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[1] We have used observations from Felzer and Brodsky (2006) of the variation of
linear aftershock densities (i.e., aftershocks per unit length) with the magnitude of and
distance from the main shock fault to derive constraints on how the probability of a
main shock triggering a single aftershock at a point, P(r, D), varies as a function of
distance, r, and main shock rupture dimension, D. We find that P(r, D) becomes
independent of D as the triggering fault is approached. When r � D P(r, D) scales as Dm

where m�2 and decays with distance approximately as r�n with n = 2, with a possible
change to r�(n�1) at r > h, where h is the closest distance between the fault and the
boundaries of the seismogenic zone. These constraints may be used to test hypotheses
about the types of deformations and mechanisms that trigger aftershocks. We illustrate this
using dynamic deformations (i.e., radiated seismic waves) and a posited proportionality
with P(r, D). Deformation characteristics examined include peak displacements, peak
accelerations and velocities (proportional to strain rates and strains, respectively), and two
measures that account for cumulative deformations. Our model indicates that either
peak strains alone or strain rates averaged over the duration of rupture may be responsible
for aftershock triggering.

Citation: Gomberg, J., and K. Felzer (2008), A model of earthquake triggering probabilities and application to dynamic deformations
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1. Introduction

[2] The desire to produce time-dependent earthquake
forecasts that account for how deformations arising from
one earthquake affect the likelihood of occurrence of
another motivates many earthquake triggering studies. More
generally, we would like to understand what causes earth-
quake ruptures to nucleate. Observations of the temporal
behavior of aftershocks have provided important constraints
on the nucleation process and viable physical models
[Dieterich, 1994; Gomberg, 2001; Freed, 2005; Steacy et
al., 2005]. We look to the spatial behavior of aftershocks to
provide new constraints on how the probability of trigger-
ing an aftershock at a point must scale with the size of and
distance from the triggering earthquake. As an example of
how this information might be used, we test the hypothesis
that the probability of triggering is proportional to posited
characteristics of dynamic deformations (i.e., those associ-
ated with transient, oscillatory, seismic waves).
[3] The development of our probability model begins

with observations of linear aftershock densities, or after-
shocks per unit length, r(r), documented by Felzer and
Brodsky [2006]. Particularly noteworthy features of the
aftershock densities measured by Felzer and Brodsky

[2006] are the constancy of the decay rate with distance,
regardless of the main shock rupture dimension. We de-
scribe aftershock densities as the joint probability of the
likelihood of encountering a nucleation site (i.e., a fault or
fault segment) at distance, r, from a main shock of rupture
dimension, D, or N(r, D), and the likelihood of failure being
triggered at that nucleation site by deformations associated
with that main shock, P(r, D). Herein r refers to the closest
distance between the aftershock hypocenter and the main
shock rupture plane. This description may be written
mathematically as

r rð Þ ¼ N r;Dð Þ
Dr

P r;Dð Þ ð1Þ

Since the aftershock density given by Felzer and Brodsky
[2006] is a linear measure, N(r, D) describes the total
number of nucleation sites that exist within a unit distance,
Dr, from r (i.e., between r ± Dr/2) (see Table 1 for a listing
of notation).
[4] A primary goal of this study is to derive a model of

the second component of this joint probability of equation
(1), P(r, D), the probability that an aftershock will be
triggered at a given available nucleation site. On the basis
of equation (1), we derive a model of P(r, D) using
observations of linear aftershock densities, r(r), and
employing a statistical model of the distribution of poten-
tial nucleation sites, N(r, D). Since for triggered aftershocks
N(r, D) is not known a priori, it is necessary to construct a
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model, so that the estimate of P(r, D) here is strictly an
inference. We emphasize two points here, the first being
that our objective is to capture only the first-order features
of the scaling of P(r, D) with r and D. This is appropriate
because the aftershock densities that constrain P(r, D)
represent stacks from many main shocks, our model of
N(r, D) is statistical in nature, and the hypotheses we test
using P(r, D) include measurements from many earth-
quakes. The second point is that the derivation of P(r, D)
does not involve any a priori assumptions about its
dependence on r and D and moreover, that it is completely
independent of whatever the posited causative deforma-
tions might be or their relationship (linear or nonlinear) to
P(r, D) (see section 5.1).
[5] In the sections that follow we first describe the basic

observations of r(r) (section 2); next we present our
statistical model of nucleation sites, N(r, D) (section 3),
and then infer and discuss what these imply about how
triggering probabilities scale with distance from and the
rupture dimension of causative main shocks (section 4). We
conclude by illustrating how this scaling information may
be used to test hypotheses about the viability of posited
triggering deformations and their relationship to triggering
probability, using dynamic deformation characteristics pre-

sumed proportional to triggering probability as an example
(section 5).

2. Linear Aftershock Densities

[6] In this section we describe linear aftershock densities,
r(r), as they guide the development of our probability
models. The measurement methodology and robustness
are described by Felzer and Brodsky [2006] and its supple-
mentary material so here we just summarize the salient
features of the measured aftershock densities. Felzer and
Brodsky [2006] made measurements of r(r) and modeled
them empirically with the relation

r rð Þ ¼ C10M�M minr�g ð2aÞ

where M is the magnitude of the triggering earthquake,
Mmin is the minimum magnitude of the aftershocks
measured, r is distance, and g and C are constants. We
show an example of r(r) for data from Felzer and Brodsky
[2006] in Figure 1. Note that on this graph only aftershocks
of M 5–6 main shocks are plotted at distances <3 km and
only aftershocks of M 2–3 main shocks are plotted at
distances >3 km. Three kilometers is about 1 fault length of
a M 5 earthquake and over 10 fault lengths of an M 3
earthquake [Wells and Coppersmith, 1994]. Thus, plotting
the data in this manner clearly demonstrates that r(r) is a
constant over distances spanning a fraction of a main shock
fault length to hundreds of main shock fault lengths, at least
out to absolute distances of 50–100 km. The full distance
range of aftershocks for M 2–6 main shocks is shown in the
figures of Felzer and Brodsky [2006].
[7] While the main data set of Felzer and Brodsky [2006]

was from Southern California, Felzer and Brodsky [2006]
also measured aftershock distances in Northern California
and Japan. In all locations they found an inverse power law
decay of aftershock density with distance, with some
variation in the power law exponent; while �1.37 was the
exponent found in Southern California, �1.45 was found in
Japan and �1.8 in Northern California.
[8] Prior to the publication of Felzer and Brodsky [2006],

it was generally held that small main shocks did not trigger
other earthquakes beyond distances of one two to fault
lengths. That the earthquakes identified by Felzer and
Brodsky [2006] are in fact distantly triggered aftershocks
of small main shocks can be readily verified, however, by
several different observations. First, the distantly triggered
events adhere to the same steep inverse power law decay of
density with distance as is seen for the near field aftershocks
(Figure 1). This decay is in strong contrast to the more
constant or increasing linear density with distance that
characterizes normal background seismicity [Kagan and
Knopoff, 1980; Helmstetter et al., 2005; Kagan, 2007].
Second, the temporal decay rate of the distantly triggered
earthquakes decays according to the modified Omori law
[Felzer, 2005], which is highly characteristic of aftershock
activity. Third, smaller earthquakes immediately preceding
the target main shocks display the same inverse power law
decay of density with distance from the main shocks as the
purported triggered events (D. Marsan, personal communi-
cation, 2008). This is expected since foreshocks are just
small main shocks with larger aftershocks [Reasenberg and

Table 1. Notation

Variable Value

Physical Parameters
r closest distance between triggering and potentially

triggered sites
M magnitude of the triggering earthquake
Mmin minimum magnitude of completion of the catalog used
D main shock rupture dimension
V volume of a shell surrounding the main shock fault.

everywhere at distance r from it with width Dr
h distance to the top or bottom the seismogenic layer
H seismogenic layer thickness
Vr rupture velocity

Empirical or Measured Parameters
g constant describing power law distance-decay

rate of linear aftershock densities
C constant of proportionality between linear aftershock

densities and 10M�Mminr�g

d effective dimensionality of the system of faults or
nucleation sites

A aggregate density of nucleation sites within the crust
in a region

pK(r, D) peak value of seismic waves observed at r from a
rupture of dimension D

T duration of seismic waves observed at r from a rupture of
dimension D

K proportionality constant between seismic deformation and
probability

Functions
r(r) linear aftershock or earthquake density
N(r, D) total number of potential nucleation sites
F(r) number of nucleation sites per unit volume
P(r, D) probability that a deformation associated with a main

shock of rupture dimension D at distance r will
trigger failure

g(r, D, t) time-varying displacement, velocity or accelerations
associated with passing seismic waves observed at
r from a rupture of dimension D

x(D) functional form in attenuation relation of
Campbell and Bozorgnia [2007]
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Jones, 1989; Felzer et al., 2004] and so the distribution of
distances between foreshocks and main shocks should be
the same as the distributions between main shocks and
aftershocks when the aftershocks are smaller.
[9] We rewrite the function for r(r) found by Felzer and

Brodsky [2006] in terms of the main shock rupture dimension,
D, by substituting D2 / 10M [Hanks and Kanamori, 1979;
Felzer et al., 2004;Helmstetter et al., 2005, 2006], resulting in

r rð Þ ¼ C10�M minD2r�g ð2bÞ

Figure 2 shows schematically that r(r) measures the number
of aftershocks within a volume shell, V, defined by a

surface, S, that is everywhere at a distance r from the main
shock rupture plane (not epicentral distance), and width Dr.
(Felzer and Brodsky [2006] actually use the nearest
neighbor method to determine aftershock density, but it is
equivalent to the volume count and more robust.) We
employ this same representation in the development of a
model of the linear density of nucleation sites, N(r, D)
Figure 3.

