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Abstract. We examine the predictions of Coulomb failure stress and rate-state frictional
models. We study the change in failure time (clock advance) Dt due to stress step
perturbations (i.e., coseismic static stress increases) added to “background” stressing at a
constant rate (i.e., tectonic loading) at time t0. The predictability of Dt implies a
predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0
is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with
general properties of aftershock sequences, must predict an Omori law seismicity decay
rate, a sequence duration that is less than a few percent of the mainshock cycle time and
a return directly to the background rate. A Coulomb model requires that a fault remains
locked during loading, that failure occur instantaneously, and that Dt is independent of t0.
These characteristics imply an instantaneous infinite seismicity rate increase of zero
duration. Numerical calculations of r(t)/r0 for different state evolution laws show that
aftershocks occur on faults extremely close to failure at the mainshock origin time, that
these faults must be “Coulomb-like,” and that the slip evolution law can be precluded.
Real aftershock population characteristics also may constrain rate-state constitutive
parameters; a may be lower than laboratory values, the stiffness may be high, and/or
normal stress may be lower than lithostatic. We also compare Coulomb and rate-state
models theoretically. Rate-state model fault behavior becomes more Coulomb-like as
constitutive parameter a decreases relative to parameter b. This is because the slip
initially decelerates, representing an initial healing of fault contacts. The deceleration is
more pronounced for smaller a, more closely simulating a locked fault. Even when the
rate-state Dt has Coulomb characteristics, its magnitude may differ by some constant
dependent on b. In this case, a rate-state model behaves like a modified Coulomb failure
model in which the failure stress threshold is lowered due to weakening, increasing the
clock advance. The deviation from a non-Coulomb response also depends on the loading
rate, elastic stiffness, initial conditions, and assumptions about how state evolves.

1. Introduction

The apparent ability of stress changes that are orders of
magnitude smaller than earthquake stress drops to alter seis-
micity rates or to promote or inhibit moderate or large earth-
quakes can be explained if the influenced faults are highly
prestressed and the stress changes advance or retard their
failure times. Both Coulomb failure stress and rate-state fric-
tional models have been used to predict these “clock advances”
(or “clock delays”) [Harris and Simpson, 1992, 1998; King et al.,
1994; Hardebeck et al., 1998; Nalbant et al., 1998; Nostro et al.,
1998; Dieterich, 1992, 1994]. Clock advance or delay Dt refers
to the change in failure time, which is most often attributed to
coseismic (static) stress changes. We examine theoretically the
different predictions of these two models and the parameters
that most affect them. We demonstrate that a rich variety of
clock advance predictions are possible, depending on the fault,
on material and loading properties, and on the constitutive
laws invoked. We also show that the clock advances predicted

by rate-state models asymptotically become equivalent to Cou-
lomb clock advances under a variety of conditions.

This variety of predicted responses to stress perturbations
suggests that field and laboratory measurements may allow us
to identify particular constitutive and failure relations as more
appropriate than others. Blanpied et al. [1999] discuss results of
laboratory experiments in which the effect of stress history on
the timing and peak stress of stick-slip events were studied in
the context of various constitutive and failure relations. Al-
though measurement of clock advance for single earthquakes
in the Earth is difficult, seismicity rate changes offer the po-
tential to test predictions of Dt and thus to discriminate among
failure models and their controlling parameters. As discussed
by N. M. Beeler et al. (manuscript in preparation, 2000), ob-
servations of aftershock sequences require a time-dependent
failure process. This process may be characterized in terms of
a time-dependent Dt , for example, as predicted by some rate-
state models. Dieterich [1992, 1994] noted this and derived
analytic approximate formulas describing the change in seis-
micity rate following a mainshock for a specific frictional law
[Harris and Simpson, 1998; Toda et al., 1998; Belardinelli et al.,
1999]. We take a more general approach and numerically com-
pute changes in seismicity rates for a variety of constitutive
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laws and model parameters and compare them to characteris-
tics of real aftershock sequences.

We first summarize the basic ideas underlying Coulomb and
rate-state failure models. We then derive general formulas for
seismicity rate changes caused by stress perturbations and ap-
ply these to look at the effect of tectonic stressing and coseis-
mic stress changes expected in real earthquake sequences, as-
suming Coulomb or rate-state failure models apply. We
conclude with a simple theoretical analysis and illustrative ex-
amples (assuming parameters appropriate to laboratory con-
ditions) that demonstrate how and why the timing of failure
predicted by the Coulomb and rate-state models differ and
under what conditions they become nearly identical.

2. Failure Models
We begin by summarizing the basic ideas underlying Cou-

lomb and rate-state failure models.

2.1. Coulomb Failure Model

The notion of a clock advance (or delay) is most easily
understood in the context of a Coulomb failure stress (CFS)
model (see Harris [1998] for a summary). The failure criterion
simply requires reaching a critical stress threshold equal to t 1
m(sn 1 P) 2 S , in which t is the shear traction, sn is normal
traction, and P is the pore pressure. The coefficient of friction
m and the cohesion S are both assumed to be constant. Positive
changes in the tractions and/or pore pressure move a fault
closer to the failure stress by an amount DCFS 5 Dt 1
m(Dsn 1 DP). This corresponds to a clock advance of
DtCoulomb 5 DCFS/(dtb/dt), in which dtb/dt is the back-
ground Coulomb stressing rate. The clock advance is indepen-
dent of when the DCFS occurs, and no slip occurs during
loading. These characteristics and the linear relationship be-
tween stress change and Dt are not implicit in rate-state fric-
tional models.

2.2. Rate-State Model

Unlike Coulomb failure, rate-state failure does not invoke a
threshold stress. Instead, the failure criterion suggested by
Dieterich [1986, 1992, 1994] requires the slip velocity to reach
some high value. This definition is particularly appropriate for
rate-state failure where slip velocity gradually increases prior
to dynamic slip. We define earthquake recurrence or cycle time
as the duration required for the slip velocity to evolve from
some initial value at or below the background rate, represent-
ing the velocity immediately following a previous failure, to
some very high value at which the acceleration becomes large
enough to represent earthquake failure. The slip evolution is
governed by the frictional rate-state constitutive relation
[Dieterich, 1979; Ruina, 1983], describing the frictional strength
t(t) of a fault as

t~t! 5 snm~t! 5 sn@m0 1 a ln ~V~t!/V0! 1 b ln ~V0j~t!/dc!# .

(1)

The j has been interpreted as a measure of the connectivity of
contacts on a fault surface or within a fault gouge. Connectivity
might be related to the area of the contact which can increase
with age [Dieterich, 1979] or could be related to porosity [Sleep,
1995]. The a , b , and dc are empirical constants, V0 and m0 are
arbitrary reference values, and sn is the normal stress, as-
sumed here to be constant.

We consider a simple single spring-slider system [Dieterich,
1981] in which the shear stress applied to the spring at the load
point is governed by Hooke’s law

t~t! 5 snk@ xlp~t! 2 x~t!# , (2a)

in which xlp is the load point displacement, x is the fault slip,
and k is the stiffness. Thus the rate of change of shear stress is

dt~t!/dt 5 snk@dxlp~t!/dt 2 V~t!# . (2b)

The system is loaded at constant background rate Vb with or
without an additional perturbation of amplitude Dxlp and time
history described by a Heaviside or step function applied at
time t0 (i.e., H(t 2 t0)) such that

dxlp~t!/dt 5 Vb 1 Dxlp dH~t 2 t0!/dt 5 Vb 1 Dxlpd~t 2 t0! .

