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ABSTRACT 

The Saddle Mountain fault, first recognized in the early 1970s, is now well 

mapped in the Hoodsport area on the basis of lidar surveys, aerial photography, and 

trench excavations.  Drowned trees and trench excavations demonstrate that the Saddle 

Mountain fault produced a MW 6.5 to 7.0 earthquake 1000-1300 ka, arguably 

contemporaneous with the MW 7.5 Seattle fault earthquake 1100 years ago and with a 

wide variety of other fault and landslide activity over a wide region of the Olympic 

Peninsula and Puget Lowland.  This near synchroneity suggests that the Saddle Mountain 

and Seattle fault may be kinematically linked.  Aeromagnetic anomalies and lidar 

topographic scarps define an en echelon sequence of faults along the southeastern 

Olympic Peninsula of Washington, all active in Holocene time.  A detailed analysis of 

aeromagnetic data suggests that the Saddle Mountain fault extends at least 35 km, from 6 

km southwest of Lake Cushman to the latitude of the Seattle fault.  A magnetic survey of 

Price Lake using a nonmagnetic canoe illuminated two east-dipping reverse faults with 

20 m of vertical offset at 30 m depth associated with 2 to 4 m of vertical displacement at 

the topographic surface.  Analysis of regional aeromagnetic data indicates that the Seattle 

fault may extend westward across Hood Canal and into the Olympic Mountains, where it 

terminates near the northward terminus of the Saddle Mountain fault.  The en echelon 
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alignment of the Saddle Mountain and nearby Frigid Creek and Canyon River faults, all 

active in late Holocene time, reflects a >45-km-long zone of deformation that may 

accommodate the northward shortening of Puget Lowland crust inboard of the Olympic 

massif.  In this view, the Seattle fault and Saddle Mountain deformation zone form the 

boundaries of the northward advancing Seattle uplift. 

 

INTRODUCTION 

Geophysical, lidar (light detection and ranging), and paleoseismic studies are 

uncovering a rich history of Holocene earthquake activity in the Puget Lowland.  

Paleomagnetic studies, GPS measurements, and geologic arguments indicate that the 

Oregon forearc is rotating clockwise and moving northward with respect to cratonic 

North America at rates of about 1º/m.y. and 6-8 mm/yr, respectively (Wells et al., 1998; 

Mazzotti et al., 2002; McCaffrey et al., 2007).  In the Puget Lowland, the resulting north-

south compression causes 4.4 ±0.3 mm/yr of permanent shortening (Mazotti et al., 2002; 

McCaffrey et al., 2007), accommodated in part by a series of east- and southeast-striking 

faults that cross the Lowland (Figure 1).  Although recurrence intervals and earthquake 

magnitudes are uncertain in most cases, recent surface-rupturing earthquakes have 

occurred on many of these faults, including the Utsulady Point fault (Johnson et al., 

2004b), the southern Whidbey Island fault (Johnson, et al., 1996; Kelsey et al., 2004; 

Sherrod et al., 2008), the Seattle fault (Johnson et al., 1994; Pratt et al., 1997; Blakely et 

al., 2002; Nelson et al., 2003), the Tacoma fault (Johnson et al., 2004a; Sherrod et al., 

2004), and the Olympia fault (Sherrod, 2001).  The most recent large (MW7.5) crustal 

earthquake in the Puget Lowland occurred on the Seattle fault approximately 1100 ka, 

lifting the hanging wall of the Seattle fault 7 m, causing landslides, and generating a local 

tsunami (Bucknam et al., 1992; Atwater and Moore, 1992; Nelson et al., 2003; Sherrod, 

2001; Karlin and Abella, 1996; ten Brink et al., 2006). 

Active faults are also well known in the Olympic Peninsula west of the Puget 

Lowland (e.g., Carson, 1973; Nelson et al., 2007).   Perhaps best known of these is the 

Saddle Mountain fault, with a surface trace initially reported to extend about 8 km 

(Figures 2 and 3; Carson, 1973; Wilson, 1975; Hughes, 2005; Witter and Givler, 2008).  
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Several issues warrant a closer look at the Saddle Mountain fault and surrounding 

tectonic framework.  First, the Saddle Mountain fault generated a M 6.5 to 7.0 earthquake 

1000-1300 ka (Hughes, 2005), within the same century or two as the MW 7.5 Seattle fault 

earthquake.  While modern dating techniques have insufficient resolution to determine if 

these two events were synchronous, it is important in assessing future earthquakes to 

understand any structural connections between the Saddle Mountain and Seattle faults.  

Second, although the surface expression of the Saddle Mountain fault was first reported 

to extend only about 8 km, geophysical evidence may help map the full extent of the fault 

in the subsurface, thus providing better estimates of its potential hazard.  To help address 

these issues, we analyzed existing aeromagnetic and gravity data from the entire Olympic 

Peninsula and conducted ground-based magnetic surveys to characterize the Saddle 

Mountain fault in three dimensions.  We also report on a paleoseismic trench 

investigation across one of the active faults along the southeast flank of the Olympic 

Mountains. 

 

GEOLOGIC SETTING 

The Saddle Mountain fault is located on the southeast flank of the Olympic 

Mountains (Figure 1), an accretionary complex consisting of two distinctive terranes.  

Highly deformed, pervasively sheared, and metamorphosed Eocene to Miocene 

sedimentary rocks form the core of the Olympic Peninsula.  These core rocks are thrust 

under peripheral rocks of Eocene oceanic basalt and marine sediments along steeply 

dipping thrust faults (Figures 4 and 5; Cady, 1975; Tabor and Cady, 1978a, 1978b).  