3. A Statistical Model of the Linear Density of
Nucleation Sites, N(r, D)

[10] To derive a model of N(r, D), the number of potential
aftershock nucleation sites as a function of distance from the
main shock fault plane, we use the same conceptual
geometry that was used to measure the linear aftershock
densities (Figure 2). Thus N(r, D) is the summation (inte-
gration) of all potential nucleation sites within a volume
shell of width Dr that is everywhere a distance r from the
main shock fault plane. The fact that r(r) is derived from
stacking measurements from many earthquakes implies that
the distribution of nucleation sites cannot depend on abso-
lute location, and as noted above, r does not represent an
absolute location but rather the closest distance between the
rupturing main shock fault plane and the potential after-
shock hypocenter. Since we seek to capture only the
statistical properties of N(r, D), we assume there is a
function F(r) that represents the number of nucleation sites
per unit volume, which matches the true distribution in its
statistical characteristics. Thus, N(r, D) may be derived by
integrating F(r) over the volume shell that surrounds the
main shock fault, is everywhere at distance r, and has width
Dr, or

N r;Dð Þ ¼
Z

V r;Dð Þ

F rð Þdv � F rð ÞS r;Dð ÞDr ð3Þ

As the references and discussion in the next paragraph
indicate, there is precedent for the description of F(r) as

F rð Þ ¼ Ar d rð Þ�3½ 
 ð4Þ

where A represents an average property of the crust in the
region and d the dimensionality of the system. For reasons
discussed below d may depend on r (e.g., change beyond
some distance related to the width of the seismogenic zone).
[11] Previous studies that measured the density of inter-

event distances from earthquake catalogs suggest that a
purely statistical representation is sensible, and that a single
power law function like equation (4) is appropriate [Kagan
and Knopoff, 1980; Helmstetter et al., 2005, Kagan, 2007].
They also show the distribution of nucleation sites cannot
depend on absolute location, such that the distance r in F(r)
may be locally defined, representing the distance between
the triggering source and nucleation sites. In other words,
they showed that the density does not depend on the
location, magnitude, or the dimensions of the region con-
sidered and thus, must be a property of the crust that is
scale-invariant and therefore can be locally defined. The
results of Felzer and Brodsky [2006] corroborate this; if this
were not true their stacking of measurements from earth-

Figure 1. Measured linear aftershock densities. Catalog
data are from the relocated 1984–2002 Southern California
catalog of Shearer et al. [2005], with a subset of linear
aftershocks density measurements from the study of Felzer
and Brodsky [2006]. Main shocks are defined as earth-
quakes that are separated from larger main shocks by at
least 100 km and by 3 days if the larger earthquake comes
first, 0.5 days if it comes after. These separations ensure that
we are looking at aftershocks of the intended main shock
rather than at aftershocks of some larger earthquake. All
aftershocks are M > 2 and occur in the first 5 min after their
main shock; the short time window separates aftershocks
from unrelated background earthquakes [Bak et al., 2002].
Triangles and circles are for M2–3 and M5–6 main shocks,
respectively. Note that we plot only a subset of aftershocks
in each magnitude range, retaining only aftershocks of M5–
6 main shocks at r < 3 km and of M2–3 main shocks at
larger distances. This highlights the continuity in densities
across the transition from near-field to far-field, which
occurs at about r � D � 3 km for the M5–6 main shocks.
The straight line is fit to the M2–3 data with an inverse
power law with an exponent of 1.30 ± 0.1. Vertical shaded
bands show the distances equal to one tenth to one hundred
times the approximate rupture dimensions, D, of M3 and 6
earthquakes, estimated using the relations of Wells and
Coppersmith [1994].
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quakes sampling different parts of the crust would not yield
sensible results. Kagan and Knopoff [1980] and Kagan
[1991] found that d�2 to 2.2 (for shallow earthquakes)
for small to major earthquake magnitudes and very local to
global distances. This implies a distribution of faults or
nucleation sites that is statistically indistinguishable from a
uniform distribution over an infinite plane (described as
having fractal dimension 2), but also that may be consis-
tent with a multitude of different complex fault systems.
Helmstetter et al. [2005] estimated d�2.1 for magnitude 2
to 7.5 southern California earthquakes.
[12] One additional complication that must be considered

is the change in the shape of the volume integrated over
when the boundaries of the seismogenic zone are encoun-
tered. Let r�h be the distance at which the boundaries of the
seismogenic zone are reached. At r�h the volume shell

integrated over begins to change from one that grows with r
in three dimensions to one that grows in two dimensions,
and thus we expect the decay rate of r(r) to decrease by a
factor of r at about r�h. Notably, no such scale change in
r(r) (the rate of aftershock decay with distance) is observed.
[13] We consider two alternative, end-member interpreta-

tions of the lack of scale change in r(r) with h, which lead
to different inferences about the decay rate of P(r, D). The
first assumes that r(r) is constant with distance because both
N(r, D) and P(r, D) are constant with distance. Consistency
of N(r, D), or the total number of nucleation sites in a
volume annuli at a given distance, in turn requires that F(r),
or the density of nucleation sites per unit volume, must
change around r�h (or at least F(r) must change if we only
count volume that is within the seismogenic zone; if we
include nonseismogenic volume the average value of F(r)

Figure 2. Cartoon of conceptual model employed in measuring and modeling linear aftershock
densities, which effectively is a count of the number of aftershocks within a volume, V, surrounding the
main shock rupture plane. (a) V is defined by a surface, S, that is everywhere a distance r from the rupture
plane of length L and width W, and has width Dr. (b) When viewed in map view the aftershocks (stars)
counted in the density at r are those within the shaded annulus. (c) For a vertical fault centered in a
seismogenic layer of thickness H, when r equals h = (H�D)/2, the volume becomes truncated as shown.
See text for more explanation.
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over the whole volume will remain constant). The second
model assumes a lack of scale change in r(r) with h because
N(r, D) and P(r, D) both have scale changes at r�h that
compensate for one another. In this model F(r), as expressed
per unit of seismogenic volume, does not change at r�h.
(We do not expect sharp scale changes even for earthquakes
of the same size, because their varying depths imply a
distribution of values of h.) Greater precedent exists for the
second interpretation in published studies, as noted above in

our discussion of F(r) (equation (4)). However, we cannot
rule out the first alternative, noting that the aforementioned
studies only infer properties of F(r) from linear (integrated)
density measures of interevent spacing, and that F(r) is a
statistical description of an undoubtedly complex distribu-
tion of a planar and clustered system of points or patches.
[14] With this in mind we can now evaluate the integral,

equation (3), for the model in which P(r, D) and N(r, D)
both depend on h. If we consider planar, rectangular faults

Figure 3. (a) Normalized integrated distribution of nucleation sites, N(r, D), described by equations (5)
normalized by the term 4pAr(d�1) so the curves do not depend on region-dependent factors A and d. r is
normalized by D. The solid curve represents N(r, D) for the h-independent P(r, D) model at all distances
or the h-dependent model at r � h and the dashed curve to the h-dependent model at r > h (see text).
Examples for three values of D/H are shown (H is the width of the seismogenic layer) with estimates of
values that would correspond approximately to H = 20 km and ruptures dimensions for M2, M 4, and
M 6 earthquakes. (b) Probability distributions, P(r, D), described by equation (8) (thick curves) for the
h-independent P(r, D) case (solid) and an h-dependent P(r, D) case with H/D = 2 (dashed). When
multiplied with the corresponding nucleation site distributions in Figure 3a, these should produce
aftershock densities that have approximately constant power law decay rates; nucleation site
distributions are normalized as in Figure 3a. (c) Estimates of the variation in g, or Dg(r), for different
values of n (labeled), calculated for h-dependent P(r, D) models in which D = H/2 and D = H/20
and for the h-independent P(r, D) model, which is independent of D when the normalized
distance r/D is used. Shaded areas indicate Dg values estimated for measured aftershock densities
in the work of Felzer and Brodsky [2006].
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of length, L, and width, W, to adequately represent the
average shape of all main shocks, the shell described by
S(r, D) is easily described and the integration easy to
perform. We have not found other shapes that permit
analytic expressions to be derived, but we suggest that
whether analytic or numerical, the results would not be
significantly different. For a rectangular fault S is com-
prised of (1) four quarter spheres of radius r each centered
on a corner of the fault, (2) two half cylinders of radius r
with axes of length L along the top and bottom edges of the
fault, (3) two half cylinders of radius r with axes of length
W along the sides of the fault, and (4) two planes of area
LxW parallel to the fault at distances ±r. The vector along r
is everywhere perpendicular to S so that Dr is properly
defined. The integral of equation (3) is