(2c)

The final step to completely describing the system’s behavior
is to specify how j(t) changes with time. To allow for a range
of responses, we consider equations for the derivative of j(t)
for two state “evolution laws” (both are empirical relations);
the first is the “slowness law”

dj/dt 5 1 2 V~t!j~t!/dc, (3a)

and the second is the “slip law” [Ruina, 1983].

dj/dt 5 2V~t!j~t!/dc ln @V~t!j~t!/dc# . (3b)

Physically, these “laws” have very different implications for
how a fault surface evolves. Although a number of physical
interpretations have been ascribed to j, all pertain to the con-
nectivity of contacts on a fault surface. Thus we use the terms
strengthening (increasing j) and weakening (decreasing j) to
refer to changes in this connectivity that cause slip to be in-
hibited or facilitated, regardless of the specific mechanism. The
slowness law implies strengthening (dj/dt ; 1) when the fault
is stationary or slipping sufficiently slowly and implies weak-
ening (dj/dt , 0) only when slip is rapid. The slip law implies
that a fault surface strengthens (dj/dt . 0) when the slip
velocity satisfies 0 ,, Vj/dc , 1 and weakens (dj/dt , 0)
only at very high velocity when Vj/dc . 1. The fault surface
essentially does not change when stationary or slowly slipping
(dj/dt ; 0 [see Beeler et al., 1994; Nakatani, 1998].

The unperturbed and perturbed cycle times tb and tp, re-
spectively, and the clock advance Dt 5 tb 2 tp are computed
following the procedure described by Gomberg et al. [1997]. In
short, the time derivatives of m , xlp, and j are calculated at
each time step according to (2b), (2c), and (3), respectively.
The m , xlp, and j are calculated at subsequent time steps using
a Runga-Kutta algorithm, and V is found using (1). Failure
occurs at the time when the calculations become numerically
unstable and are stopped. Because the final acceleration is so
rapid, the precise velocity at which instability occurs makes
negligible difference to the total cycle times or clock advances.
Initial values V init and jinit and constants m0 and V0 were
chosen to be appropriate for the start of an earthquake cycle
(after any postseismic slip from a previous event) and so that
cycle times corresponded to those of large earthquakes (Fig-
ures 2–5) or laboratory experiments (Figures 6 –9) [see
Gomberg et al., 1997]. We leave study of the effect of variations
in normal stress for subsequent studies and do not consider
inertial effects. The latter is justified because we do not at-
tempt to model the rupture process itself but only the evolu-
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tion up to the point at which rupture becomes dynamic. Even
if our model velocities reach values at which dynamic effects
should become significant, again, they do so only when an
insignificant fraction of the cycle is left so that the error should
be insignificant.

3. Seismicity Rate Changes
We now derive formulas for seismicity rate changes caused

by static stress perturbations. The formulas are general, appli-
cable with any failure model and any type of stressing time
history. We apply these in several illustrative examples using
numerical calculations of the responses of spring-slider systems
obeying rate-state frictional laws. We employ a constant rate
“background” stressing rate with the addition of a positive step
function stress change. This stressing history simulates that of
tectonic stressing and coseismic stress changes, and model pa-
rameters are chosen to match those in real earthquake se-
quences. We compare the rate-state predictions for both the
slip and slowness state evolution laws to the predictions of a
Coulomb model and to the approximate formulation of
Dieterich [1992, 1994].

Coulomb failure models cannot explain observations of de-
layed failure. This is most evident in aftershock sequences,
which often follow Omori’s empirical law [Dieterich, 1994;
N. M. Beeler et al., manuscript in preparation, 2000] that
describes the rate of earthquake occurrence r(t) as a function
of the time since the mainshock t as

r~t! 5 K/~c 1 t!p. (4)

K , c , and p are empirical constants [Utsu et al., 1995]. A
dependence of clock advance on stressing history offers one
possible explanation for the appropriateness of Omori’s law.
Although we do not attempt to match r(t) for any particular
aftershock sequence, our modeling shows that three of the
characteristics common to nearly all aftershock sequences pro-
vide constraints on combinations of the constitutive parame-
ters and probably cannot be fit with the slip state evolution law
(equation (3b)). The characteristics we require viable models
to predict include the following: (1) The decay rate is consis-
tent with p ; 1 in (4) [Kisslinger and Hasegawa, 1991; Kisslinger
and Jones, 1991; Dieterich, 1994; Utsu et al., 1995]. (2) The
seismicity rate returns from elevated rates directly to the con-
stant background rate r0 (i.e., r(t)/r0 $ 1 always). (3) The
aftershock sequence duration ta is defined as the time required
to return to r0. This duration is a small fraction of the unper-
turbed mainshock cycle time tcycle or ta/tcycle ; 0.4% to 20%,
with most estimates being considerably less than 10%
[Dieterich, 1994; Toda et al., 1998].

3.1. Derivation of Seismicity Rate Change Formulas

If aftershocks are simply earthquakes that have been clock
advanced by a mainshock, then a very simple formula describes
the change in seismicity rate following the mainshock. The
derivation of this formula requires the assumption that after-
shocks occur on a collection of faults uniformly distributed
within their failure cycles so that when loaded at a constant
rate, failure occurs at constant rate r0. We refer to this collec-
tion of faults as an “aftershock” fault population (Figure 1a).
The seismicity rate following a stress step perturbation applied
at t0 varies as

r~t! 5 r0@1 2 dtp/dt# , (5a)

where tp is the perturbed failure time. As above, t is the time
from the mainshock, or t 5 tp 2 t0. As will be demonstrated
below, (5a) is valid even for populations containing faults with
a variety of cycle times or, equivalently, a range of magnitudes.

Our understanding of how the timing of failure depends on
loading history comes from previous studies that have consid-
ered only a single fault rather than a system of faults. For a
single fault we examined the dependence of clock advance on
when the perturbing stress is applied or, mathematically, the
dependence of Dt or tp on t0 [Gomberg et al., 1997, 1998]. We
also can study a collection of faults and employ the same
computational tools by considering an alternative view of the
aftershock fault population affected by a stress perturbation. In
this completely equivalent view, instead of varying where the
faults are in their cycles and applying the stress perturbation at
a single t0, all the faults in the population are at the same point
in their cycles and are perturbed by stress steps applied at
different, uniformly distributed values of t0. We refer to this as
the “calculation” fault population (Figure 1b).

To calculate the seismicity rate change, we construct a curve
of Dt or tp versus t0 by doing a series of numerical calculations
(as performed by Gomberg et al. [1998]) using an identical set
of model parameters with only t0 varied. As demonstrated in
Appendix A, the seismicity rate change can then be calculated
using formulas equivalent to (5a). These are

r~t! 5 r0/@1 1 dDt/dt0#

5 r0/@1 2 dtp/dt0# . (5b)

Recall that as in (5a), t 5 tp 2 t0. Dieterich [1994] derived a
very specific form of (5) in which he assumed fault systems are
governed by rate-state friction (equation (1)) with state evolv-
ing according to an approximate form of the slowness law
(equation (3a)) valid only during the final, self-accelerating
phase of a cycle when slip rapidly accelerates toward failure.