Severe disruption of the eastern part of the core and a general westward decrease in age 

provide strong evidence that all of these rocks were emplaced by subduction processes 

(Tabor and Cady, 1978a).  Initial accretion of the complex began as early as late 

Oligocene, followed by exhumation that started around 18 Ma and continues today at 

approximately uniform rates (Brandon et al., 1998).  Uplift of the Olympic Mountains is 

domal in shape, with highest rates (>1 mm/y) near the center of the Olympic massif, 

tapering to less than 0.3 mm/y in the Saddle Mountain area (Brandon et al., 1998). 
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Peripheral rocks consist primarily of early to middle Eocene Crescent Formation 

basalts and associated volcanic and sedimentary rocks, an over-thickened volcanic 

assemblage of oceanic affinity and part of the Eocene Coast Range terrane extending 

from southern Oregon to Vancouver Island (Brown et al., 1960; Snavely and Wagner, 

1963; Babcock et al., 1992).  Tabor and Cady (1978a) considered the peripheral volcanic 

rocks to be a resistive bulwark against which subducting sediments were tilted, faulted, 

and sheared (Figure 5).  In the southeastern Olympic Peninsula, peripheral volcanic rocks 

are up to 16 km thick, dip steeply eastward, and are overlain by Oligocene and younger 

sediments; farther east they are exposed in parts of the Seattle uplift and form part of the 

basement beneath the Seattle, Dewatto, and Tacoma basins (Figure 1; Tabor and Cady, 

1978b; Brocher et al., 2004; Johnson et al., 2004a).   

Along the eastern and southeastern margin of the Olympic Peninsula, Crescent 

Formation basalts consist of two important units:  an upper member of basalt flows and 

mudflow breccia and a lower member of massive flows, pillow basalts, breccia, and 

minor intrusive rocks (Tabor and Cady, 1978b).  The lower-member basalts are locally 

altered and metamorphosed to phrenite–pumpellyite and greenschist facies (Hirsch and 

Babcock, 2006) and commonly exhibit pillows and tube structures. Upper-member 

basalts are characterized by closely spaced joints and local columnar jointing.  On the 

basis of geochemical arguments, Glassley (1974) concluded that lower-member basalts 

were created at a mid-ocean ridge in the early Eocene, subducted beneath similarly aged 

upper-member basalts, and then faulted upward into their present juxtaposition in 

Miocene time.  Cady (1975), on the other hand, described the lower- and upper-member 

contact as a simple upward gradation, from a deep-water marine origin to a shallow-water 

marine and terrestrial origin – observations later confirmed by Hirsch and Babcock 

(2006).  

The Saddle Mountain fault exhibits surface traces easily seen in aerial 

photography and lidar images (Figures 2 and 3).  Carson (1973) first described scarps of 

the Saddle Mountain fault in detail, although there is anecdotal evidence that loggers 

recognized its topographic expression many years earlier.  Wilson (1975) mapped the 

fault and recognized Pleistocene or younger deformation on three stands:  the northeast-

striking Saddle Mountain West and Saddle Mountain East faults and the northwest-
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striking Dow Mountain fault.  Witter and Givler (2008) noted a fourth fault striking 

northeast along the flank of Dow Mountain (Figures 2 and 3).  Several other active faults 

with similar northeast strike are observed in the lidar data:  the Frigid Creek fault about 2 

km to the south (Figure 2; Haugerud and Sherrod, 2007; Witter and Givler, 2008) and the 

Canyon River fault about 27 km to the southwest (Walsh and Logan, 2007).   

Lidar images and field examinations indicate that both the Saddle Mountain West 

and Saddle Mountain East faults exhibit southeast-side-up displacement, with scarps 

exceeding 8-m high in many places (Figure 3).  Early trench excavations (Wilson, 1975; 

Wilson et al., 1979) confirmed that the scarps were created by reverse faults offsetting 

late Pleistocene glacial deposits and early Eocene Crescent Formation basalt.  A recent 

trench excavated across the Saddle Mountain West fault  (Witter and Givler, 2008) 

exposed evidence for two earthquakes, one occurring between 17 and 8.5 ka, and a 

second occurring after 1.7 ka.  Total vertical offset for both earthquakes at this most 

recent trench site was about 1 m, although the 1.7-m scarp height suggests that only part 

of the deformational history was exposed in the trench.  Lateral slip also may have been 

important in these earthquakes.  Southwest-plunging striations observed on the hanging 

wall of the Saddle Mountain East fault plane indicate left-lateral movement  (Wilson et 

al., 1979), while a basalt cobble lodged in till and split by a secondary fault suggests 

dextral displacement along the Saddle Mountain West fault (Witter and Givler, 2008).  

The northeast-striking Canyon River fault, 27 km to the southwest, shows clear evidence 

of oblique left-lateral slip in Holocene time (Walsh and Logan, 2007), suggesting that 

right-lateral slip along the Saddle Mountain West fault seen by Witter and Givler (2008) 

was a local phenomenon rather than a persistent kinematic feature of the region.  

Carson (1973) first suggested that slip on the Saddle Mountain East fault dammed 

Price Lake (Figures 2 and 3) about 1100 years ago, drowning a forest that existed at the 

time.  Hughes (2005) analyzed stumps beneath Price Lake and concluded that both the 

Saddle Mountain West and Saddle Mountain East faults ruptured between 1000 and 1300 

years ago, possibly during the same earthquake.  This earthquake may have caused as 

much as 4 m of vertical offset on the Saddle Mountain East fault and 2 m of offset on the 

Saddle Mountain West fault (Hughes, 2005) and probably generated the 1.7-m slip 

observed in the Saddle Mountain West fault trench (Witter and Givler, 2008).  These 
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estimates agree with trench excavations made in the 1970’s across the Saddle Mountain 

East and West scarps (Wilson, 1975; Wilson et al., 1979), which revealed 3.5 m and 1.8 

m of reverse slip, respectively.   The bracketed time of this earthquake (1000 to 1300 

years ago) includes the time (1020-1050 years ago) of the MW7.5 earthquake on the 

Seattle fault and corresponds temporally with a wide variety of other fault and landslide 

activity over a wide region of the Olympic Peninsula and Puget Lowland (Schuster et al., 

1992; Logan et al., 1998; Haugerud et al., 2003; Walsh and Logan, 2007). 