N r;Dð Þ
�r

¼ rd�3A 4�r2 þ 2�rLþ 2�rWð Þ þ 2WL
� �

¼ rd�14�A 1þ D

r
þ 1

2�

D2

r2

� �
r � h

N r;Dð Þ
�r

¼ rd�14�A 1� 1� h

r

� ��

þD

r
1� 1

�
cos�1 h

r

� �� 	
þ 1

2�

D2

r2

�
r > h ð5Þ

For simplicity we have assumed a vertical, square fault
centered within the seismogenic layer in which L�W�D.
With these assumptions h depends on D, such that it equals
half the difference between D and the width of the
seismogenic layer. In reality h will depend on the focal
depth and fault dip and the resulting model would be more
complex than that represented by equation (5). The result
for the model in which P(r, D) and N(r, D) remain constant
when r reaches the boundaries of the seismogenic zone has
the same form as equation (5) for r � h, but this form also
applies to all distances (i.e., r > h).

4. Inferences About the Probability of Triggering,
P(r, D)

[15] Now that we have a statistical model of N(r, D)/Dr
(equation (5)) we can make inferences about P(r, D) using
the description of r(r) embodied in equation (1). This
description tells us that unknown P(r, D) multiplied by the
model of N(r, D)/Dr (equation (5)) must equal the empirical
description of r(r) (equation (2)). This yields the equations

C10�MminD2r�� ¼ 4�A 1þ D

r
þ 1

2�

D2

r2

� �
rd rð Þ�1P r;Dð Þ r � h

¼ 4�A 1� 1� h

r

� �
þ D

r
1� 1

�
cos�1 h

r

� �� 	�

þ 1

2�

D2

r2

�
rd�1P r;Dð Þ r > h

¼ 4�A
h

r
þ D

r
1� 1

�
cos�1 h

r

� �� 	�

þ 1

2�

D2

r2

�
rd�1P r;Dð Þ r > h ð6Þ

The scale change at r�h corresponds to the model in which
P(r, D) changes at h. If it does not change at h as described
above, the above equality for r � h is true for all distances.
These equalities require that in the near-field, when r  D,

P r;Dð Þ / r� d�3ð Þ�gr  D ð7aÞ

In the far-field, when r � D, for the model in which
P(r, D) changes at h, the equalities require that

P r;Dð Þ / D2r� d�1ð Þ�g r � h

/ D2r� d�2ð Þ�g r > h
ð7bÞ

Simple power law functions that satisfy all these require-
ments are

Dm

aDþ rð Þn or
Dm

aDn þ rnð Þ r � h

Dm

aDþ rð Þn

r

D
þ 1


 �
h

D
þ 1

� � or
Dm

aDn þ rnð Þ

r

D
þ 1


 �
h

D
þ 1

� � r > h
ð8Þ

If P(r, D) does not change at h, then d effectively becomes
d(r, h) and the expressions at r < h apply beyond h as well.
Finally, the near-field equation (7a) requires that

g ¼ 3� d ð9Þ

a is an empirical constant. Felzer and Brodsky [2006] find
g�1.4 for Southern California corresponding to a constant
value of d�1.6. Note that the values of these two parameters
may be different in other regions.
[16] To make expressions (8) consistent with equation (7b),

we see that m�2. An uncertainty of about ±0.2 from the
value of 2 is permissible based on the aftershock scaling
data currently available in California (see Appendix A).
Consistency and equality (9) further imply that n = 2.
Therefore we are searching for a triggering deformation
that satisfies m = n = 2.

5. Testing Posited Deformations and Their
Probability of Triggering

[17] We now illustrate how this model of the scaling of
triggering probabilities with the distance from and rupture
dimension of triggering main shocks may be used to test
hypotheses about posited triggering deformations and their
relationship with triggering probability. We will show that
some dynamic deformations are consistent with our expres-
sions describing aftershock triggering probabilities if the
relationship between the posited deformation and the trig-
gering probability is linear, which is the most simple
physical model. As already noted, the development of
P(r, D) (equation (8)) depends only on the empirical de-
scription of the aftershock densities and statistical model of
the distribution of nucleation sites, and thus is completely
independent of the causative deformation and physics relat-
ing it to nucleation or triggering. We hypothesize herein that
specific measures of dynamic deformations may be linearly
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related to P(r, D) (see section 5.1 for justification), but
emphasize that other deformations and relationships may
be proposed. For example, N. J. Van der Elst and E. E.
Brodsky (Long and short range earthquake triggering as a
function of seismic wave amplitude, submitted to Nature,
2008) suggest that triggering probability scales as the square
root of peak velocity and Dieterich [1994] proposed a
nonlinear relationship between static stress changes and
triggering probability, with the latter cast in terms of seis-
micity rate changes.
[18] Our focus on dynamic deformations is motivated in

part by the long distances between triggering and triggered
earthquakes observed by Felzer and Brodsky [2006] and
earlier studies of remote triggering (see also summaries of
Freed [2005], Steacy et al. [2005], and Hill and Prejean
[2007]), evidence for dynamic triggering at shorter distan-
ces [Gomberg et al., 2003; Pollitz and Johnston, 2006], and
because we can perform these tests using actual observa-
tions. Note that Felzer and Brodsky [2006] showed that, at
least in the far-field, static stress changes and the Dieterich
[1994] frictional triggering model are inconsistent with the
aftershock densities. However, our goal is not further
evaluation of static stress changes but instead, exploration
of the role of dynamic deformations. Observations of
dynamic deformations, or at least proxies for them, come
from abundant seismic stations.

5.1. Justification for a Linear Relationship Between
Dynamic Triggering Deformations and Probabilities

[19] The specific hypothesis we test is that, whatever the
specific characteristic of the dynamic deformation consid-
ered, the probability that it triggers an earthquake is simply
proportional to its value. No predictive quantitative models
of the underlying physical mechanism of dynamic trigger-
ing have been proposed and thus, no guidance exists as to
what form a more complex relationship should take. For
example, even the well-vetted frictional model of Dieterich
[1994] that explains seismicity rate changes as a response to
static stress changes fails to predict both the temporal and
spatial decay rates of dynamically triggered aftershock
sequences [Gomberg, 2001; Felzer and Brodsky, 2006].
We therefore invoke Occam’s razor, adopting the simplest
assumption of proportionality as a reasonable, first-order
place to start.
[20] The reasonableness of a linear relationship may be

justified in several other ways. A number of observational
studies have demonstrated qualitatively a dependence of
triggering potential on deformation amplitude for both
dynamic and static deformation triggering (see references
in the work of Hill and Prejean [2007]). More recently,
several studies infer a linear relationship between aftershock
rates and transient afterslip based on the similarity between
the temporal variations of measured post-main shock time-
dependent displacements, measured aftershock decay rates,
and theoretical models of various deformation mechanisms
[Perfettini and Avouac, 2004, 2007; Savage and Yu, 2007;
Savage et al., 2007a, 2007b].
[21] Finally, the similarity between the scaling with r and

D in our model of triggering probability inferred from the
aftershock densities and that expected for seismic radiation
from a finite fault (see Appendix B) seems an unlikely

coincidence, suggesting a causal, approximately linear re-
lationship between the two.

