thermal profiles. D, Daisen
volcano; S, Sambe volcano.
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greenschist and epidote–blueschist/amphibo-
lite facies and enters the eclogite facies at
"50 km depth. The different depths of pre-
dicted eclogite formation agrees well with the
observed depth extent of the low seismic-
velocity layer beneath NE Japan (150 km)
and SW Japan (60 km). Furthermore, the
lower VP and VS of the layer beneath SW
Japan compared to NE Japan is consistent
with the lower seismic velocities of green-
schist and epidote–blueschist/amphibolite fa-
cies compared to the lawsonite-blueschist fa-
cies (6). In both subduction zones, the low
seismic-velocity layer persists to depths
where the subducting hydrous oceanic crust
is predicted to transform to eclogite, suggest-
ing that kinetic retardation of eclogite-form-
ing reactions (3) may not be required.

Hydrous phases in the subducting oceanic
crust remain stable to '160 km depth be-
neath NE Japan but only to 90 km beneath
SW Japan. These depths are similar to the
observed maximum depth of intraslab earth-
quakes in the two subduction zones and sup-
port the dehydration embrittlement model for
intraslab earthquakes (3). The lack of in-
traslab earthquakes at depths '65 km be-
neath SW Japan may be a consequence of
aseismic ductile behavior at T ' 600°C. Be-
neath NE Japan, the peak in intraslab earth-
quake activity at 125 km depth may reflect
fluids released by garnet-forming dehydra-

tion reactions in the upper part of the sub-
ducting crust (Fig. 3B). Intermediate-depth
earthquakes beneath NE Japan define a dou-
ble seismic zone (5); earthquakes in the lower
seismic zone may be caused by dehydration
reactions in subducting oceanic mantle.

Oceanic crust subducting beneath NE Ja-
pan is relatively cool and does not undergo
partial melting (Fig. 3B). The abundant arc
volcanism in NE Japan reflects partial melt-
ing in the overlying mantle wedge, presum-
ably triggered by infiltration of aqueous flu-
ids derived from the subducting slab. The
calculated P-T paths for NE Japan suggest
abundant H2O may be subducted to '100 km
depth, where dehydration reactions such as
the garnet-forming reaction can release fluids
beneath the hot core of the overlying mantle
wedge. In contrast, the oceanic crust subduct-
ing beneath SW Japan is relatively warm, and
calculated P-T paths approach the fluid-
absent partial melting reaction associated
with the breakdown of hornblende (Fig. 3B).
Adakite-like lavas in SW Japan may reflect
partial melting of the subducting slab (11).
Beneath SW Japan, most of the water in the
subducting oceanic crust is driven off at shal-
low depth (#50 km) and is not available to
trigger partial melting of the mantle wedge,
consistent with the relatively sparse volca-
nism and lack of normal calc-alkaline mag-
matism (3).
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Fig. 3. Metamorphic condi-
tions in oceanic crust sub-
ducted beneath NE and SW
Japan. (A) Metamorphic fa-
cies (21), hydrous minerals
(italics) stable in the eclogite
facies (light gray) (19), and
partial melting reactions
(dark gray) for basaltic com-
positions (21). Thermody-
namic calculations (22) sug-
gest the blueschist 3 eclo-
gite transition (dark dashed
line) is nearly isothermal
("500°C), but this has not
been experimentally con-
firmed. EA, epidote amphibo-
lite; EB, epidote blueschist;
GS, greenschist; amph, am-
phibole; chl, chlorite; ctoid,
chlorotoid; laws, lawsonite;
zoi, zoisite. (B) Calculated P-T
conditions (horizontal lined
area) for oceanic crust sub-
ducting beneath NE and SW
Japan. Solid line, top of sub-
ducting oceanic crust; dashed
line, base of subducting oce-
anic crust.
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