 

ANALYSIS OF REGIONAL GEOPHYSICAL DATA 

Figure 6 shows gravity and magnetic anomalies of the eastern Olympic Peninsula 

and adjacent Puget Lowland.  Magnetic anomalies are based on an aeromagnetic survey 

flown in 1997 by the U.S. Geological Survey (Blakely et al., 1999).  Flight altitude was 

nominally 300 m over flat to moderate terrain, but significantly higher altitudes were 

necessary over river valleys and along the eastern margin of the Olympic Mountains.  

Most of the study area was flown along north-south flight lines spaced 400 m apart and 

along east-west tie lines spaced 8 km apart.  Flight-line and tie-line spacings were 

doubled in the northwestern part of the study area, where the magnetic field is 

characterized by longer wavelengths.  Gravity anomalies shown in Figure 6b are based on 

point measurements from the Pan-American Center for Earth and Environmental Studies 

(PACES) repository (http://paces.geo.utep.edu/home.shtml), supplemented with 

unpublished data (Thomas Wiley, written communication, 2008).  Gravity anomalies 

have been reduced to isostatic residual gravity values in order to emphasize middle and 

upper crustal sources (Simpson et al., 1986).  Gravity measurements are sparse in some 

areas, especially over Hood Canal and within inaccessible parts of the Olympic 

Mountains, but in most areas station density is adequate (at least one station per 25 km2) 

to define regional-scale structures. 

Low densities and magnetizations of sedimentary and metamorphic rocks of the 

core terrane produce subdued, low-amplitude gravity and magnetic anomalies.  In 

contrast, relatively high densities and magnetizations of Crescent Formation rocks 

produce high amplitude anomalies over the peripheral terrane.  Moreover, the upper and 
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lower members of Crescent Formation appear geophysically distinct.  This is particularly 

evident south of latitude 48º45'N., where gravity anomalies (Figure 6b) are broadly 

associated with the entire exposure of Crescent Formation basalts, but high-amplitude 

magnetic anomalies (Figure 6a) primarily reflect only the upper-member basalts.     

Magnetic susceptibility measurements made at Crescent Formation outcrops 

confirm this overall pattern (Figures 6a and 7; Table 1).  In general, high susceptibilities 

are observed in regions with high-amplitude magnetic anomalies, which coincide with the 

mapped extent of upper-member basalts.  Low susceptibilities and low-amplitude 

magnetic anomalies characterize the lower-member basalts.  This relationship is 

particularly clear in the Saddle Mountain area (Figure 7), where all mean susceptibility 

values in the Price Lake and Dow Mountain area (upper-member basalts) exceed 18 x  

10-3 SI (Systèms Internationale) units, whereas all mean values along Lake Cushman 

(lower-member basalts) fall below that value.   

 Figure 8 shows a cross-sectional model through the Saddle Mountain area based 

on forward simultaneous modeling of gravity and magnetic anomalies, constrained by 

geologic mapping (Tabor and Cady, 1978b).  The model is consistent with low-density, 

weakly magnetic core rocks thrust beneath steeply dipping, sometimes overturned 

peripheral volcanic rocks.  Peripheral volcanic rocks are modeled in Figure 8 with nearly 

uniform densities, whereas upper-member basalts required a magnetization four times 

greater than lower-member basalts, consistent with our susceptibility measurements 

(Table 1).  The model assumes that magnetizations are entirely induced, a reasonable 

assumption based on poor paleomagnetic results from most of the main Crescent outcrops 

(C.S. Gromme, Myrl Beck, and David Engebretson, personal communication, 1975-

1982). 

 

CANOE MAGNETIC SURVEY 

The Saddle Mountain East and West faults offset highly magnetic upper-member 

basalt, and both faults are included in our cross-sectional model through Price Lake 

(Figure 8).  Price Lake itself afforded an excellent opportunity to investigate the magnetic 

characteristics of the Saddle Mountain fault at outcrop scale (Figure 9).  The alpine 
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setting of this small lake is devoid of man-made objects that deleteriously affect ground-

based magnetic surveys, and the obvious lack of tree cover facilitated accurate GPS 

navigation.  Measurements were made with a nonmagnetic canoe, GPS navigation, and a 

cesium-vapor magnetometer system.  A stationary proton-precession magnetometer was 

maintained at lake shore to subsequently correct for time-varying fields.  We acquired 26 

track lines over the entire lake at an average track-line spacing of 40 m and a total line-

distance of 9 km.  Fifteen track lines crossed the lakeward projection of the Saddle 

Mountain West lidar scarp, but the Saddle Mountain East scarp was unreachable by 

canoe. The canoe-magnetic survey illuminated a linear, north-northeast-trending 

magnetic trough, approximately 150 m wide and 1000 nT in amplitude, on strike with 

lidar scarps northeast and southwest of the lake (Figure 9).    

A cross-sectional model of the Saddle Mountain West fault (Figure 10) based on 

the canoe magnetic survey is consistent with two distinct strands of the Saddle Mountain 

West fault.  Both strands are modeled as southeast-side-up reverse faults that offset 

Pleistocene and Holocene deposits at the surface and Crescent Formation at >30 m depth. 

Although our modeled offsets of Crescent Formation project upward to lidar scarps 

observed at the surface, the offsets at depth have significantly larger displacements (>20 

m) than implied by either topography (scarps as high as 8 m) or trench excavations (dip 

slip as much as 3.5 m; Wilson et al., 1979), suggesting a long history of Quaternary 

deformation.  