5.2. Characterizing and Measuring Dynamic
Deformations

[22] We measured characteristics of seismic wave dis-
placements, velocities, and accelerations. Velocities have
been shown to be accurate proxies for dynamic strains
[Love, 1927; Jaeger and Cook, 1979; Gomberg and Agnew,
1996], and cyclic strain amplitude is often considered as the
independent variable in laboratory observations and theo-
retical models of dynamic nonlinearity and weakening
developed by physicists (see Johnson and Jia [2005] and
Savage and Marone [2008] for a review). Accelerations are
proxies for strain rates (since velocity is proportional to
strain). We examine both peak values of displacement
(PGD), velocity (PGV), and acceleration (PGA) by them-
selves and measures of cumulative deformation over some
duration. The importance of duration in failure processes
has been noted in geotechnical and other engineering
studies of dynamic deformation (e.g., of cyclic fatigue, soil
nonlinearity due to shaking). For example, liquefaction
potential due to strong shaking (i.e., extreme nonlinearity
[Snieder and van den Beukel, 2004]), and crack growth due
to cyclic fatigue [Hertzberg, 1995] show a dependence on
the number of loading cycles. Although not definitive,
studies of dynamic nonlinearity in rock and granular mate-
rials indicate that weakening increases with the number of
cycles [Johnson and Jia, 2005; Savage and Marone, 2008].
[23] One measure of cumulative deformation we exam-

ined is the product of the peak deformation and the rupture
duration. We assume that a rupture propagating across a
finite fault occurs as a series of radiating subevents that all
fail over a duration D/Vr, with rupture velocity, Vr, that is
relatively constant among most earthquakes. Thus rupture
duration is proportional to D. As a result when rupture
duration is considered to be consistent with triggering
probabilities (equation (8)), the peak deformation must scale
as D rather than D2. This perspective implies that the
higher-frequency radiation is most significant for triggering,
consistent with studies that show high-frequency radiation
per unit rupture area is the same for moderate to great
earthquakes [Frankel, 2006]. This also is consistent with the
study of Hanks and McGuire [1981], who suggest that peak
accelerations scale with the rupture duration because ‘‘larger
earthquakes have larger peak accelerations only because
they last longer, not because they are intrinsically more
powerful.’’ This type of cumulative deformation is particu-
larly sensible to investigate since our relationships indicate
that aftershock production is also a constant per unit rupture
area.
[24] Another cumulative measure of deformation that

may be considered is the integral or sum of deformations
over the duration of the wave train rather than the duration
of the rupture source. This cumulative measure also should
scale with rupture dimension but decay more slowly with
distance than the peak deformation averaged over the
rupture dimension. The slower decay reflects the fact that,
while the amplitudes decrease with distance, the duration
increases. Additionally, surface wave dispersion and scat-
tering produces a much longer duration than the source
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rupture and is a prominent feature of the wave train in the
far-field. We describe how we measure these cumulative
deformations in Appendix C.
[25] We investigate the dynamic deformations both by

using our own direct measurements from seismic data and
by using published attenuation relationships, as described in
the next sections. Seismic source and wave propagation
theory also provide some expectations of how the ground
motion characteristics we measure may vary with D and r.
Indeed, they suggest a similarity with the scaling implied in
P(r, D) and thus that our hypothesis warrants testing.
However, theoretical models constrain the temporal or
spectral characteristics of highly simplified sources and
wavefields that do not precisely relate to our measurements
of time domain peak deformations or cumulative deforma-
tions. We discuss this further in Appendix B.

5.3. Published Attenuation Relations

[26] Relevant published attenuation relations relate
measurements of PGA and PGV to some measure of the
distance and magnitude M (or D) via an equation of the
form

pk r;Mð Þ ¼ 10k10
m
2
M10�brR�q ¼

pk r;Dð Þ ¼ 10kDm10�brR�q

ð10Þ

where k, b, and q are empirical constants. The terms in most
attenuation relations have some rooting in theoretical
descriptions of seismic wave radiation and propagation,
with 10�br describing anelastic dissipation and scattering
(b�0 in many cases), R�q describing geometric spreading,
and Dm describing the dependence on rupture size (see
Table 2). The probabilities of equation (8) predict scale
changes around distances r�D and possibly at r�h. These
are included in many attenuation relations in various ways
but usually as a single parameter within the single function
R. For example, R may equal r2 + d2 in which d is a fit
constant interpreted as an average hypocentral depth (see
Table 2).

[27] We discuss two sets of recently developed attenua-
tion relations most relevant to this study. The relations of
Kanno et al. [2006] are based on data from the same HiNet
network in Japan that we have used data from and these
authors measure distance similarly (see section 5.4.1 be-
low), although for mostly larger earthquakes (Mw � 5.5)
and for r from 1 to 200 km. Kanno et al. [2006] describe
PGA or PGV as

pk r;Dð Þ ¼ 10k
Dm

aDþ rð Þ e
�2:303br ð11Þ

with k = �1.93, m = 1.4, aD = 0.0022 � 10M/2, b = 0.0009
for PGV and k = �1.93, m = 1.412, aD = 0.0055 � 10M/2,
b = 0.0031 for PGA. The scaling with D, or m, differs
from m�2, and while perhaps consistent with the far-field
distance scaling of P(r, D), it does not fit well in the near
field (Figure 4a).
[28] We also examine the PGA and PGV relations of

Campbell and Bozorgnia [2007], developed as part of
the NGA earthquake hazard study (Power et al. [2008];
see also http://peer.berkeley.edu/lifelines/nga.html), be-
cause we also use the same NGA data ourselves (section
5.4.2). Campbell and Bozorgnia [2007] use observations
from the NGA database for earthquakes with M > 4.0
recorded out to 200 km, although there are few for M �
5.5 earthquakes particularly at distances less than 10 km.
The Campbell and Bozorgnia [2007] relations may be
written as

p r;Dð Þ ¼ 10k
Dm

d2 þ r2ð Þ nþ2c logDð Þ M � 5:5

¼ 10k
x Dð Þ

d2 þ r2ð Þ nþ2c logDð Þ M > 5:5
ð12Þ

We denote their more complex scaling with rupture
dimension at larger magnitudes by x(D) (Figure 4b). For
M � 5.5, their scaling with D depends on distance, varying
from m = 0.8 and m = 0.7 at 0 km to m = 1.4 and m = 1.2 at

Table 2. Published Attenuation Relation Parametersa

Reference

m b q R

PGA PGV PGA PGV PGA PGV PGA PGV

1 (3.9–0.404M) (4.1–0.386M) 0 0 (1.56–0.00376M3) (1.42 –0.00355M3) re
2 + 8.92 re

2 + 7.32

(2.5 � M � 6.3) (2.5 � M � 6.3) 0.62 to 1.50 0.53 to 1.37
1.36 to 2.89 1.67 to 3.14

2 0.612 0.91 0 0 0.5 0.5 rs
2 + 5.82 rs

2 + 3.62

3 0.458 0.98 0 0 0.664 0.72 rj
2 + 7.272 rj

2 + 7.062

4 2.0 2.2 0.0032 0.0027 0.5 or 0.35 0.5 or 0.35 rh
2 rh

2

5 0.62 1.16 0.0032 0.0027 0.5 or 0.35 0.5 or 0.35 rh
2 rh

2

6 1.26 1.58 0.0031 0.0010 0.66 0.71 (rh + .96)2 (rh + .88)2

7 1.162 1.62 0.00414 0.00268 0.5 0.5 (rr + .00871D)2 (rr + 0.00871D)2

8 1.18 1.42 0.0039 0.0023 0.5 0.5 rr
2 + 0.0075D2 rr

2 + 0.0075D2

9 1.12 1.40 0.0031 0.0009 1.0 1.0 rr + 0.0055*D.74 rr + 0.0022*D.64

10 0.434 0.6 0 0 0.53–0.0425M 0.504–0.0425M rr
2 + 5.62 rr

2 + 4.02

aParameters used in published attenuation relations, following equation (9). Distance measures vary, with rj = closest horizontal distance to the vertical
projection of the rupture (Joyner-Boore distance), rr = closest distance to the rupture surface, rh = hypocentral distance, re = epicentral distance, and rs =
closest distance to the surface projection of the rupture surface [Abrahamson and Shedlock, 1997]. References: 1, Bragato and Slejko [2005]; 2, Sabetta
and Pugliese [1987]; 3, Pankow and Pechmann [2004]; 4, Boatwright et al. [2003] M � 5.5; 5, Boatwright et al. [2003] M > 5.5; 6, Liu and Tsai [2005]; 7,
Wu et al. [2001]; 8, Garcia et al. [2005]; 9, Kanno et al. [2006]; 10, Campbell and Bozorgnia [2007] for M � 5.5, and for M > 5.5 the power D is scaled by
becomes a function of M equal to 0.434–0.46(M-5.5) or 0.6–0.268(M-5.5) for 5.5 < M < 6.5 and 0.434–0.46(M-5.5)�0.228(M-6.5) or 0.6–0.268(M-
5.5)�0.0166(M-6.5) for PGA and PGV, respectively.
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200 km for PGV and PGA, respectively. These all differ
significantly from the value in P(r, D) for peak value alone
(m must be �2), but PGA averaged over the rupture
duration is consistent (m must be �1). The Campbell and
Bozorgnia [2007] relations predict that the far-field distance

decay rate increases as magnitude decreases; i.e., for PGV
the relation varies from �r�1.2 to �r�1.5 and for PGA from
�r�1.1 to �r�1.6 for M6 to M3, respectively (Figure 4b).
The lower values compare well with the h-dependent form
of P(r, D).