Figure 2 illustrates the relationship between these after-
shock and calculation fault populations and (5). We show cal-
culations for model parameters appropriate to the Earth (see
below) and a step function stress perturbation, first viewed as
a calculation fault population; Figure 2b shows the tp versus t0

curve, calculated numerically according to the recipe described
in section 2.2, along with the failure lines predicted by a Cou-
lomb model. The diagonal line in Figure 2b corresponding to
instantaneous failure, tp 5 t0, is equivalent to the mainshock
onset time when considering the aftershock population (Figure
1a). The delay from instantaneous failure is the time variable
t 5 t0 2 tp that determines the seismicity rate change r(t)/r0.
In other words, the aftershock fault population simply corre-
sponds to the calculation population with a rereferencing of
the timescale. We replot the failure curve in terms of the
logarithm of this delay time (Figure 2a) to emphasize the time
range over which tp, and thus r(t)/r0, varies most significantly.

Note that a perturbation applied early in the cycle (small t0)
corresponds to a fault that is far from failure or hardly pre-
stressed when the mainshock occurs. Similarly, a late pertur-
bation corresponds to a fault that is close to failure when the
mainshock occurs. The transformation from t0 to t highlights
the fact that the rate change (Figure 2c) is determined primar-
ily by the faults that are close to failure and for which tp differs
only very slightly from instantaneous failure. In other words,
this shows explicitly that aftershocks occur on the most highly
prestressed faults. This explains why the complete numerical
calculation and curves describing the approximate Dieterich
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[1994] equation for r(t)/r0 agree so closely (Figure 2c); that is,
it is because the Dieterich [1994] approximation is valid for
faults already near failure. Significant differences in the clock
advances predicted by the numerical calculations and the Di-
eterich [1994] formulation appear for small t0 (Figure 2b), but
this corresponds to faults that do not contribute to the after-
shock sequence.

Finally, we consider the fact that real aftershock sequences
contain earthquakes with a range of magnitudes and thus a
range of cycle times. If the seismicity rate change is the same
for all magnitudes (cycle times), then (5) may apply to se-

quences containing aftershocks of all sizes in any proportion.
The above conclusion, that it is the faults already close to failure
that compose the aftershock sequence, suggests that the cycle
times of the aftershocks should not matter. In other words, it does
not matter how long it took a fault to get close to failure, only
that it is nearly ready to fail. Moreover, from Figure 2b it is
apparent that a longer cycle time corresponds to shifting the
failure curve upward along the instantaneous failure line, such
that dtp/dt and thus r(t)/r0 change negligibly. We verified this
by changing only the cycle times by altering the initial condi-
tions and found that indeed r(t)/r0 remained constant.

Figure 1. (a) Each diagonal line represents the stressing history of a fault that belongs to a population of
faults that might correspond to those participating in an aftershock sequence. The stresses are distributed so
that when stressed at a constant rate (dashed lines after t0, solid lines before t0), failure occurs at a constant
rate r0. Assuming all faults have equal unperturbed cycle durations, failure at r0 corresponds to cycle start
times distributed identically to the failure times tb (indicated by thick diagonal lines, which all have equal
slopes). The slope of the failure lines indicates the number of faults Dn that fail in a given time interval, that
is, the seismicity rate dn/dt . If a stress step is added at time t0 to the constant stressing (solid diagonal lines
show the perturbed stress histories), the failure time of each fault will be advanced to tp by clock advance Dt
(double arrowhead lines). Because Dt depends on the stressing history prior to t0, Dt may not be constant so
that the failure rate changes and becomes a function of the time from t0, t 5 tb 2 Dt 2 t0 5 tp 2 t0. This
new rate is r(t). (b) Stressing histories of an equivalent distribution of faults to Figure 1a but more appropriate
to what we actually calculate. In the absence of a perturbing stress, all faults have identical stressing histories,
and a stress step perturbation is added at a different values of t0, distributed identically to the failure times
tb in Figure 1a (thicker solid line has same slope). The clock advances are identical to those in Figure 1a. Thus
the population in Figure 1a and r(t) can be simulated by computing tp for a single fault repeatedly but varying
t0 each time (see text). Note the arrow measuring t corresponds only to one fault or value of t0.
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3.2. Application to Real Aftershock Sequences

3.2.1. Parameter constraints. We study r(t)/r0, which is
calculated numerically, without Dieterich’s [1994] approxima-
tion for both the slip and slowness evolution laws to see if
aftershock data distinguish between evolution laws and consti-
tutive parameters. The r(t)/r0 and failure curves are calculated
numerically for two sets of model parameters and both the slip

and slowness state evolution laws. The two models differ only
in the assumed values of constitutive parameter a and step
load amplitude Dxlp. All parameters are chosen to be appro-
priate to real earthquakes or are from laboratory experiments
when no other constraints exist (see Table 1). Laboratory ex-
periments constrain constitutive parameters b and the larger
value of a used [Tse and Rice, 1986; Dieterich, 1994; Sleep,
1995]. Parameter dc ranges from 0.001 to 0.1 m on the basis of
laboratory, field, and theoretical studies [Roy and Marone,
1996; Tse and Rice, 1986]. Step function perturbations are
comparable to the coseismic slip in earthquakes with Mw ; 6
(Dxlp 5 0.1 m and 0.0718 m for a 5 0.001; Figure 5) and
Mw ; 7 (Dxlp 5 1.0 m and 0.819 m for a 5 0.01; Figure 4)
[Wells and Coppersmith, 1994]. We scale Dxlp with a to corre-
spond to the same approximate Omori decay (Figure 2)
[Dieterich, 1994] and so that the Coulomb clock advances are
the same fraction of the cycle time in models with a 5 0.01
and a 5 0.001. The background loading rate Vb approxi-

Figure 2. (a) Perturbed failure times tp plotted as a function of t of a stress step for the model parameters
in Table 1. Note the significant change in timescale compared to Figure 2b. (b) Same failure times plotted in
Figure 2a but as a function of the onset time t0. All times are normalized by the unperturbed cycle time, tcycle.
The tp versus t0 curves are shown for the complete rate-state solution calculated numerically (large dots
connected by the light curve), predicted by a Coulomb model (thick straight lines), and calculated using the
approximate formulation of Dieterich [1994] (dash-dotted curve). An early value of t0 corresponds to per-
turbing a fault that is far from failure and a late t0 to a fault that is close to failure. The line corresponding
to instantaneous failure tp 5 t0 (thin diagonal line) is equivalent to the mainshock onset time. The delay from
this (vertical striped arrows) is the time variable t 5 t0 2 tp, corresponding to the time to failure from the
mainshock and is the independent variable, or time axes, of the plots on the left (shown also by horizontal
striped arrows). (c) The term r(t)/r0 calculated numerically (large dots) according to (5) from the points
defining the failure curve in Figure 2a. A hypothetical example of an aftershock rate following Omori’s law
(equation (4)) is shown (diagonal line); a closer fit at very short times can be obtained by increasing the
constant added to t in the denominator, but such large values are not commonly observed.