 

TECTONIC FRAMEWORK, SOUTHEASTERN OLYMPIC PENINSULA 

The canoe-based magnetic survey of Price Lake demonstrates that individual 

strands of the Saddle Mountain fault are reflected in magnetic anomalies.  We now step 

back and examine aeromagnetic anomalies at a regional scale.  Our interpretation of the 

eastern and southeastern Olympic Peninsula (Figure 11) employed a variety of both 

quantitative and qualitative analyses of magnetic and gravity data, but we relied primarily 

on a method recently described by Phillips et al. (2007):  Magnetic anomalies (Figure 6a) 

were reduced to the pole, transformed to maximum horizontal gradients, and analyzed for 

mathematical curvature.  This three-step methodology provides the locations of abrupt 
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lateral variations in crustal magnetization, shown as sinuous alignments of small black 

dots in Figure 11b.   

Linear alignments of black dots in Figure 11b indicate the map projection of 

magnetic contacts, which have diverse explanations in our large study area.  Some 

contacts represent faults, notably the contact between highly deformed core rocks thrust 

beneath Crescent Formation in peripheral rocks (Figure 11c, label CPF—core-peripheral 

fault).  Other contacts are caused by lateral variations in lithology or geochemistry, such 

as the marked contrast in anomaly amplitudes over upper- and lower-members of the 

Crescent Formation south of latitude 48º45'N.  Still others may reflect folding within 

Crescent Formation rocks, although none of our calculated magnetic contacts (Figure 

11b) directly correlate with folds mapped by Tabor and Cady (1978b).   Within the 

Crescent Formation, magnetic contacts may reflect lateral changes from normal to 

reverse magnetization, although metamorphism and alteration of these volcanic rocks has 

probably reduced significantly their primary remanent magnetization. 

The contrast in anomaly amplitude between upper- and lower-member Crescent 

Formation south of latitude 48º45'N. was an expected result in view of magnetic 

susceptibilities exhibited by these rocks (Figures 6a and 7, Table 1).  The contrast in 

magnetic properties reflects differences in lithologic characteristics and levels of tectonic 

deformation:  Lower-member basalts are highly sheared and deformed and contain 

abundant pillows, whereas upper-member basalts are characterized by massive flows, 

local columnar jointing, sparse pillows, and less deformation.  The contrast in magnetic 

properties may reflect primary formation of magnetic minerals, possibly due to 

contrasting local environments at the time of formation, submarine environments for 

lower-member basalts and subaerial for upper-member basalts.  Alternatively, the weak 

magnetization of lower-member basalts may reflect secondary alteration of magnetic 

minerals, either caused directly by the deformational events responsible for the pervasive 

shearing seen in these rocks, or promoted subsequently by migration of low-temperature 

water through loosely consolidated pillow structures (e.g., Marshall and Cox, 1972).  The 

contrast in magnetic properties ends rather abruptly at latitude 48º45'N.; north of this 

latitude lower-member basalts produce anomalies similar in amplitude to the upper-
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member basalts.  Subdued anomalies south of latitude 48º45'N. may reflect local 

metamorphism to greenschist facies. 

 

Saddle Mountain, Frigid Creek, and Canyon River faults 

A pronounced northeast-striking magnetic anomaly lies directly over Saddle and 

Dow Mountains (Figures 2, 11, and 12), possibly caused by combined southeast-side 

uplift along both the Saddle Mountain East and West faults.  The northwest-facing 

gradient of this magnetic anomaly yields a well-defined magnetic contact corresponding 

closely with the swath of scarps seen in lidar data (Figure 12, label SMF).  The magnetic 

contact extends southwestward 4 km from Price Lake to Lake Cushman (Figure 12b), 

where it coincides with the northeast-striking Cushman Valley fault (Carson and Wilson, 

1974; see Figures 2b and 3b for location of Cushman Valley).  Witter and Givler (2008) 

suggested that the Saddle Mountain and Cushman Valley faults are surface expressions of 

the same structure, and our observations support their interpretation.  Moreover, the 

magnetic contact and lidar scarps suggest that the Saddle Mountain fault extends even 

farther to the southwest, to at least 6 km west of Lake Cushman (Figure 12).  Southwest 

of this point, the magnetic contact steps southward before continuing on southwestward.  

Thus, the Saddle Mountain fault, as expressed by lidar scarps, extends a minimum of 15 

km, from northeast of Price Lake to southwest of Lake Cushman, and magnetic 

anomalies suggest that the fault extends an additional 5 km southwestward (Figure 12).  

In a later section, we describe evidence for extending the Saddle Mountain fault 

northeastward, well beyond mapped lidar scarps. 

The Frigid Creek fault (Figures 2 and 13) lies parallel to and 4 km south of the 

Saddle Mountain fault and exhibits a well-defined northwest-side-up scarp 2.7 m in 

height.  A single trench excavated across the Frigid Creek scarp (Figure 14) revealed 

conformable strata consisting of oxidized sandy gravels, sandy loams, and sandy silts.  

Radiocarbon analyses by Lawrence Livermore National Laboratory showed that charcoal 

clasts collected from units 2 and 3 ranged in age from 5657-5476 cal yr B.P. (4850±40 

14C yr B.P.) to 4513-4220 cal yr B.P. (3925±40 14C yr B.P.).  A single clast of charcoal 

from unit 6 (part of the surface soil profile on the scarp) yielded an age of 526-319 cal yr 
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B.P. (415±40 14C yr B.P.).  These strata resemble similar deposits observed throughout 

the southeast Olympic Mountains that consist of Holocene debris flows and soils 

developed on these debris flows that were buried by subsequent debris flows.   

Beneath the scarp, the strata are offset by a normal master fault and several 

smaller antithetic normal faults, forming a small graben along the scarp.  We interpret the 

offset strata as the result of movement along the normal master fault during an earthquake 

between 5657 and 319 cal yr B.P.  The deformation is best interpreted as downward 

movement of two hanging-wall blocks (Blocks 2 and 3) relative to the footwall block 

(Block 1; Figure 14b).  Downward movement and clockwise rotation of Block 2 formed a 

small graben adjacent to the scarp.  Piercing points observed in the excavation show that 

2.5 m of vertical separation can be accounted for in one event (93 percent of total 2.7 m 

scarp height).  The unaccounted 0.2 m of scarp height suggests either an earlier and much 

smaller earthquake or differential erosion and deposition along the scarp after the 

earthquake. 