Figure 4. (a) Peak ground velocity (PGV) attenuation relations (solid curves) for a M5 earthquake
constrained by HiNet data from Japan (red) published by Kanno et al. [2006] and by the global Next
Generation Attenuation (NGA) data set published by Campbell and Bozorgnia [2007] (black). Theses
have comparable decay rates in the far-field beyond �8 km, to one another and to triggering probabilities
scaled arbitrarily to PGV (dotted curve), but all differ in the near field. (b) NGA PGA attenuation
relations (solid black curves) that have distance decay rates that change with magnitude (compare with
dashed lines describing two power law decay rates). As for PGV, the Kanno et al. [2006] relation for
Japanese earthquakes is similar in the far field but not in the near field. (c) Published attenuation relations
for peak ground acceleration (PGA, left axis) and peak ground velocity (PGV, right axis). References
numbered in the legend are listed in Table 2. Although plotted together, the distances in many of these are
measured differently (see text and Table 2).
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[29] We also examined relations published in seven other
recent studies (Figure 4c and Table 2). While sharing
similarities with P(r, D), a one-to-one parameter comparison
is difficult to make for any of them. One reason is because
the distance dependent term R typically does not have
separate terms accounting for h and D, and r is measured
in a variety of ways [Abrahamson and Shedlock, 1997].
Moreover, observational or model uncertainties on the fit
parameters are not generally provided. Qualitatively, PGA is
inconsistent with the �D2-scaling (i.e., m�2) required if we
are testing the peak values alone, but may be consistent with
the D-scaling (i.e., m�1) required if testing the product of
peak value and rupture duration. PGV relations may be
consistent with m�2. The distance decay is more difficult to
judge, particularly in the near field, but the far field decay
rates for both PGA and PGV lie between r�1 and r�2, which
are the required rates for the h-dependent and h-independent
P(r, D) probability models, respectively. Thus, we can only
say that our hypothesis cannot be ruled out for either type of
ground motion, PGA or PGV.
[30] If the hypothesis that the probability of triggering

described by equations (8) is proportional to dynamic defor-
mation characteristics is correct, as noted above, triggering
deformations must decay more slowly as the fault is
approached, and ‘‘saturate’’ (i.e., reach a limiting value next
to the fault regardless of the size of the rupture). Both these
features have long been recognized in the seismic hazard
attenuation literature, although the question of saturation is
still debated [Anderson, 2000; Bragato, 2005]. The most
recent results of McGarr and Fletcher [2007] support satu-
ration, evident in near-fault slip velocities measured from
PGVs for earthquakes and mine failure events spanning
orders of magnitude in size, laboratory experiments, and slip
models that all converge to similar values. The NGA data
discussed in the next section also show a decreasing decay
rate as the fault is approached and convergence to a single
value, which may be explained as a consequence of radiation
from a finite rupture plane (see Appendix B and Anderson
[2000]) and the requirements of simple models of rupture and
seismic radiation [Brune, 1976].

5.4. Ground Motion Observations

[31] Our own data analysis perhaps should be viewed
largely as illustrative, serving as guidance for future studies.
The data we use come from many locations globally. A
large portion of our dynamic deformation data come from
two of the most densely monitored areas in the world,
southern California in the United States and Japan, but
despite the optimal coverage we found it possible only to
measure far-field deformations for these. This is because the
closest distances to the rupture planes of small to moderate
magnitude earthquakes at typical hypocentral depths usually
far exceeded their source dimensions. To examine near-field
deformations requires data from either large, infrequent
earthquakes that rupture near the surface or extraordinarily
shallow, small earthquakes that occur near recording sta-
tions. The relative rarity of these types of earthquakes thus
requires combining data from a variety of tectonic environ-
ments and instrumentation. Fortunately such a data set has
been compiled for the NGA project and is publicly avail-
able. We examine the NGA data more qualitatively than for
the other two data sets because of the greater heterogeneity

of the regional structure, source and site conditions, etc. In
this section we describe these data sets, the measured
scaling with earthquake size and distance for each. In each
case we test our hypothesis that each deformation measure
is proportional to our model of triggering probability.
5.4.1. Far-Field Scaling From Japanese and
Californian Data
[32] From Japan we used ground motion data from the

HiNet network operated by the National Research Institute
for Earth Science and Disaster Prevention (NIED). This
network includes over 700 stations, each with three-com-
ponent, 100-m borehole, weak motion velocity seismome-
ters. We measured ground motion characteristics for 22
Japanese earthquakes (Table 3) with magnitudes of M3.0 to
M6.1 (Japanese Meteorological Agency magnitudes). We
selected the shallowest, onshore events to minimize the
source-station distances, and still almost all the ground
motion measurements are in the far-field. For these data
we use hypocentral distances because the rupture planes are
not known for many of the earthquakes, noting that at these
distances the difference between hypocentral and the closest
distance to the rupture is insignificant. To estimate the
scaling with rupture dimension D of the type of dynamic
displacement that we are investigating we first correct all
measurements to a reference magnitude M = 5 by multi-
plying it by 10(M�5)m/2, (which is the equivalent of multi-
plying by D(M�5)m), for trial values of m from 0.2 to 4. We
then compute a correlation coefficient between main shock
magnitude and amplitude for each value of m. Finally we
select the value of m that minimizes the correlation. The
power law distance decay rate is estimated using a least
squares fit to the corrected amplitudes. Uncertainties in both
parameters represent 98% confidence intervals and are
estimated using bootstrap sampling (1000 bootstraps per
parameter value). Figure 5 and Table 4 summarize the

Table 3. Main Shock Source Parameters

Origin Time
(year/month/day/hmin:s)

Epicenter
(latitude,
longitude)

Depth
(km) M

Name/
Location

Japanese Earthquakes
2005/02/08/2323:09 35.020, 132.788 7.0 3.0
2005/02/05/0753:56 38.380, 141.170 10.0 3.1
2005/01/18/125032 37.367, 139.000 8.0 4.7
2005/01/01/1630:26 35.862, 137.580 6.0 4.2
2004/12/28/0930:36 37.318, 138.985 8.0 5.0
2004/12/14/0556:10 44.073, 141.703 9.0 6.1
2004/11/06/1511:02 37.152, 138.740 11.0 3.0
2004/10/27/0559:19 37.363, 138.937 11.0 4.2
2004/10/25/0546:41 37.317, 138.885 15.0 3.7
2004/10/25/0417:10 37.203, 138.830 10.0 3.0
2004/10/24/0129:18 37.433, 138.930 15.0 4.1
2004/10/04/2333:51 35.930, 136.380 12.0 4.8
2004/09/04/0218:38 41.260, 140.820 14.0 3.8
2004/07/26/1554:56 35.755, 137.110 11.0 4.5
2004/07/09/1054:12 39.910, 141.040 9.0 4.4
2004/06/07/2305:23 34.210, 135.080 8.0 4.5
2004/06/03/1004:29 35.780, 137.550 7.0 3.2
2004/05/08/1949:13 35.515, 136.280 11.0 3.4
2004/03/14/1918:24 39.921, 139.978 15.0 3.7
2004/03/03/0455:59 35.73, 137.05 13.0 3.7
2004/03/02/0630:44 38.46, 141.21 12.0 3.4

California Earthquakes
2005/06/12/15:41:46 33.529, �116.573 14.2 5.2 Anza
2005/06/16/20:53:26 34.058, �117.011 11.6 4.9 Yucaipa
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scaling of peak displacements, velocities, and accelerations
estimated for the HiNet data.
[33] The second data set includes ground motions for the

2005 Mw5.2 Anza and 2005 Mw4.9 Yucaipa earthquakes
(Table 3) in southern California, measured from accelero-
grams recorded by California Geological Survey CSMIP,
the U.S. Geological Survey NSMP, University of California,
San Diego’s (UCSD) Anza strong motion networks, and
from broadband velocity seismograms recorded by UCSD’s
Anza network and the California Integrated Seismic Net-
work. We chose these two earthquakes because of the
abundance of data and well-characterized aftershock
sequences [Felzer and Kilb, 2006]. The depths and sizes
of these ruptures limit ground motion measurements to far-

field distances of �10 km and from two earthquakes we
cannot estimate the scaling with D. However, we can
measure the distance decay rate for all three deformation
characteristics (Table 4, Figure 6).
[34] As a reminder, consistency with our hypothesis

requires that the aftershock triggering deformations scale
with distance from the fault as r�n with n�2 and with fault
dimension as Dm with m�2 if considering peak deforma-
tions alone and m�1 if considering peak deformation
averaged over the rupture dimension or cumulative defor-
mations summed over the wave train. If P(r, D) changes at
r�h then the observed deformation will decay as r�(n�1) at
r > h, which is the region in which the vast majority of our
measurements are located. Our hypothesis also requires

