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[1] We study models of seismicity rate changes caused by the application of a static stress
perturbation to a population of faults and discuss our results with respect to the model
proposed by Dieterich (1994). These models assume a distribution of nucleation sites
(e.g., faults) obeying rate-state frictional relations that fail at constant rate under tectonic
loading alone, and predicts a positive static stress step at time t0 will cause an immediate
increased seismicity rate that decays according to Omori’s law. We show one way in
which the Dieterich model may be constructed from simple general ideas, illustrated using
numerically computed synthetic seismicity and mathematical formulation. We show
that seismicity rate changes predicted by these models (1) depend on the particular
relationship between the clock-advanced failure and fault maturity, (2) are largest for the
faults closest to failure at t0, (3) depend strongly on which state evolution law faults obey,
and (4) are insensitive to some types of population heterogeneity. We also find that if
individual faults fail repeatedly and populations are finite, at timescales much longer
than typical aftershock durations, quiescence follows a seismicity rate increase regardless
of the specific frictional relations. For the examined models the quiescence duration is
comparable to the ratio of stress change to stressing rate Dt/ _t, which occurs after a
time comparable to the average recurrence interval of the individual faults in the
population and repeats in the absence of any new load perturbations; this simple model
may partly explain observations of repeated clustering of earthquakes.
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1. Introduction

[2] Numerous physical models have been proposed to
explain observations of large earthquakes causing, or
‘‘triggering,’’ an increase in seismicity rate [see Scholz,
1968; Nur and Booker, 1972; Dieterich, 1994; Freed and
Lin, 2001; Helmstetter and Sornette, 2002, and references
therein]. Aftershocks are the most common such observa-
tion, particularly their characteristic temporal signature.
Explanation of these observations undoubtedly will tell us
something about the physics underlying earthquake failure.
In addition to satisfying our scientific curiosity, an
understanding of triggering will improve our ability to
forecast the probabilities of damaging earthquakes and thus
to mitigate earthquake risk.
[3] Among the more popular triggering models is that

first proposed by Dieterich [1994], which explains seismic-
ity rate changes as a consequence of frictional failure on a
distribution of nucleation sites that has been altered by some
(arbitrarily complex) stress perturbation. From this general

formulation he derived an analytic expression for a step
increase or decrease in shear stress, which has been widely
applied in studies of aftershocks. We refer to this analytic
expression as the Dieterich [1994] model, and note it as <D.
In this paper we discuss the assumptions and implications of
this model, motivated by its growing application to seis-
micity studies [e.g., Gross and Kisslinger, 1997; Gross and
Burgmann, 1998; Harris and Simpson, 1998; Toda et al.,
1998; Gross, 2001; Kilb and Rubin, 2002; Rubin, 2002].
Perhaps a more important motivation from the perspective
of social responsibility is that it has been proposed as a key
ingredient of strategies for estimating the change in prob-
ability of a large earthquake on an individual fault due to a
nearby earthquake [Stein et al., 1997; Hardebeck, 2004].
We discuss these strategies by Gomberg et al. [2005].
[4] In this paper we highlight results of a numerical study

of the seismicity rate change model proposed by Dieterich
[1994]. Some of the results presented revisit previous ones
[Gomberg et al., 1997, 1998, 2000], with the intention of
providing a clearer presentation and focus on the Dieterich
[1994] model. We begin by showing that in some aspects
this model is a specific case of a more general one. In part,
the specificity comes from invoking a particular frictional
response, which depends on the rate of fault slip and
evolution of contact properties [Dieterich, 1979; Ruina,
1983]. Moreover, the approach taken by Dieterich [1994]
relies on the introduction of a new state variable and
corresponding evolution law, which we suggest may ob-

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, B05S03, doi:10.1029/2004JB003404, 2005

1U.S. Geological Survey, Memphis, Tennessee, USA.
2U.S. Geological Survey, Menlo Park, California, USA.
3Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.
4Settore di Geofisica, Dipartimento di Fisica, Universitá di Bologna,
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scure the underlying physical processes. Next we show that
the precise form of the frictional response assumed in the
Dieterich [1994] model has significant effect on the pre-
dicted seismicity rate change. We then go beyond our
previous work and examine assumptions about the diversity
of characteristics among the faults composing the model
population. We also look at timescales much longer than
those addressed by Dieterich [1994], focusing on the
implications of assuming faults fail repeatedly and are finite
in number.