We interpret the Frigid Creek fault as a bending-moment fault in the hanging wall 

of a large thrust sheet, or as a normal fault associated with a bend or step-over in a lateral 

fault system.  The Frigid Creek fault lies astride a high-amplitude, sinuous magnetic 

anomaly (Figure 12) that we interpret as a fold in Crescent Formation.  A magnetic 

contact is not observed directly along the Frigid Creek fault scarp, suggesting that the 

fault lies entirely above or roots into underlying Crescent Formation basalts.  The Frigid 

Creek fault, with southeast side down, may be responding to subsidence of the Dewatto 

and Tacoma basins directly to the east and midway between the Olympia and Seattle 

uplifts (Figure 1b). 

A narrow but pronounced magnetic anomaly (Figure 12, label OF—Olympia 

fault) and coincident gravity anomaly (Figure 6b) extend southeastward from Crescent 

Formation exposures in the Olympic Mountains to the southern edge of our study area, 

where the source of the anomaly is entirely concealed beneath Pleistocene glacial 

deposits.  South of our study area, anomaly OF merges with the “Olympia structure” 

(Magsino et al., 2003), which juxtaposes near-surface Crescent Formation to the 

southwest against the Tacoma basin to the northeast (Figure 1).  Coseismic subsidence 
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occurred along the Olympia structure approximately 1100 ka (Sherrod, 2001), and the 

linear nature of associated gravity and magnetic anomalies is highly suggestive of a near-

surface fault.  However, detailed models based on gravity and magnetic data were unable 

to determine whether the anomalies reflect faults or folds (Magsino et al., 2003).    

A magnetic contact (Figure 12, label CRF) coincides approximately with the 

Canyon River fault (Walsh and Logan, 2007) and extends 5 km northeastward beyond its 

mapped surface expression (Schuster, 2005).  High-resolution aeromagnetic data do not 

cover the western end of the Canyon River fault.  The Canyon River fault is expressed 

topographically as a 3-m-high northwest-facing scarp.  A trench excavated across the 

scarp revealed evidence for oblique reverse-left-lateral slip during a M 7 to 7.5 

earthquake in late Holocene time (Walsh and Logan, 2007).  The sense of the magnetic 

contact is consistent with southeast-side-up slip seen in the trench.  Although the Canyon 

River fault is essentially on strike with the Saddle Mountain fault, magnetic anomalies 

provide no obvious way to connect them as a single, continuous structure.  If the Canyon 

River and Saddle Mountain faults are linked, it is apparently accomplished through 

complex en echelon relationships. 

 

DISCUSSION 

The Saddle Mountain fault is expressed topographically over a length of 15 km, 

and magnetic anomalies suggest that the fault extends an additional 5 km to the southwest 

(Figure 12) and 15 km to the northeast (Figure 15), a total span of 35 km.  Moreover, the 

alignment of the Saddle Mountain, Frigid Creek, and Canyon River faults (Figures 11 

and 12) may reflect a zone of faulting extending more than 45 km.  The opposing sense 

of slip on these three faults (southeast-side-up reverse slip on the Saddle Mountain and 

Canyon River faults, northwest-side-up normal slip on the Frigid Creek fault) may reflect 

their positions relative to deformational patterns in the Puget Lowland immediately to the 

east (Figure 1):  The Saddle Mountain and Canyon River faults are adjacent to the Seattle 

and Olympia uplifts, respectively, whereas the Frigid Creek fault lies adjacent to the 

subsiding Dewatto and Tacoma basins.  Alternatively, the Frigid Creek fault could 
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represent either a releasing bend fault or a bending moment normal fault in the hanging 

wall of the Saddle Mountain fault zone. 

Wilson et al. (1979) noted that the Saddle Mountain fault lies on strike with a 

narrow zone of fracturing mapped by Glassley (1974) immediately to the northeast.  

Glassley (1974) viewed this fracture zone as a remanent of a major tectonic event that 

brought lower- and upper-member basalts into contact in Miocene time, and Wilson et al. 

(1979) suggested that Holocene displacement on the Saddle Mountain fault may reflect a 

reactivation of this Miocene structure.  Recent work by Hirsh and Babcock (2006) has 

shown, however, that the upper-member–lower-member contact is more likely an abrupt 

change in metamorphic grade, with lower-member basalt having been altered to 

greenschist facies.  Moreover, Figure 12 shows that the Saddle Mountain fault, as 

displayed in both lidar and aeromagnetic data, is not coincident with the upper-member-

lower-member contact but rather lies 2 to 3 km to the southeast. 

 

Possible structural connection between the Saddle Mountain and Seattle faults 

The circular shaped anomaly at the eastern edge of our study area (Figure 11, 

label GM—Green Mountain) is caused by highly magnetic rocks in the hanging wall of 

the Seattle and Tacoma faults.  The southern margin of anomaly GM lies along the 

Tacoma fault (Johnson et al., 2004a; Sherrod et al., 2004); the northern margin along the 

Seattle fault (Blakely et al., 2002).  Crescent Formation basalt and Tertiary intrusive 

rocks exposed at Green and Gold Mountain near the northern edge of anomaly GM 

probably represent the source of the entire anomaly; likewise the broad limits of anomaly 

GM predict where these magnetic rocks are located at relatively shallow depth within the 

Seattle uplift. 