Figure 5. (left) Peak ground accelerations (PGA), velocities (PGV), and displacements (PGD) measured
for 22 Japanese earthquakes (see Table 2) with 3.0 � M < 4.0 (red), 4.0 � M < 5.0 (blue), 5.0 � M < 6.0
(orange), 6.0 � M (green) at HiNet seismic stations and plotted as a function of hypocentral distance, r.
(right) We find the scaling parameters that best remove all dependence on r and rupture dimension, D (or
equivalently, M), assuming a far-field scaling of Dm and a power law decay rate with r. When corrected
for this scaling (see the text for the fitting procedure), the scatter for all the data together is comparable to
that for any individual event.
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that the aftershock triggering deformation converge to a
magnitude-independent value near the fault surface.
[35] We have a sufficient range of event sizes to measure

the scaling with D only for the Japanese data, and measure
m = 1.8 ± 0.2, 1.6 ± 0.2, 1.4 – 0.1 + 0.2 for peak
displacements, velocities (strains), and accelerations (strain
rates), respectively (see Table 4). Thus we can rule out peak
strain rates (consistency with P(r, D) requires m�2), as well
as peak strains and displacements averaged over the rupture
dimension (consistency requiring m�1). The latter also
suggests that cumulative displacements and strains summed
over the wave train may be ruled out, although this is based
on our assumption that these cumulative measures scale
similarly; we cannot verify this assumption because we
have measured cumulative deformations over the wave train
only for the two California earthquakes.
[36] We measure exponents of the power law distance

decay rates of peak deformations for both the Japanese and
California data and of cumulative deformations only for the
California data. We obtain power law exponents of 1.5 ± 0.2
and 1.3 ± 0.2 for peak displacements, 1.8 ± 0.2 and 1.8 ±
0.2 for peak velocities (strains), and for peak accelerations
(strain rates) 2.0 ± 0.2 and 2.2 ± 0.2, respectively (Table 4).
(The standard Richter ML relationship for short period
seismic wave amplitude decay in California assumes a
power law decay exponent of 1.2 [Richter, 1935], consistent
with our measurements.) This increasing decay rate going
from displacement, to velocity, and to acceleration is
consistent with the findings of Hanks and McGuire
[1981]. Cumulative deformations decay more slowly, with
exponents of 0.8 ± 0.6, 1.1 ± 0.4, and 1.7 ± 0.4 for
California recordings of displacement, velocity, and accel-
eration, respectively. These and the D scaling results indi-
cate that peak strains, peak strain rates averaged over the
rupture duration, or cumulative strain rates are proportional
to P(r, D) in the far-field, assuming an h-independent P(r,
D) model. Alternatively, if we assume P(r, D) depends on h,
only peak displacements are proportional to P(r, D).
[37] The distance decay rates we obtain for PGA and PGV

are significantly greater than those estimated from published
attenuation relations. We suggest several possible reasons
for this. The similarity in our measurements with those for
two earthquakes in the NGA data set from the same region
(Figure 6) suggests that the difference is not due to some
measurement bias but rather to the choice of functional form
fit to the data. We fit a single, simple power law to the data

from the entire distance range of �10 to 100 km, noting that
statistical tests showed that fitting a more complex function
than a single power law was not warranted. The relatively
greater abundance of data sampling distances > �40 km,
where attenuation should be more significant, may bias the
estimate toward values higher than what may be appropriate
at shorter distances (K. Campbell, personal communication,
2008), noting that the published relations are derived by
fitting more complex functions and focus on fitting obser-
vations at distances < �40 km where potential damage is
more likely and attenuation may be less significant. While
running through the median of the data for most distances
our fit relation appears qualitatively to overpredict the
median value at distances less than �30 km. Another
possible reason for our steeper decay rates is that the
magnitudes of the events we consider, particularly in the
Japanese data set, are smaller than those generally examined
in published studies, which focus on earthquakes with M >
�5. The Campbell and Bozorgnia [2007] attenuation rela-
tions predict faster decay rates with decreasing magnitude,
implying that perhaps the more rapidly attenuating higher
frequencies are more dominant in determining the PGA or
PGV of smaller earthquakes.
5.4.2. Near- and Far-Field Scaling From Global Data
[38] The publicly available NGA data set of PGD, PGV,

and PGA measurements allows us to examine scaling at
both near- and far-field distances. We selected NGA data for
those earthquakes for which the closest distance to the fault
and estimates of the rupture area also exist in the database,
resulting in a subset of observations for events with M > 5.5
recorded between 0.07 and 200 km. This data set is similar
to that that for PGV only presented by Gomberg and
Johnson [2005] but is more complete and measurements
were made more uniformly. Key features of the NGA data
are the decreasing decay rate as the fault is approached at
distances less than r�D and the convergence of PGVs to
an approximately constant value regardless of source size
as r ! 0 (Figure 7). The inferred triggering probabilities,
P(r, D), share these same features, suggesting the two are
proportional and causally related as hypothesized (see the
end of section 4).
[39] To examine the scaling of the NGA data easily

from the near- to far-fields we normalize the distances using
~r = r/D. The transition from near- to far-fields occurs at
many different distances for a data set containing a large
range of rupture dimensions (Figure 7a), but for this scaled

Table 4. Measured Scaling Parametersa

Data Source D Scaling
r Decay Rate Scaling,
Peak Deformation

r Decay Rate Scaling,
Cumulative Deformation

r Decay Rate Scaling,
Duration

California
Acceleration 2.2 (±0.2) 1.7 (±0.4) 0.5 (±0.3)
Velocity 1.8 (±0.2) 1.1 (±0.4) 0.6 (±0.3)
Displacement 1.3 (±0.2) 0.8 (±0.6) 0.5 (±0.4)

Japan
Acceleration 1.4 (�0.1, +0.2) 2.0 (±0.2)
Velocity 1.6 (�0.1, +0.2) 1.8 (±0.2)
Displacement 1.8 (±0.1) 1.5 (±0.2)

aThe D scaling estimates are the estimated powers m of Dm in equation (8). The r decay rate scaling for peak or cumulative
measurements are made at r > D and r > h, so they correspond to n or n � 1 in the modeled far-field power law. We assume
durations follow a power law increase with distance and report measured powers fit to durations (right column) estimated as
part of the cumulative deformation measurement. All uncertainties represent 98% confidence levels.
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distance the transition occurs at ~r � 1 regardless of the
earthquake’s size and ~r  1 or ~r � 1 corresponds
approximately to the near- or far-fields, respectively.
[40] Our hypothesis test compares the data with the

inferred probability model, P(r, D) (equation (8)). For most
of the earthquakes in the NGA database the ruptures are
large enough that h = 0. When h = 0 and using the scaled
distance, the probability becomes

Dm�n

aþ ~rð Þn or
Dm�n

aþ ~rnð Þ ð13aÞ

assuming P(r, D) does not change at h. If P(r, D) does
change at h then the equation becomes

Dm�n

aþ ~rð Þn ~r þ 1ð Þ or Dm�n

aþ ~rnð Þ ~r þ 1ð Þ ð13bÞ

In both cases consistency with our hypothesis requires that
m�n�2 if considering peak values alone or m�1 and n�2
for peak values averaged over the rupture duration.
[41] The above requirements imply that if the peak

values are consistent with our hypothesis then no depen-
dence on D should exist when data are plotted as a function
of ~r. In Figures 7b–7d we plot the NGA PGDs, PGVs, and
PGAs in terms of ~r, and find qualitatively that only PGVs
become independent of D. This suggests that for peak
values, only strains are proportional to our triggering
probability model. Similarly, if the hypothesis is correct
for peak values averaged over the rupture duration, then the
D-dependence should vanish for plots of peak values
divided by the corresponding D. This appears true for
strain rate, evident in plots of PGAs divided by the
appropriate D versus ~r (Figure 7e). Figure 7c shows that
for PGDs m > n, suggesting that both peak displacements
alone or averaged over the rupture duration are inconsistent
with our hypothesis.
[42] The NGA data are consistent with our hypothesized

proportionality with P(r, D) and narrow the possible defor-
mations (i.e., eliminating peak displacements), indicating
triggering deformations must be either peak strain or peak
strain rate averaged over rupture duration. (The NGA data
provide no constraint on the cumulative deformations
summed over the wave train.) This is consistent with
inferences from the Californian and Japanese data and the
h-independent model of P(r, D).

6. Discussion

[43] A primary goal of this study was to develop a model
of how triggering probabilities scale with distance from and
the rupture dimension of a triggering main shock. Such a
model can then be used to test hypotheses about the
triggering potential of specific deformations, which can be
measured or modeled. This is important for evaluating
physical models of dynamic weakening and nucleation
[Beeler and Lockner, 2003, Brodsky and Prejean, 2005,
Johnson and Jia, 2005] and for applications that use
probabilities directly (see below). In Figure 8a we show
examples of how the probability of triggering a single
aftershock varies with distance for hypothetical main shocks