Table 1a. Fixed Parameters for Models in Figures 2, 4, and 5

Parameter Value

b 0.015
m0 0.7
V0, m/s 1029

dc, m 0.01
Vinit, m/s 1029

See text for justifications for this choice of parameters.
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mately equals that measured along the Pacific–North Ameri-
can plate margin in California. Initial values V init and jinit and
constants m0 and V0 were chosen so that all numerical exper-
iments resulted in comparable cycle times of the order of 100
years.

We summarize some of the observations that provide con-
straint on the stiffness, noting that most also require estimation
of sn. Walsh [1971] defined ksn as G/w 5 Dt /Dxlp, in which
w is the width of a fault that slipped Dx and G is the shear
modulus. He estimated ksn ; 3 MPa/m and noted that this
exceeds laboratory values by 4 or 5 orders of magnitude. The
ratio of slip to stress rate also provides a measure of k because
the former equals Vb and the latter dtb/dt equals ksnVb.
From estimates made near the 1995 Kobe, Japan, earthquake,
ksn ranges from 0.4 to 4 MPa/m [Toda et al., 1998]. Corre-
sponding estimates for faults near the 1989 Loma Prieta, Cal-
ifornia, earthquake are 0.8 to 5 MPa/m [Gross and Burgmann,
1998], and those from near the 1992 Landers, California,
earthquake are 0.01 to 2 MPa/m [Gross and Kisslinger, 1997]. In
their theoretical modeling, Tse and Rice [1986] assumed ksn ;
0.08 MPa/m. Roy and Marone [1996] found even lower values
of ksn, ; 0.001 to 0.01 MPa/m, required to explain the ap-
parent triggering threshold reported in other studies of trig-
gering. If sn ; 100 MPa, of the order of lithostatic stresses at
seismogenic depths, then k ; 1025 to 0.05 m21. We assume
k ; 0.05 m21.

3.2.2. Coulomb model seismicity rate change. Before dis-
cussing the rate-state results we first illustrate the generality of
the model of aftershocks as clock advanced earthquakes on a
special suite of faults and (5) by applying it to the Coulomb
model. Figure 3 illustrates this schematically. Application of
(5) shows that the model predicts an infinite rate change at the
time of the mainshock and no change thereafter. Faults within
DtCoulomb of failure at the time of the mainshock fail instan-
taneously (Figure 3a); that is, tp 5 t0 and dtp/dt0 5 1 (Figure
3a, right), and thus r(t) is infinite (equation (5b); Figure 3a,
left). This infinite rate change occurs instantly at the time of
the mainshock since t 5 t0 2 tp 5 0. All other faults are clock
advanced identically by DtCoulomb, so that dtp/dt0 5 0 (Figure
3b, right), and there is no rate change (equation (5b); Figure
3b, left).

3.2.3. Rate-state, slip law model seismicity rate change.
The r(t)/r0 calculated assuming a slip state evolution law is
inconsistent with aftershock sequence characteristics, regard-
less of the value of constitutive parameter a (Figures 4c and
5c). For the slip law a quiescence follows the rate increase, and
the Omori decay constant is most consistent with p ; 2 (equa-
tion (4)). The rapid decay in r(t)/r0 predicted by the slip law
model is a consequence of faults being able to fail nearly
instantaneously even when perturbed relatively early in their
cycles (earlier in the cycle than even a Coulomb model would

predict; Figure 4b). This leads to a relative abundance of fail-
ures at short t and thus a steeper decay rate of r(t)/r0. To
understand why this is so, we summarize the slip evolution of
an individual fault governed by the slip law. In the initial stages
of the loading cycle, no strengthening occurs, and the fault is
nearly locked. When a stress step is applied, there is an abrupt
strengthening, which damps out the effect of the perturbation,
and the fault returns to its nearly locked condition. Thus, for
this portion of the cycle the clock advance is nearly indistin-
guishable from the Coulomb model prediction (Figures 4b and
5b). Once the slip velocity is sufficiently high, a stress step
causes the fault to weaken abruptly and to fail almost instan-
taneously. The weakening is not quite instantaneous as in the
Coulomb model and, because it depends on slip velocity and
state, can occur earlier in the cycle than the instantaneous
failure predicted by the Coulomb model. Mathematically, this
strengthening and weakening is governed by how state varies
or dj/dt and the fact that dj/dt depends linearly and logarith-
mically on Vj/dc (equation (3b)). The logarithmic dependence
is much slower than linear and causes dj/dt to change from ;0
or positive (strengthening) to negative (weakening) only when
Vj/dc becomes sufficiently large (i.e., .1). Early in the cycle,
V is increasing but is sufficiently small that dj/dt ; 0. An
early stress step causes an abrupt velocity increase but only
enough that still Vj/dc , 1, resulting in a positive step in
dj/dt (i.e., an abrupt strengthening that damps the perturba-
tion). For a later stress step, V is sufficiently large that the
resulting abrupt velocity increase makes Vj/dc . 1 and dj/dt
very negative (i.e., an abrupt weakening leading to quick failure).

3.2.4. Rate-state, slowness law model seismicity rate
change. The slowness law model in which a 5 0.01, consis-
tent with laboratory estimates, predicts an aftershock sequence
duration ta/tcycle that is longer than most observed. The fact
that ta 5 0 for the Coulomb model suggests that more Cou-
lomb-like models will have shorter durations. As will be dem-
onstrated in section 4, decreasing a leads to a more Coulomb-
like response. Dieterich [1994] defined ta explicitly for the
approximate slowness law as

ta 5 asn/~dtb/dt! 5 a/~kVb! , (6)

which also shows that decreasing a (or increasing kVb) short-
ens ta. Thus we decrease a by an order of magnitude and show
the resulting predictions of r(t)/r0 in Figure 5. The duration
predicted by the slowness law is now closer to the observational
constraints.

Although we certainly have not tested all possible models,
we find that if all other parameters are appropriate to earth-
quakes in the Earth, then a better fit to the average character-
istics of aftershock sequences requires that a be lower than
typical laboratory values of 0.005 to 0.02 [Dieterich, 1994].
Alternatively and/or additionally, the stiffness k may be higher

Table 1b. Varied Parameters for Models in Figures 2, 4, and 5

State Evolution
Law a k, m21 jinit, days Dxlp, m

Cycle Time,
days

Figures 2 and 4 slowness 0.01 0.05 1.088 (10%) 1.0 27,232.4
slip 0.01 0.05 1.088 (10%) 0.819 22,303.8

Figure 5 slowness 0.001 0.05 1.088 (10%) 0.1 35,259.3
slip 0.001 0.05 1.088 (10%) 0.0718 25,323.6

Percentages specified next to jinit values indicate the corresponding initial value of m relative to m0. See
text for justifications for this choice of parameters.
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than typically thought appropriate for the Earth [Walsh, 1971;
Tse and Rice, 1986; Sleep, 1995; Roy and Marone, 1996], and
sn may be less than lithostatic to fit the aftershock seismicity
characteristics. Gross and Kisslinger [1997] and Gross and
Burgmann [1998] also reached a similar conclusion using the
Dieterich [1994] approach to estimate asn from aftershocks of
the Loma Prieta and Landers, California, earthquakes, respec-
tively. Because they could not estimate these parameters inde-
pendently, they also considered the possibility that high pore
pressures lowered the effective sn from lithostatic by about an
order of magnitude. Toda et al. [1998] studied aftershocks of
the Kobe, Japan, earthquake and found asn 5 0.35 MPa,
which they interpreted only as implying sn 5 0.5 to 2.0 MPa,
although they did not comment on how such low values might
be achieved. Most recently, Belardinelli et al. [1999] applied
rate-state theory to model the delay between subevents of the
Irpinia, Italy, earthquake and found asn 5 0.8 to 0.9 MPa.
They also note that this may imply a low effective normal
stress. Our models do not explicitly require specification of sn,
although we did assume sn 5 100 MPa to estimate k from
field observations of ksn. We have not explored models with
stiffnesses consistent with low normal stresses, so this ambigu-
ity remains a subject for future work. We also have not inves-
tigated the effect of varying Vb.