Crescent Formation, exposed at the surface in the hanging wall of the Seattle 

fault, lies 9 to 10 km deep beneath the Seattle basin immediately to the north (Brocher et 

al., 2001).  Widely divergent models have been proposed to explain this large vertical 

offset:  Johnson et al. (1994), Pratt et al. (1997), and ten Brink et al. (2002) envisioned 

two or three south-dipping thrust faults that extend to depths of 10 to 20 km, bringing the 

hanging wall of the Seattle fault northward over the Seattle basin.  Brocher et al. (2004) 
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and Kelsey et al. (2008), on the other hand, found evidence for a roof thrust that merges 

at shallow (<5 km) depth with a south-dipping floor thrust well north of Crescent 

Formation exposures, thus forming a northward advancing crustal wedge.  In their model, 

large vertical offset in Crescent Formation is accomplished along one or more south-

dipping imbricate thrust faults within the wedge (see Fig. 8, Brocher et al., 2004). 

Both models require a means to accommodate strain beyond the westward limit of 

the Seattle fault.  Johnson et al. (1994) proposed the existence of a north- to northeast-

striking strike-slip fault beneath Hood Canal that transfers strain on the Seattle fault 

northward to other faults, possibly the southern Whidbey Island fault (Figure 1, dotted 

line).  Although the linear nature of Hood Canal lends credence to this interpretation, no 

seismic evidence has been found yet to support the existence of a fault beneath and 

parallel to Hood Canal (Haug, 1998).  The magnetic analysis shown in Figure 11 also 

shows no evidence for a Hood Canal fault, although the altitude of the aeromagnetic 

survey in this area exceeded 1400 m above ground because of the proximity of the 

Olympic Mountains range front.  A prominent magnetic gradient does lie west and 

parallel to part of Hood Canal (Figure 11c), but the broad gradient is inconsistent with 

strike-slip faulting.  It more likely reflects the eastward dipping contact between Eocene 

Crescent Formation of the Olympic Peninsula and younger overlying sediments of the 

Seattle basin (Figure 8).  This contact presumably forms a broad syncline beneath Hood 

Canal, shallowing eastward within the Seattle uplift, where it produces anomaly GM 

(Figure 11).  As an alternative to faulting along Hood Canal, we identified several 

prominent magnetic anomalies in the northern part of our study area (Figure 11c, label 

DBF—Dabob Bay fault) with abrupt, linear, northwest-striking gradients.  They may 

reflect right-lateral strike-slip faults that pass through Dabob Bay and transfer strain from 

the Seattle fault northward. 

We propose that the Saddle Mountain fault forms part of the western boundary of 

the Seattle uplift.  As evidence, we note a subtle west-striking magnetic lineament 

(Figure 15, label SF) that lies on strike with the Seattle fault to the east, crosses Hood 

Canal, and extends westward 10 km into Crescent Formation volcanic rocks to the west.  

At its western end, within Crescent Formation exposures, anomaly SF passes through a 

pronounced 3- to 4-km right-step in magnetic anomalies and mapped folds (Tabor and 
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Cady, 1978b).  The westward terminus of lineament SF lies near the northern terminus of 

the Saddle Mountain fault (Figure 15, label SMF).  We suggest that lineament SF is the 

westward extension of the Seattle fault. 

We suggest that the Saddle Mountain, Frigid Creek, and Canyon River faults are 

elements of a deformation zone that accommodate the northward shortening of Puget 

Lowland crust inboard of the Olympic massif (label SMDZ—Saddle Mountain 

deformation zone, Figure 16).  This model predicts sinistral slip on all elements of the 

Saddle Mountain deformation zone.  We also expect vertical slip to be important, with 

sense determined by the proximity of large-scale deformation to the east:  The Saddle 

Mountain and Canyon River faults (southeast-side-up) respond to the Seattle and 

Olympia uplifts, respectively, whereas the Frigid Creek fault (northwest-side-up) is 

influenced by subsidence of the Dewatto and Tacoma basins.  Lineament SF (Figure 15) 

may be the westward continuation of the Seattle fault, with the Saddle Mountain fault 

(Figure 15, label SMF) marking the western edge of the Seattle uplift.  

 

CONCLUSIONS 

We propose that the Saddle Mountain, Frigid Creek, and Canyon River faults are 

elements of a 45 km-long zone of deformation that accommodates shortening of Puget 

Lowland crust inboard of the Olympic massif.  We see subtle evidence in geophysical 

anomalies that the Seattle fault extends westward across Hood Canal and 10 km into 

Crescent Formation exposures on the Olympic Peninsula, ending near the northern 

terminus of the Saddle Mountain deformation zone.  In this framework, the Saddle 

Mountain and Seattle faults are boundaries of the same crustal block, the Seattle uplift.  

Previous studies have shown that the Saddle Mountain fault produced a MW 6.5 to 7.0 

earthquake 1000-1300 ka, within the same century as the MW 7.5 Seattle fault 

earthquake.  The temporal coincidence of these two earthquakes suggests that the Saddle 

Mountain deformation zone and Seattle fault zone are kinematically linked, and our 

geophysical studies further suggest that the two fault zones are spatially linked as well.  

We have mapped a magnetic contact that coincides with the topographic expression of 

the Saddle Mountain fault and shows that it extends at least 35 km.  A magnetic survey of 
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Price Lake conducted from a nonmagnetic canoe has allowed us to model the Saddle 

Mountain West fault in detail.  The model includes two east-dipping reverse faults, 

consistent with scarps identified in lidar data and in the field.  The opposing sense of slip 

on the Saddle Mountain, Frigid Creek, and Canyon River faults (southeast-side-up 

reverse slip on the Saddle Mountain and Canyon River faults, southeast-side-down 

normal slip on the Frigid Creek fault) may be a reflection of deformational patterns in the 

Puget Lowland immediately to the east.  The Saddle Mountain and Canyon River faults 

lie adjacent to the Seattle and Olympia uplifts, whereas the Frigid Creek fault lies near 

the subsiding Dewatto and Tacoma basins.   
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Table 1.  Magnetic susceptibilities measured in situ at various site localities in the eastern 

and southeastern Olympic Peninsula.  ID is site identification.  LON and LAT are 

longitude west and latitude north, respectively, of sample site, datum NAD83.  AVG and 

SD are geometric average and standard deviation of N samples expressed.  Magnetic 

susceptibility is a dimensionless physical property of the rock here expreseed in SI units 

(Systèms Internationale) multiplied by 1000.  Samples typically span a distance of 

several tens of meters at each site. 