Figure 6. Measured peak deformations (left axis) for the
M5.2 Anza (asterisks) and M4.9 Yucaipa (crosses),
California earthquakes and cumulative deformations (left
axis) for the corresponding earthquakes (solid and open
symbols, respectively). Measurements for M5.2 and a M4.9
Anza-region earthquakes in 1980 and 2001, respectively,
from the NGA database are also shown (triangles). All
measurements have been scaled to a magnitude M5.2
assuming the same scaling with D measured for the
Japanese earthquakes. Power law decay rates were fit to
the measurements we have made from 10 to 100 km
(dashed lines). (bottom) Also shown are the durations
estimated as part of the cumulative deformation measure-
ment (coded identically as the latter). Durations increase
with distance nearly identically regardless of the motion
type; this increase explains the slower decay rate of the
cumulative deformations relative to the peak values because
the former depends on both the duration and peak
amplitude.
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of various magnitudes. Note that the probabilities very close
to the fault are the same regardless of main shock magni-
tude. Away from the main shock fault aftershock triggering
probabilities at a point depend on the rupture dimension
such that for small to moderate magnitudes, by a distance
equal to �1 rupture dimension probabilities have decreased
to 10 to 20 percent of the maximum. For larger magnitudes
and distances the probabilities decay more slowly and may
change scale from �1/r2 to �1/r.
[44] Linear aftershock densities also describe probabili-

ties but of a different type; i.e., they describe the likelihood
of an aftershock occurring at a given distance at any
azimuth surrounding the triggering fault. That is, instead
of describing the probability of an aftershock occurring at a
point, linear aftershock densities describe the rate of after-
shocks in an annulus surrounding the fault. In this case, the
relative probability (that normalized by the total number of
aftershocks for a given earthquake) falls off at a constant
rate with distance, without any change of scale associated
with the rupture dimension. In other words, while the
probability of observing a single aftershock at some dis-
tance from a main shock of magnitude M scales with the
total number of aftershocks or as 10M�D2, the change in
probability with distance is the same regardless of M
(Figure 8b).
[45] The ability to estimate both types of probabilities has

practical applications for time-dependent earthquake fore-
casting. For example, real time maps of earthquake ground
motions, i.e., dynamic deformations, are now routinely
produced for moderate and large earthquakes. The results
of this case study suggest that a map of PGVs perhaps could
be used directly to estimate the likelihood of an aftershock
occurring at a specific location on the map using the first
type of probability or anywhere at a given distance using the
second.
[46] We comment only briefly on the implications for

static stress triggering because Felzer and Brodsky [2006]
already have shown that the hypothesis that static stress
changes trigger aftershocks at short times can be rejected, if
one assumes that static stress change leads to aftershock
occurrence via the nonlinear rate and state friction model
described by Dieterich [1994]. Static stress change can also
be rejected as the trigger if a linear relationship between
stress amplitude and triggering is assumed, noting that
numerical calculations show that far-field static stresses
decay more rapidly than dynamic stresses by �1/r [Cotton
and Coutant, 1997] and theoretical static stresses from a
dislocation source decay as 1/r3 [Helmstetter et al., 2005].
Both the nonlinear and linear far-field static stress changes
decay too fast to be consistent with the triggering probabil-

ities we infer. This decay is faster than the power law
exponent of n = 2 that we infer for a linear triggering
relationship.

7. Summary and Conclusions

[47] We have developed a model of how the probability
of triggering an aftershock scales with distance, r, and main
shock magnitude or equivalently rupture dimension, D,
based on observations of linear aftershock densities. Spe-
cifically, we find that triggering probabilities in the far-field
(r > > D) are proportional to Dm with m�2 and become
independent of D as r approaches zero. The distance scaling
requires that in the far-field triggering probabilities decay
with distance approximately as r�n with n�2, with a
possible change to r�(n�1) at r > h. (h is the distance from
the edge of the rupture plane to the top or bottom of the
seismogenic zone.) All these features are embodied math-
ematically in equations (8).
[48] The inferred probability model may be used to test

hypotheses about posited triggering deformations and their
potential to trigger. As an example we have hypothesized
that triggering probabilities are proportional to various
characteristics of dynamic deformations. We examined three
types of dynamic deformations; displacements, velocities
(strains), and accelerations (strain rates). For each of these
we measured peak deformations, peak deformations lasting
the duration of rupture, and cumulative deformations
summed over the duration of the wave trains. The latter
two measures of accumulated deformation differ in that the
first depends only on the rupture process and the later also
includes the affects of propagation, which spreads the
deformations over durations that generally increase with
distance.
[49] Two of the three data sets we examined sample a

single region; Japan for 22 mostly small earthquakes and
southern California for two moderate, M�5, earthquakes.
For these we measure peak and cumulative deformations
from seismic data, which are available only at far-field
distances. Our analysis of the Japanese and Californian data
sets yields peak value distance decay rates that exceed most
published values, probably because we fit a single decay
rate at all distances and because we sample smaller magni-
tude earthquakes. The third data set samples deformations at
near- and far-field distances from global M > 5.5 earth-
quakes taken from the NGA database. From these three data
sets we find that only peak strains or peak strain rates
averaged over the rupture duration scale with distance and
rupture dimension in the same way as the inferred proba-
bility model, P(r, D), that has no dependence on the

Figure 7. Peak ground motion measurements from the NGA database for 5.5 < M < 7.9 earthquakes globally recorded
between 0.07 and 200 km. Symbols are color coded so colors change from red to yellow, orange, green, and blues as
magnitudes increase. Curves on each are qualitative fits of the functional forms (1 + r)/(0.2 + r2) (solid) and 1/(0.6 + r2)
(dashed) expected if peak deformations are proportional to triggering probabilities that assume h-dependent P(r, D) and
h-independent P(r, D) models, respectively. (a) Peak velocities (PGVs) plotted as a function of the closest distance to the
fault. (b) The same measurements in Figure 7a but now as a function of r/D. Estimates of D are also from the NGA
database. (c) The same measurements in Figure 7b but for peak displacement or PGD. (d) The same measurements in
Figure 7b but for peak acceleration or PGA. (e) PGA measurements scaled by D estimates and plotted as a function of
r/D. See text for explanation.
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boundaries of the seismogenic zone. Future work should
investigate the physical mechanisms by which these defor-
mations may lead to aftershock triggering.

Appendix A: Scaling Uncertainties

[50] To quantify the allowable variability in the distance
scaling term n in P(r, D) we look at the ratio, R(r), of the
observed to modeled densities, which should vary with r
within the uncertainties in g in equation (2). In other words,
the modeled densities should predict a distance decay rate
that approximates the power law r�g±Dg. If this is true, then

d lnR

d ln r

����
���� ¼ r

R


 � dR
dr

����
���� � Dg ðA1Þ

We use this to constrain permissible range of values of n.
[51] We derive the ratio R(r) using equations (6) and (8)

and the requirement that g = 3-d. We use a normalized
distance ~r = r

D
so that the results are independent of

main shock size, and for compactness define ~h = h
D
. For

the h-independent P(r, D) model R(r) can be written as

D m�nð Þ ~r2 þ ~r þ 1
2p

� �
aþ ~rn½ 
 or D m�nð Þ ~r2 þ ~r þ 1

2p

� �
aþ ~r½ 
n

¼ C10�Mmin

4pAK

� �
D�2e�Dg ~r�Dg ðA2aÞ

For r > h and the h-dependent P(r, D) model the numerators
in square brackets differ; for example, the leftmost ratio
above becomes

D m�nð Þ
~h

~r
~r2 þ ~r 1þ 1

p
cos�1

~h

~r

 !( )
þ 1

2p

" #
~r þ 1ð Þ

2 aþ ~rn½ 
 ~hþ 1
� �

¼ C10�Mmin

4pAK

� �
D�2e�Dg ~r�Dg

ðA2bÞ

K is a proportionality constant between the triggering
deformation and corresponding probability. We plot exam-
ples of Dg(r) calculated according to equation (A1) in
Figure 3c. These suggest that variations in n of less than
about ±0.2 would result in aftershock density decay rates
that could be fit with a constant power law with variability
in decay rate of Dg�0.2 in the far-field and less in the near-
field. Larger variations are implied near r�h due to the
simplicity in how P(r, D) changes scaling at this distance
(i.e., by including a multiplicative factor of r/h), but we
suggest that a more complex model is not warranted since
our goal is to model the statistical properties of many main
shock-aftershock sequences with differing values of h. In
addition, the calculations shown in Figure 3c do not account
for modeling uncertainties (e.g., in F(r), etc.), so while
variations in n of ±0.2 slightly underpredict and overpredict

Figure 8. Theoretical curves describing the probability of triggering and its variation with distance and
magnitude. (a) Probabilities describing the potential to trigger an individual fault at a particular distance,
calculated according to equation (8) (solid, h-independent P(r, D) model; dashed, h-dependent P(r, D)
model) with a = 0.4, m = n = 2 for hypothetical triggering earthquakes with rupture dimensions or
magnitudes labeled; we assume here that D�1 km for a M4 main shock and D2 is proportional to 10M.
Although the absolute value of the probability at r�0 is not known, it converges to the same maximum
value at r = 0 regardless of earthquake size and decrease rapidly at the point of maximum curvature at r =
aD/2. Thick vertical bars on curve(s) for each magnitude indicate distances corresponding to one rupture
dimension. (b) Theoretical aftershock densities describe the total number of aftershocks expected at a
particular distance (calculated here for g = 1.5 with a constant density at r < 50 m). The maximum density
occurs next to the rupture and is proportional to 10M or D2, and corresponds to the maximum probability.
The absolute probabilities scale as 10M but change with r identically regardless of M or D; e.g., for
every DM = 1, ten times more aftershocks are expected at all distances.
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the observational uncertainties ofDg�0.3 andDg�0.1 km�1

in the near- and far-field, respectively [Felzer and Brodsky,
2006], they provide reasonable approximate estimates to
use when evaluating the consistency of measured values of
n with our model of P(r, D).
[52] We also consider the allowable variability in the

scaling of P(r, D) with D, given the observational uncertain-
ties. Equalities (A1) are only satisfied if m�n within �2e or
�10%, and thus consistent values in the range �1.8 < m <
�2.2. (the factor D±Dg comes from the distance normaliza-
tion and thus, is not real uncertainty in the D-scaling).