4. Theoretical Comparison of Rate-State
and Coulomb Models

We present a simple theoretical analysis that demonstrates
how and why the timing of failure predicted by the Coulomb
and rate-state models differs and under what conditions the
models become nearly identical. Four illustrative examples are
shown using the same numerical calculation scheme as for the
seismicity rate changes, except that only a single fault is con-
sidered and parameters match those measured in the labora-
tory, where such predictions might be testable.

4.1. Theory

Because the rate-state failure criterion invokes a velocity failure
threshold, examining the evolution of velocity is a direct approach
to characterizing failure. It is also appropriate for field-based
failure studies because slip and slip rate are potentially measur-
able field quantities. We explore theoretically the evolution of slip
and the timing of failure in response to stress history for a rate-
state model by deriving equations describing the slip velocity and
acceleration. Simple approximate equations for the slip acceler-
ation are derived that are valid for most of the earthquake cycle
time. The velocity is described exactly by rearranging the standard
frictional rate-state constitutive relation (equation (1)), so that

Figure 3. Stress histories predicted for a Coulomb model on the fault populations described in Figure 1,
plotted in the same format. Populations on the left correspond to those that might be appropriate to faults
affected by a mainshock. The stress is distributed so that when stressed at a constant rate, failure occurs at a
constant rate r0. Populations on the right correspond more appropriately to our approach to calculation of
r(t). (a) The effect of a stress step perturbation added to faults that are already stressed to within DtCoulomb
of their unperturbed failure times at t0. The clock advances cause all the faults to fail instantaneously at t0 so
that r(t) 5 dn/dt becomes infinite (note the vertical failure line on the left). (b) As in Figure 3a except that
the stress step perturbation is added to faults that are farther from failure than DtCoulomb at t0. Because Dt
is constant, the perturbation does not change the seismicity rate, as indicated by the parallel thick diagonal
lines with slopes proportional to dn/dt 5 r(t) 5 r0 (left).
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frictional stress or load is the independent variable. A similar
approach was taken in the work of Sleep [1995, 1997] and differs
from other failure studies in which frictional stress (strength) and
the applied shear stress are considered independently, with fail-
ure occurring when the applied stress reaches the frictional
strength (e.g., as in Coulomb models). Alternatively, in rate-state
models the fault slips during the loading cycle so that the fault
strength determines the shear stress and one variable simulta-
neously represents both applied shear stress and frictional
strength. A final justification for this approach is the fact that
the frictional rate-state constitutive relation is empirically de-
rived, with physical interpretations subsequently ascribed to it.
Thus we can interpret it without appealing to the idea of
independent frictional strength and loading stress and instead
consider it as a description of the evolution of slip velocity.

Equation (1) may be rearranged as a description of the slip
velocity variation with stress t(t) and j(t), written as

V~t! 5 Vcj~t!2b/a exp @t~t!/~sna!#
(7)

Vc 5 exp $2@m0 1 a ln V0 2 b ln V0/dc#/a%

5 exp $2t0/@sna#% .

The exponential term of V(t) has the same form as descrip-
tions of thermally activated creep processes [Sleep, 1997] or the
rate of chemical reactions at crack tips [Lockner, 1998]. Thus
a21 is a measure of the potency of these processes to change
the slip velocity in response to stressing. The preexponential
term may represent compaction creep in which compaction
slows slip. If the ease with which shearing can occur within a
fault zone is represented by a linear viscosity, then compaction
creates a greater number of contacts (represented by increas-
ing j) and thus increases this viscosity, slowing the slip [Sleep,
1995, 1997]. The relative importance of this preexponential
term is determined by the amplitude of b relative to a .

A description of how slip evolves includes expressions for
slip velocity (equation (7)) and acceleration. We find approx-
imate expressions for acceleration, valid for most of the load-
ing cycle, by writing

dV/dt 5 V/t~t /t! 1 V/j~j/t!
(8)

d ln V/dt 5 ~1/V!dV/dt

5 @1/~sna!#t /t 2 @b/~aj~t!!#j/t .

The derivation that follows eliminates j(t) from (8), resulting
in expressions that depend only on V(t), the constant consti-

Figure 4. Plots showing seismicity rates and failure times calculated numerically for a rate-state model with
constitutive parameter a 5 0.01 for the slowness law (solid circles) and slip law (open squares) and the corre-
sponding Coulomb model (thick solid lines). All model parameters are listed in Table 1, and all times are
normalized by the unperturbed cycle time tcycle. (a) Failure times tp as a function of the time t from the time of the
“mainshock” or equivalently from the perturbing stress step at t0 (see Figure 1). (b) Failure times tp as a function
of the stress step onset time t0. (c) The r(t)/r0 calculated numerically according to (5) from the points in Figure 4a.
Hypothetical examples of aftershock rates following Omori’s law (equation (4)) that fit these decay rates are shown
(diagonal lines) with the parameters defining (4) listed; a closer fit at very short times can be obtained by increasing
the constant added to t in the denominator, but such large values are not commonly observed.
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tutive parameters, and the stress history. Dieterich [1994] de-
rived analytic expressions valid only for the self-accelerating
portion of the cycle and the slowness law. We derive approx-
imate expressions that are valid both early and late in the cycle
for both the slowness and slip laws.

At the start of the cycle and for most of its duration the fault
is slipping negligibly and V ,, Vb [e.g., Rice and Tse, 1986],
which allows us to find expressions for the derivatives in (8). In
the absence of any perturbing stress, (2b) becomes dt(t)/dt ;
snkVb, and the state evolution laws also may be simplified.
When Vj/dc , 1, we approximate the slowness law (equation
(3a)) and state it as dj/dt ; C and j ; Ct 1 j init, in which
constant C ; 1. For the slip law, dj/dt ; 0 and j ; jinit

(equation (3b)). In either case, jinit is a positive constant, and
because j represents measures of contact connectivity, it is
small at the start of a cycle as contacts have just been broken
(j ,, dc/V or less than the time required to slip the critical
distance). Substitution of these approximations into (8) shows
that the slip accelerates according to

d ln V/dt 5 ~1/V!dV/dt 5 @kVb 2 b/~Ct 1 j init!#/a (9a)

for the slowness law or

d ln V/dt 5 ~1/V!dV/dt 5 @kVb 2 bV/dc ln ~dc/j initV!#/a

(9b)

for the slip law.