 

ID LON LAT AVG SD N 

S1 123.12087 47.43788 3.508 1.883 12 

S2 123.04327 47.53535 31.750 4.669 12 

S3 123.00597 47.58107 19.077 6.152 13 

S4 122.96822 47.61942 23.041 9.787 13 

S5 122.93480 47.79580 15.463 8.822 18 

S6 122.96897 47.78395 17.211 12.236 18 

S7 122.98283 47.78728 25.877 9.147 13 

S8 122.99423 47.78737 13.225 4.769 13 

S9 123.00480 47.79002 9.643 5.397 16 

S10 123.01965 47.78895 34.967 17.217 13 

S11 123.02770 47.79092 21.236 6.276 13 

S12 123.03822 47.79037 7.566 7.422 13 

S13 123.04347 47.78387 18.422 10.181 13 

S14 123.05188 47.78162 48.192 19.298 13 

S15 122.90770 47.81445 37.693 17.857 13 

S16 122.91375 47.80822 12.440 7.581 13 

S17 122.91908 47.77365 24.833 10.749 12 

S18 122.99112 47.72142 14.377 3.543 13 

S19 123.02725 47.73852 7.801 11.700 13 

–24– 



Revised after journal review 
November 3, 2008 

S20 123.00945 47.72530 32.362 10.559 13 

S21 123.25702 47.49587 8.398 5.105 13 

S22 123.27960 47.49467 10.084 6.707 13 

S23 123.30593 47.49840 4.225 3.648 13 

S24 123.32262 47.50957 15.778 18.805 13 

S25 123.14502 47.46843 19.350 4.544 12 

S26 123.14157 47.46773 33.238 10.988 13 

S27 123.15457 47.45260 23.569 11.435 12 

S28 123.16308 47.46155 31.078 28.094 13 

S29 123.15372 47.48100 21.888 13.428 13 

S30 123.17503 47.47798 31.951 9.967 13 

S31 123.04422 47.56798 26.926 10.676 12 

S32 123.07630 47.58083 29.462 13.834 13 

S33 123.10688 47.58770 14.845 13.910 13 

S34 123.12152 47.60060 2.717 2.442 13 

S35 123.12327 47.61157 8.725 7.606 13 

S36 123.10755 47.62243 10.173 6.575 13 

S37 123.16868 47.59852 0.582 0.094 13 

S38 123.18233 47.59468 16.982 10.523 13 

S39 123.18907 47.59222 0.652 0.122 12 

S40 123.20110 47.58562 3.066 3.097 13 

S41 123.22337 47.58227 9.688 7.665 13 

S42 123.25307 47.57943 0.168 0.038 13 

S43 123.26108 47.57527 0.205 0.045 14 

S44 123.25083 47.58017 0.174 0.064 13 

S45 123.08065 47.57123 18.265 8.815 13 

S46 123.07438 47.55302 7.599 1.659 10 
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S47 123.06255 47.52713 21.000 6.752 13 
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FIGURE CAPTIONS 

 Figure 1.  (A) Topographic map of northwestern Washington and Vancouver Island.  

Bold lines are faults modified from Washington Division of Geology and Earth 

Resources (2005).  B, Bellingham; E, Everett; S, Seattle; T, Tacoma; O, Olympia; 

V, Victoria.  (B) Isostatic residual gravity anomalies.  BB, Bellingham basin; EB, 

Everett basin; SB, Seattle basin; TB, Tacoma basin; DB, Dewatto basin; DMF, 

Devils Mountain fault; SPF, Strawberry Point fault; UPF, Utsulady Point fault; 

SF, Seattle fault; TF, Tacoma fault; SWIF, southern Whidbey Island fault; SMF, 

Saddle Mountain fault; FCF, Frigid Creek fault; CRF, Canyon River fault; OF, 

Olympia fault.  Dotted line is Hood Canal fault.  Blue rectangles indicate areas of 

Figures 2, 4, and 6. 

 Figure 2.  Lidar image of the area between Lake Cushman and Hood Canal.  See Figure 

1 for map location.  Both maps A and B show same lidar image; map B includes 

labels and lines to identify scarps and other physiographic features discussed in 

text.  Red lines are scarps identified from lidar images.  White circles are 

locations of older trench excavations (Wilson, 1975; Wilson et al., 1979).  Orange 

circle is location of more recent trench excavation described by Witter and Givler 

(2008).  Dashed rectangles show areas of Figures 3, 9, and 13. 

Figure 3.  Lidar image of Price Lake area.  See Figure 2 for location.  Both maps A and B 

show same lidar image.  Red lines on map B indicate scarps identified from lidar 

image.  Insets A, B, C, and D are topographic profiles across the Saddle Mountain 

East strand. 

Figure 4.  Geologic map of the study area, modified from Schuster (2005).  See Figure 1 

for map location.  White dotted line is mapped contact between upper- and lower-

member Crescent Formation (Tabor and Cady, 1978b).  Red dashed line indicates 

location of geologic cross section shown in Figure 8.  Black dashed rectangles 

show locations of maps in Figures 12 and 15.  Black lines are faults, dotted where 

concealed.  SMF, Saddle Mountain fault; FCF, Frigid Creek fault; CRF, Canyon 

River fault; LM and UM, lower and upper members of the Crescent Formation, 

respectively. 
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Figure 5.  Model for the Olympic Peninsula accretionary complex, modified from Tabor 

and Cady (1978a). 