Appendix B: Theoretical Justification for Seismic
Deformation Scaling Relations

[53] Herein we review some basic seismic source and
propagation theory to show that it is consistent with some of
the features of the modeled triggering probabilities and to
highlight the expected dependence on frequency content. In
particular, we review the theory that shows that to first-order
dynamic deformations should scale as Dm/rn in the far-field
and become independent of D very close to the fault. The
scaling with fault dimension, Dm, may differ for displace-
ments, velocities, and accelerations, with m decreasing for
each, respectively. These features derive from the theory
describing shear wave displacements radiated from a fault
of finite dimensions, acknowledging that the true dynamic
deformation field is much more complex (i.e., include
interactions with the free surface and scatterers). Velocities
or accelerations may be considered high-pass filtered ver-
sions of displacements.
[54] The complete displacement field at some position x

due to rupture of a fault of finite area S � D2 is often
modeled as the sum of radiation from point dislocation
sources [see Motazedian and Atkinson, 2005, and references
therein], represented by the slip, Du(x, t), across infinites-
imal fault surfaces of area dS(x). The total displacement is
the sum or integral of these. The scaling change with D and
frequency content becomes apparent looking at the far-field
shear wave displacement, u(x,t), described by an equation of
the form

u x; tð Þ /
ZZ

S

1

r x; xð Þ
_Du x;�tð

� 	
e�zrðx;xÞdx �t ¼ t � rðx; xÞ

Vs

ðB1Þ

[Aki and Richards, 1980; Ben-Menahem and Singh, 1981].
The ground displacement, u(x, t), is the time derivative
(indicated by the dot) of the fault displacement, _Du,
integrated over the fault surface, with geometric spreading
described by the inverse of the distance to the fault, r(x, x) =
jx-xj. Vs denotes shear wave velocity and the exponential
term approximates anelastic losses. Expression (B1) may be
rewritten, assuming (1) the slip is spatially uniform and
evolves with time according to a source time function, g(t), or

Du * x; tð Þ ¼ Du� g tð Þ ðB2Þ

(2) that slip is related to the stress drop according to

Ds � m Du=Dð Þ ðB3Þ

and (3) that the attenuation may be approximated as a power
law with respect to r.
[55] The displacement may now be rewritten as

u * x; tð Þ / DsD=rn
0
Z
S

Z
_g ~tð Þdx

� DsD3ð1=rn0 Þ g t � r=Vð Þ � g t � r=V � trð Þ
tr

�� �
tr � D=Vr

ðB4Þ

tr is the rupture duration, n0 includes both the decay due to
spreading and attenuation, Vr is the rupture velocity that
�Vs [Ben-Menahem and Singh, 1981], and dg

d~t
= @g

@x (@~t@x)
�1.

Typically the source time function is ramp-like, so that the
expression in square brackets in equation (B4) describes an
approximate boxcar function, scaled by tr and we see that
the far-field displacement time domain amplitude scales as
D2. We can approximate the relationship between the peak
amplitude in the time domain (B4) and spectral amplitudes,
noting that the time domain amplitude of a band-limited
wavelet is proportional to the product of its spectral
amplitude and twice the bandwidth [Aki and Richards,
1980]; thus, assuming the shear wave spectrum is
approximately flat to f�pVr/D (periods > >tr), we expect a
time domain amplitude of Dm corresponds to a spectral
amplitude of D(m+1). This predicts the familiar far-field
spectral-amplitude scaling of displacement as D3. More
explicitly, if the bracketed expression in (B4) is a boxcar, in
the frequency domain this corresponds to a sinc function,
with a spectrum that scales as

U * x; fð Þ / ðDs=rn ÞD3 sin c
pfD
Vr

�� �
ðB5Þ

[Kanamori and Anderson, 1975; Ben-Menahem and Singh,
1981]. The sinc function effectively reduces the fault
dimension in the rupture direction and that for f < < pVr/D,
sinc(pVr/D)�1 and for f�pVr/D sinc(pVr/D)�Vr/D. Again, at
low frequencies we have the familiar result that the
displacement spectrum scales as D3. The scaling of equation
(B5) predicts with an effectively decreasing power of D as
frequency increases such that at frequencies at or above 1/tr,
the far-field displacement scales with D2. Noting that
velocities are high-passed versions of the displacement and
accelerations high-passed versions of velocities, we expect
that the scaling exponents of D for velocity and acceleration
diminish increasingly relative to that for displacement.
Albeit a limited data set, our results for the Japanese HiNet
observations are consistent with this. Additionally, pub-
lished values of m for studies of both PGV and PGA always
show it to be less for PGA.
[56] The study of Brune [1970] also provides insight into

the scaling with D. Brune [1970] showed that for a
tangential stress pulse applied across a fault surface, very
close to the fault and before energy arrives from its ends, the
shear wave displacement can be described in the time and
frequency domains as

u tð Þ ¼ Ds=mð ÞVst;U fð Þ ¼ � Ds=mð ÞVs 2pfð Þ2 ðB6Þ
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respectively [Brune, 1970, equations (2) and (3)]. Thus,
very close to the fault the displacement depends only on the
stress changes immediately nearby and effectively is
‘‘blind’’ to the rest of the fault or, equivalently, is
independent of the rupture dimensions. As energy arrives
from the rupture boundaries, the velocity becomes a pulse
and the displacement can be described in the time and
frequency domains as

u tð Þ ¼ Ds=mð ÞVst 1� e� t=tð Þ
r

h i
;

U fð Þ ¼ � Ds=mð ÞVs 2pfð Þ�1
2pfð Þ2þ Vr=Dð Þ2

h i�1=2
ðB7Þ

[Brune, 1970, equations (13) and (15)]. At large distances,
in the far-field energy diffracts from the opposing sides of
the fault, effectively differentiating its signature, and
spreading becomes spherical (i.e., scaled by D/r) so that
the displacement can be described in the time and frequency
domains as

u tð Þ ¼ C Ds=mð Þ D=rð ÞVst
0e� t0=atð Þ
r ; t0 ¼ t � r=Vsð Þ;

u fð Þ ¼ C Ds=mð ÞVs D=rð Þ 2pfð Þ2þ 2:34Vr=Dð Þ2Þ
h i�1

ðB8Þ

C and a are constants required to balance energy [Brune,
1970, equations (17) and (20)]. As above, this predicts that
the time domain displacement peaks at t = aD/Vr with
amplitudes proportional to D2, and that spectral amplitudes
at low frequencies scale as D3.

Appendix C

[57] We comment briefly on the expected characteristics
of dynamic deformations observed at a single location at r
and how we measure T and thus P(r, D), assuming the
triggering deformation is cumulative. Relative to the peak
value alone, the cumulative deformation should decay more
slowly but scale with rupture dimension similarly. This is
because for most wave trains the peak value occurs at the
arrival of the shear or surface wave packet, followed by
scattered energy, later phases, and lower group velocity
surface waves. Assuming an exponential decrease with time
after the peak value, pk(r, D), and neglecting the signal
before, we can describe the shape of a wave train as

pk r;Dð Þ � 1

g rð Þ 1� e�g rð ÞT rð Þ
h i

� pk r;Dð Þ � 1

g rð Þ T >> 1=g

ðC1Þ

Dispersion and scattering effects require that the decay
rate, g, decreases with increasing r, and thus the product of
pk(r, D) and 1/g(r) must decay more slowly than pk(r, D)
alone. Accounting for the signal before the arrival does not
change this, because it also lengthens with increasing r.
[58] While the duration of cumulative deformation should

account for all the waves arriving at r, in practice we often
do not have sufficiently long recordings for the signal to
return to the preevent signal level. Fortunately, the calcula-
tion of cumulative signal is relatively insensitive to T since
for most seismic signals, most of the cumulative deforma-
tion arrives in a short interval surrounding the peak value.

Thus the measurement duration only needs to be long
enough to capture this and the error due to the missing
deformation should be independent of r. We achieve this by
defining T as the duration required for the signal to diminish
to some fraction, z, of the peak value. Thus, measurements
will likely underestimate the true durations. To assess the
size of this error, we consider an exponential signal as in
equation (C1) and note the ratio of the approximate to exact
estimate of the cumulative deformation is �(1�z). Thus,
the true probabilities will be underestimated by 100z%, so
that choice of a small value of z results in a small error.
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