When Vj/dc .. 1, the system is in its final self-accelerating
phase. An expression for the acceleration valid during this
phase is obtainable for the slowness law, noting that dj/dt ;
2Vj/dc. Equation (8) becomes

d ln V/dt 5 ~1/V!dV/dt 5 @kVb 1 bV/dc#/a . (9c)

Although no such approximate solution exists for the slip law,
note that when Vj/dc . 1, then dj/dt , 0, indicating weak-
ening as for the slowness law. Moreover, the logarithmic term
in the slip law grows slowly so that in this phase dj/dt is
proportional to 2Vj/dc just as for the slowness law. Thus
conclusions we draw from analysis of (9c) are probably valid
for the slip law as well.

4.2. Examples

Figures 6–9 illustrate the dependence of Dt on t0 and the
evolution of stress, slip rate, and state over a single earthquake
cycle, calculated numerically (see section 2.2). The parameter
values (Table 2) were chosen to be similar to those measured
in the laboratory [Blanpied et al., 1999]. Figures 6 and 7 illus-
trate the behavior of “soft” (low k) systems, calculated using
the slip law and the slowness law. Figures 8 and 9 show cor-
responding results for a more “stiff” system. The differences in
responses do not simply reflect the different stiffnesses, as the
initial conditions also differ so that the cycle times are of
similar order. Each figure shows behaviors with and without

Figure 5. The same as Figure 4, except that the constitutive parameter a is reduced by a factor of 10 or a 5
0.001, and the load amplitudes are scaled similarly (Table 1). This reduction in a makes the response more
Coulomb-like and thus shortens the duration of the aftershock sequence. This intuitively seems reasonable
because ta 5 0 for the Coulomb model and because sharpening the transition from nearly instantaneous
failure to failure independent of t0 determines the shape of r(t)/r0. See section 4 for additional demonstration
of this behavior. Note that this shorter duration may be more consistent with the most commonly observed
aftershock sequence characteristics.
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step perturbations, each for larger and smaller values of con-
stitutive parameter a .

Equations (9a) and (9b) show explicitly that as a decreases,
the fault becomes more Coulomb-like; that is, it remains es-
sentially locked while being stressed. Figures 6–9 illustrate the
predictions of these equations. We first discuss conditions un-
der which faults governed by the rate-state laws share this
Coulomb characteristic. Equations (9a) and (9b) suggest a
simple physical interpretation that for either state evolution
law the slip history is determined by a competition between
processes that promote and inhibit slip. In other words, the
logarithmic change in slip velocity (or (1/V)dV/dt) is propor-
tional to the difference between the acceleration due to stress-
ing and deceleration due to strengthening. The acceleration
(positive term in (9a) or (9b)) depends linearly on the shear
stressing rate dtb/dt 5 snkVb and the deceleration (negative
term in (9a) or (9b)) depends nonlinearly on the strengthening
rate. The fact that the change in slip velocity varies at rates
inversely proportional to a (see Figures 6c, 7c, 8c, and 9c) leads
to the asymptotic behavior of the rate-state model to one that
is Coulomb-like when a is small. The initial conditions and
magnitude of b are such that the slip initially decelerates (jinit

small and jinitV ,, dc; see Table 2) and then begins acceler-
ating. The deceleration is nonlinear and thus much more rapid
than the linear acceleration that follows. The inverse depen-
dence of d ln V/dt on a means that smaller a values imply
greater initial deceleration to significantly lower initial sliding
velocities, and the fault becomes more like one that is locked.
Figures 7a and 7c illustrate this most clearly. Physically, this
may be understood by noting that when a decreases, the
strengthening terms weighted by b effectively become more

Figure 6. (opposite) Results of numerical calculations for
model parameters that correspond to those measured for
Westerly granite with initial conditions chosen to produce cy-
cle times comparable to those measured in stick-slip experi-
ments (see Table 2). Two sets of calculations are shown; solid
and dashed curves show results for larger and smaller values of
a (equation (1)), respectively. All times are normalized by the
unperturbed cycle time. A slip law (equation (5b)) governs the
state evolution. (a) Failure times as a function of the onset
time of a perturbing step function stress. All parameters were
kept constant except a in the rate-state calculations. The Cou-
lomb failure time is shown as the thicker straight-line seg-
ments; it is constant until failure is immediate. Circles corre-
spond to numerical calculations (connecting curves are for
visual aid). (b) Normalized shear stress as a function of the
fractional cycle time for some of the calculations used to gen-
erate Figure 6a. Stresses are normalized by the shears stress
that would accumulate linearly at a constant background rate
in the unperturbed cycle time. Thicker and thinner curves show
t(t) for stressing at a constant background rate only and with
a perturbation added halfway through the cycle, respectively.
Crosses show where failure would occur for a Coulomb model
with the corresponding clock advance indicated by the double
arrowhead line. Clock advances for the rate-state models are
shown similarly for the two a values. (c) V(t) corresponding to
the same set of calculations in Figure 6b. The fact that the
change in slip velocity with time varies inversely proportionally
to a leads to the asymptotic behavior of the rate-state model to
one that is Coulomb-like for the smaller value of a . This is
because smaller a values imply greater initial deceleration to
significantly lower initial sliding velocities, so the fault becomes
more like one that is locked. (d) The j(t) corresponding to the
same set of calculations in Figure 6b.
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Figure 7. Same as Figure 6, except a slowness law (equation
(3a)) governs the state evolution. This example illustrates well
how the initial locking up (slowing down) becomes more sig-
nificant for a smaller value of a . This is because smaller a
values imply greater initial deceleration to significantly lower
initial sliding velocities so the fault becomes more like one that
is locked.

Figure 8. Same as Figure 6, except for a larger stiffness and
smaller jinit. The reduction in jinit is required to make the cycle
times comparable. The greater similarity between the Cou-
lomb and rate-state predictions in Figure 8a, relative to those
in Figures 6a and 7a, is a consequence both of the increased
stiffness and different initial conditions.
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important. Thus the “locking up” of the fault may be interpreted
as a consequence of rapid initial healing of fault contacts, which
becomes more pronounced as a is decreased relative to b.

Another characteristic of Coulomb models is that failure
occurs instantaneously. The rate-state response more closely
approximates this as a becomes smaller relative to b because
the condition Vj/dc ,, 1 becomes true for a longer fraction
of the cycle, so the rapid self-acceleration to failure happens
over a shorter time. Moreover, once the self-accelerating state
is reached, smaller a values imply more rapid acceleration to
failure. Equation (9c) also describes this for the slowness law.
Note that d ln V/dt is always positive and is inversely propor-
tional to a . Equation (9c) implies more rapid acceleration at
the end of the cycle, because of its additional dependence on
V , than does equation (9a), which applies to the rest of the
cycle (e.g., see Figures 2a and 2c). (The behavior described by
(9c) will be true even when V ; Vb and dm/dt ; 0 or when
V .. Vb and dt /dt ; 2snkV . In these cases, d ln V/dt 5
bV/dca or d ln V/dt 5 V/a[2k 1 b/dc] respectively. The
latter derivative is always positive because the rate-state model
requires that k , (b 2 a)/dc for instability to be possible
[Ruina, 1983].)