Figure 6.  (A) Aeromagnetic anomalies (Blakely et al., 1999) of the study area.  See 

Figure 1 for map location.  Colored circles indicate location and magnitude of 

magnetic susceptibility measurements (Table 1).  (B) Isostatic residual gravity 

anomalies.  White solid lines with barbs are thrust faults from Figure 4; white 

solid lines without barbs outline Crescent Formation exposures.  White dotted line 

is geologically mapped contact between lower- and upper-member Crescent 

Formation (Tabor and Cady, 1978b).  Red dashed line indicates location of 

geologic cross section shown in Figure 8. 

Figure 7.  Graph showing magnetic susceptibility measurements (Table 1) as a function 

of magnetic anomaly amplitude at the same locations.  Error bars are ±1 standard 

deviation.  Sites are from the area near Lake Cushman and Price Lake and thus 

are a subset of the sites shown on Figure 6a. 

 Figure 8.  Geologic cross section derived by forward modeling of magnetic and gravity 

data.  (A) Calculated and observed magnetic anomaly.  (B) Calculated and 

observed gravity anomaly.  (C) Magnetic distribution derived by simultaneous 

modeling of gravity and magnetic profiles.  Model assumed to extend to infinity 

in both directions perpendicular to profile.  (D) Geologic interpretation of 

magnetic model.  Figures 4 and 6 show location of profile.  Δρ, density contrast 

relative to normal crust (2670) in kg/m3; χ, magnetic susceptibility in SI units 

multiplied by 1000. 

 Figure 9.  Magnetic anomalies over Price Lake, measured with nonmagnetic canoe.  See 

Figure 2 for map location.  Base map is lidar image of Figure 2.  Black dotted 

lines show location of canoe transects.  Tick marks are UTM coordinates in 

meters.  White dashed lines indicate magnetic trough on strike with lidar scarps 

(red lines).  Dashed yellow line shows location of cross section shown in Figure 

10. 

 Figure 10.  Cross-sectional interpretation of Saddle Mountain West fault using canoe-

based magnetic-survey data.  χ, assumed magnetic susceptibility in SI (Systèms 
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Internationale) units.  Model assumed to extend to great distances in the direction 

perpendicular to the profile direction.  Dotted lines are faults inferred from 

modeled unit offsets.  See Figure 9 for location of profile. 

 Figure 11.  Regional interpretation of the eastern and southeastern Olympic Peninsula, 

based on gravity and magnetic anomalies.  (A) Geologic map, modified from 

Schuster (2005).  White dotted line is contact between upper- and lower-member 

Crescent Formation (Tabor and Cady, 1978b).  (B) Aeromagnetic anomalies.  

Black dots indicate abrupt magnetization variations, calculated directly from 

aeromagnetic anomalies shown in background.  Dots on this map often coalesce 

together and form the appearance of continuous lines.  (C) Interpretation of 

geophysical data.  CPF, thrust contact between core sedimentary rocks and 

peripheral volcanic rocks; DBF, possible en echelon faults through Dabob Bay; 

SF, possible westward extension of the Seattle fault; TF, Tacoma fault; OF, 

Olympia fault; SMF, Saddle Mountain fault; FCF, Frigid Creek fault; CRF, 

Canyon River fault; GM, Green and Gold Mountain. 

Figure 12.  Interpretation of aeromagnetic anomalies and lidar scarps in the Saddle 

Mountain area.  See Figure 4 for map location.  (A) Aeromagnetic anomalies 

shown as rainbow colors.  Black lines indicate lidar scarps.  Color dots are abrupt 

variations in magnetization calculated directly from magnetic anomalies.  Dots 

are colored according to relative significance, with warm colors more significant 

than cool colors.  Along magnetic gradients, individual dots are very close 

together and appear as solid lines.  (B) Interpretation.  See caption to Figure 11 

for label definitions. 

Figure 13.  Lidar image of Frigid Creek area.  See Figure 2 for map location.  Both maps 

A and B show same lidar image.  Red lines on map B indicate scarps identified 

from lidar image.  White circle is location of Frigid Creek trench (Figure 14). 

Figure 14:  (A) Log of excavation across the Frigid Creek fault scarp.  Small blue dots 

show locations of radiocarbon ages.  (B) Retrodeformation of excavation log.  

The analysis indicated that 93 percent of the scarp uplift was caused by a single 

–29– 
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event in which Block 2 dropped 2.5 m and rotated clockwise 12°, forming a 

graben, and Block 3 dropped 1.9 m.  

Figure 15.  Interpretation of aeromagnetic anomalies at the western end of the Seattle 

fault.  See Figure 4 for map location.  (A) Aeromagnetic anomalies shown as 

rainbow colors.  Black lines indicate lidar scarps.  Color dots are abrupt variations 

in magnetization, indicative of magnetic contacts.  Dots are colored according to 

relative significance, with warm colors more significant than cool colors.  Along 

magnetic gradients, individual dots are very close to one another and appear as 

solid lines.  (B) Interpretation.  Gray arrows indicate north-south horizontal 

compression.  See Figure 11 for label definitions.   

 Figure 16.  Tectonic setting of the Saddle Mountain fault.  Red and blue stipple indicates 

Puget Sound uplift and sedimentary basins, respectively, as defined by regional 

gravity anomalies.  Red lines are faults of the Saddle Mountain deformation zone.  

Yellow arrows indicate regional strain direction:  north-directed compression in 

the Puget Lowland and northeast-directed compression (parallel to the plate 

convergence vector) in the Olympic Peninsula.  LRF, Leech River fault; RMF, 

Rattlesnake Mountain fault; WRF, White River fault; SCF, Straight Creek fault; 

OF, Olympia fault; OU, Olympia uplift; SU, Seattle uplift; KA, Kingston arch.  

Other labels explained in Figure 1 caption. 
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