Finally, Dt predicted by the Coulomb model is independent
of stressing history or, equivalently, of t0. During the early
portion of the cycle (i.e., when Vj/dc ,, 1), clock advances
are more Coulomb-like, being less dependent on when stress
steps are applied than later in the cycle. This early portion
becomes a greater fraction of the cycle as a is decreased. The
derivations below demonstrate this behavior (Figures 6a and
6c, 7a, and 7c). Combining (7) with (2) and ignoring the change
in j at t0 yields an expression for the velocity change caused by
a stress step (see Appendix B). For systems governed by either
the slowness law or the slip law this velocity change is

D ln V , kDxlp/a , (10)

which is independent of the time the stress step is applied, t0.
If perturbed after the initial deceleration and before the final
self-accelerating phase, then the log velocity changes at a rate
proportional only to the background stressing rate, dtb/dt 5
snkVb. Mathematically, from (9a) or (9b) this may be stated as

d ln V/dt 5 kVb/a . (11)

The clock advance is the time required to change the velocity
when stressed at constant rate Vb by an amount equal to that
caused by a stress step or Dt ; D ln V/[d ln V/dt]. Thus by
comparing (10) and (11) we find that the clock advance is

Dt , Dxlp/Vb. (12)

This is simply the Coulomb clock advance DtCoulomb.
Figures 6, 7, and 9 show that although both Coulomb and

Figure 9. Same as Figure 7, except for a larger stiffness and
smaller jinit. The reduction in jinit is required to make the cycle
times comparable. This example illustrates well how the initial
locking up (slowing down) becomes more significant for a
smaller value of a . The greater similarity between the Cou-
lomb and rate-state predictions in Figure 9a, relative to those
in Figures 6a and 7a, is a consequence both of increased stiff-
ness and different initial conditions.

Table 2a. Fixed Parameters for Rate-State Models in
Figures 6–9

Parameter Value

b 0.0127
m0 0.75
V0, m/s 1
dc, m 3
V init, m/s 1

Initial values V init and jinit and constants m0 and V0 were chosen so
that all numerical experiments resulted in comparable cycle times.
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rate-state model predictions may be independent of when the
perturbing stress is applied, the magnitudes of the clock ad-
vances may differ. We show how this arises and find that the
rate-state clock advance approaches the Coulomb prediction
(i.e., equation (12)) when b becomes small relative to the
background-stressing rate, snkVb. Recalling that tp and tb

represent the failure times with and without a stress step per-
turbation (see Figures 6b, 6d, 7b, 7d, 8b, 8d, 9b, and 9d), we
obtain an expression for clock advance, Dt 5 tb 2 tp. This is
done by equating V(tp) 5 V(tb) in accord with a velocity
failure criterion, neglecting precursory slip (Appendix C), and
noting that the stress prior to t0 is the same with and without
the stress step. From (7) we obtain the relation

Dt 5 Dxlp/Vb 1 b/kVb ln @jb~tb!/jp~tp!#

5 DtCoulomb 1 b/kVb ln @jb~tb!/jp~tp!# . (13)

In most cases, the rate-state clock advance exceeds that pre-
dicted by the Coulomb model. This is because the term deter-
mining the difference, jb(tb)/jp(tp), exceeds or equals one for
perturbations applied during most of the cycle (see Appendix
D). The slip law model shown in Figure 8 is the exception to
this; the reason for its behavior was discussed in section 3.

Equation (13) highlights a fundamental difference between
the failure criteria of the rate-state and Coulomb models and
shows that for most of the loading cycle the rate-state clock
advance exceeds DtCoulomb. In the latter, failure occurs when
the loading stress reaches some threshold failure stress, but
there is no stress threshold in the rate-state model. Equation
(13) implies that one can think of a rate-state model as a
modified Coulomb failure model in which the failure stress
threshold is lowered (Figures 6b, 7b, and 9b). This effective
lowering of the failure threshold and thus earlier failure cor-
respond to jb(tb)/jp(tp) . 1 in (13). An effective lowering of
the failure stress threshold by the same amount with and with-
out the step perturbation is what happens for the stiff system
governed by the slip law (Figure 8b) during most of the cycle
and corresponds to jb(tb)/jp(tp) 5 1 in (13).

Thus far we have explored the dependence of the rate-state
model on the constitutive parameters a and b . As (9) and
Figures 6–9 indicate, deviation from Coulomb-like behavior
also depends on the stiffness and loading velocity (or stressing
rate dtb/dt) and the initial conditions. The greater similarity
between the Coulomb and rate-state predictions in Figures 8a
and 9a relative to those in Figures 6a and 7a is a consequence
both of the increased stiffness and different initial conditions.
The stiffer model parameters actually correspond to those

measured in the laboratory [Blanpied et al., 1999] with jinit, for
which we have no direct measurement, adjusted to match the
observed cycle time. When exploring the effect of k by reduc-
ing it (Figures 6–7), we adjusted jinit to keep the cycle time of
the same order. As (9a) and (9b) indicate, jinit may have
profound effect on the initial deceleration and thus the evolu-
tion of slip. Further exploration of the dependence on these
other parameters awaits further work.

5. Conclusions
We examine theoretically the predictions of the timing of

earthquake failure for both Coulomb failure stress and rate-state
frictional models. A Coulomb model requires that a fault remain
locked during stressing, that failure occur instantaneously and
that changes in failure time (clock advances, Dt) associated with a
static stress step are independent of when it is applied. Clock
advances predicted by rate-state models asymptotically become
equivalent to Coulomb predictions under a variety of conditions.
If the rate-state constitutive parameter a is decreased relative to
b, the fault motion becomes more nearly stationary or locked,
acceleration to instability approaches instantaneous failure, and
Dt associated with static stress becomes independent when it is
applied. If a is decreased, the strengthening terms weighted by b
effectively become more significant. Thus the locking up of the
fault may be interpreted as a consequence of rapid initial healing
of fault contacts, which becomes more pronounced as a is made
small relative to b. Our analysis shows that even when Dt pre-
dicted by rate-state has these same characteristics, its magnitude
may differ by some constant from the Coulomb model prediction.
This constant difference depends on the constitutive parameter b,
which weights the terms describing how the connectivity of fault
contacts evolves with time. One way to understand this difference
is to consider a rate-state model as a modified Coulomb failure
model in which the failure stress threshold is lowered, thereby
increasing the clock advance.

We also examine changes in seismicity rates r(t)/r0 due to
coseismic static stress increases which, in the case of after-
shocks, cannot be explained by a Coulomb failure model. We
find that rate-state model faults must be Coulomb-like (i.e.,
have the characteristics of a Coulomb model listed above) to
match an Omori law decay in seismicity rate (i.e., a value of
p ; 1), have an aftershock duration that is considerably less
than a few percent of the cycle time, and to return directly to
the background rate from an increase. Also, the constitutive
parameter a may be lower than values typically estimated in
the laboratory. Alternatively or additionally, the stiffness may

Table 2b. Varied Parameters for Rate-State Models in Figures 6–9

State Evolution
Law a k, m21 jinit, s Dxlp, m

Cycle Time,
s

Figure 6 slip 0.0083 1024 1.662 (1%) 24.748 289.281
0.0033 1024 1.662 (1%) 35.525 415.242

Figure 7 slowness 0.0083 1024 1.662 (1%) 30.636 358.667
0.00277 1024 1.662 (1%) 55.683 650.871

Figure 8 slip 0.0083 1023 1.653 3 10210 (40%) 27.903 326.151
0.00277 1023 1.653 3 10210 (40%) 27.582 322.408

Figure 9 slowness 0.0083 1023 1.653 3 10210 (40%) 30.000 350.667
0.002075 1023 1.653 3 10210 (40%) 30.648 358.244

Percentages specified next to jinit values indicate the corresponding initial value of m relative to m0. The
values of stiffness k, larger value of a, b, dc, load point displacement Dxlp, and cycle times are similar to
those measured in laboratory experiments [Blanpied et al., 1999]. Initial values V init and jinit and constants
m0 and V0 were chosen so that all numerical experiments resulted in comparable cycle times.
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be high and normal stress lower than lithostatic. Our analysis
shows explicitly that the faults that participate in an aftershock
sequence are only those that are on the brink of failure at the
time of the mainshock (i.e., would have failed within less than
a few percent of the total cycle time in the absence of the
mainshock). Finally, although not exhaustive, our modeling
suggests that the slip evolution law is inconsistent with char-
acteristics of aftershock seismicity.

Appendix A
We define the seismicity rate as r(t) 5 dn/dt , in which n

indicates the number of earthquakes that fail at time t after a
perturbation is applied at t0, and t 5 tp 2 t0, in which tp is the
perturbed failure time. Assume background seismicity is due to
failure of a collection of faults, each at a different fraction of its
unperturbed cycle duration. These fractions are initially dis-
tributed evenly from zero to one such that the seismicity rate
resulting from stressing at a constant rate is a constant r0

(Figure 1a). We derive general equations for r(t) by consid-
ering just two faults (Figure A1a). The seismicity rate esti-
mated in the absence of any perturbation is simply the differ-
ence in their unperturbed failure times tb1

and tb2
or

1/r0 5 @tb2 2 tb1#/Dn (A1)

(Dn 5 1 in Figure A1). A perturbation advances the failure
times by Dt i (i 5 1, 2), resulting in a new seismicity rate r or

1/r 5 @~tb2 2 Dt2! 2 ~tb1 2 Dt1!#/Dn . (A2a)

Rearranging this yields

1/r 5 @~tb2 2 tb1! 2 ~Dt2 2 Dt1!#/Dn]

5 1/r0 2 ~Dt2 2 Dt1!/Dn

5 1/r0 2 ~DDt/Dtb!~Dtb/Dn!

5 1/r0@1 2 ~DDt/Dtb!# . (A2b)

Previous studies of single fault systems have shown that
clock advance Dt for a single fault may depend on t0 [Gomberg
et al., 1997, 1998]. This dependence may be computed numer-
ically or analytically in special circumstances, and such com-
putations may be employed to calculate r(t) by considering an
equivalent distribution of faults to the one described above. In
this alternative distribution, all faults are advanced by the same
amount in their cycles and then perturbed at different t0, and
all unperturbed failure times are equal (Figure 1b). Noting that
Dtb in (A2b) is equivalent to 2Dt0 in this alternative distribu-
tion (Figure A1b) results in

r~t! 5 r0/@1 1 DDt/Dt0# , (A3a)

with differential form

r~t! 5 r0/@1 1 dDt/dt0# . (A3b)

This can be rewritten in terms of tp as

r~t! 5 r0/@1 2 dtp/dt0# (A3c)

because Dt 5 tb 2 tp, and tb is constant in this population
(Figure 1b). These equations are convenient, allowing r(t) to
be calculated numerically; tp is computed for a series of cal-
culations, each time varying t0, and associated with the time
t 5 tp 2 t0. Equation (A3) can also be recast in terms of t
directly, noting that dt0/dt 5 dtp/dt 2 1 and dtp/dt0 5
(dtp/dt)/(dt0/dt), so that by substitution

r~t! 5 r0@1 2 dtp/dt# . (A4)

Appendix B
The stress change due to a step perturbation is Dt 5

snkDxlp (from (2), since Dx/Dxlp ; 0 for most of the cycle).
The effect of Dt on slip velocity is easily seen by substituting Dt
into (7) and letting t0

1 and t0
2 represent the instants before and

after t0, respectively. The ratio of the velocities at these times
is

V~t0
1!/V~t0

2! 5 @j~t1!/j~t2!#2b/a exp @kDxlp/a#

or

D ln V 5 2b/a ln @j~t1!/j~t2!# 1 kDxlp/a . (B1)

In many cases the term ln [j(t1)/j(t2)] may be neglected (see
Figures 7d, 8d, and 9d for small a calculations). This is true for
both the slowness and slip laws early in the cycle when Vj/dc ;
0 so that dj/dt ; 1 for the slowness law and dj/dt ; 0 for the
slip law. Thus early in the cycle the rate of change of j becomes
constant, and the instantaneous change in j from t0

2 to t0
1

becomes negligible.

Appendix C
An expression relating the Coulomb and rate-state clock

advances (i.e. equation (13)) is derived by noting that the
stresses just prior to failure with and without the perturbation
equals snk[Vbtp 1 Dxlp 2 Dxp] and snk[Vbtb 2 Dxb],
respectively. Dxb and Dxp denote the precursory slip accumu-
lated prior to failure in both cases, and we assume either that
Dxb ; Dxp and/or that the precursory slip is negligible (i.e.,
Vbtp . Dxp and Vbtb . Dxb). Both numerical and laboratory
models [Blanpied et al., 1999] show the latter to be true.
Gomberg et al. [1998] show that for the slowness law, Dxb 5
Dxp when the velocity at failure is infinite, suggesting that
Dxb ; Dxp as long as the failure velocity is some high value.

Figure A1. Expanded version of Figure 1 for just two faults.
Note that tb2 2 tb1 in Figure A1a equals t01 2 t02 in Figure
A1b. See text for explanation.
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Appendix D
We demonstrate that jb(tb)/jp(tp) . 1 by first defining the

time that weakening begins as tw when V(tw)j(tw)/dc 5 1 so
dj(tw)/dt 5 0. Failure occurs after tw and when some high
velocity Vf is reached. As discussed in Appendix B, early in the
cycle the only effect of the perturbation is to increment ln V .
This advances the time weakening commences by an essentially
constant amount, dependent only on the magnitude of D ln V .
Also, because a perturbation causes an instantaneous increase
in velocity (equation (10)), weakening begins earlier and at a
lower value of j than in the unperturbed case; that is,
jb(twb) . jp(twp), in which twb and twp correspond to tw for
the unperturbed and perturbed cases, respectively (see Figures
6d, 7d, and 9d). Suppose failure occurs immediately after
weakening begins such that tb ; twb and tp ; twp. Thus
jb(tb) . jp(tp) must be true in general for this special case to
satisfy the requirement that jb(twb) . jp(twp). The same
logic explains why the rate-state and Coulomb clock advances
are nearly identical for the system governed by the slip evolu-
tion law in Figure 8. In this case there is no strengthening (and
thus no weakening) through most of the cycle so the effect of
a perturbation occurring early in the cycle is to advance the
time at which j begins to evolve at all (i.e., when dj/dt be-
comes nonzero) by an amount dependent only on the magni-
tude of D ln V . Thus the perturbed path of j(t) to failure will
simply be an advanced version of that without a perturbation
so that jb(twb) 5 jp(twp), jb(tb) 5 jp(tp) and Dt ; DtCoulomb.
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