2. A General Model for Seismicity Rate

[5] Here we consider the change in seismicity rate pro-
duced when a stress change is applied to a population of
faults that have been undergoing constant rate tectonic
loading. While our illustrations consider populations of
discrete nucleation sources or faults, in part because it is
easier conceptually [e.g., Dieterich, 1994, Figure 1; 1987],
the results also apply to continuous distributions amenable

to use in probability calculations. To help with keeping
track of the various relevant time parameters in the models
presented in this and Gomberg et al. [2005], we list them in
Table 1. In order to illustrate basic concepts, we first explore
an extremely simple model in which all the faults in the
population have identical frictional properties (Table 2) and
are governed by the same frictional laws. The only differ-
ence between faults is how mature each one is at any time
(i.e., how much time has passed since each fault last failed).
The faults do not interact with one another. If the fault
maturities are equally spaced, then in the absence of stress
transfer the population as a whole produces earthquakes at a
constant rate, r = 1/d, where d is the time between succes-
sive earthquakes (Figure 1a). If a perturbing earthquake
occurs at time t0 and generates a stress step (positive, or
failure encouraging, in this example), subsequent earth-
quakes occur in the population sooner than they otherwise
would have (we say that they are ‘‘clock advanced’’). The
rate of earthquakes increases if the magnitude of the clock
advance on a fault decreases with increasing fault maturity

Figure 1. Failure times of a hypothetical population of faults. Although we represent each fault as a
spring slider obeying quasi-static rate-state frictional laws (see Gomberg et al. [1997, 2000] and Table 2
for details), any physical model in which the faults accelerate toward failure would produce the same
results [Gomberg et al., 2000]. (a) Failure times of faults being loaded and failing at a constant rate. Each
circle represents a fault that will fail at a time corresponding to the circle’s position on the horizontal axis.
A step increase in stress occurs at time t0 (dashed vertical line). Shading of circles indicates how mature
or close to failure a fault was just prior to t0 (darker shading indicating faults closer to failure at t0). The
most mature faults are indicated by hachured oval. (b) Failure times of the same faults advanced by the
positive stress step. The amount of advance depends on the fault’s maturity at t0. The most mature faults
now fail within a much shorter time as indicated by the hachured oval containing the same set of failure
times in all frames. Although much clearer in Figure 1c, the oval is much more compressed along its time
axis in Figures 1b and 1c. (c) Seismicity rate, or inverse of the interevent times. Hachured oval contains
the interevent times or rates for the same faults indicated by ovals in Figures 1a and 1b. Curved line is the
rate predicted by the Dieterich [1994] model.
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[see, e.g., Gomberg et al., 2000]. These clock advances
produce a ‘‘pileup’’ of failures immediately after t0
(Figure 1b), shortened interevent times, and increased
seismicity rate (Figure 1c). The greatest contribution to
the rate increase is associated with earthquake on the faults
that had been closest to failure at t0. These ideas also are
illustrated by of Dieterich [1994, Figure 1]. Note that
although our Figure 1 was produced using a frictional
model of failure for each fault, the results apply to any
model in which faults accelerate toward failure [Gomberg,
2001]. To gain insight into the way the seismicity rate in
such a system responds to the stress step, we shall follow
the timing of individual earthquakes on individual faults in
the model.
[6] We first describe this idealized fault population math-

ematically. As noted in Table 1, we define Tn as the
recurrence interval (the time between failures), hereafter
referred to as recurrence interval, of the nth fault in the
population and sn as the time of the last earthquake on fault
n (i.e., the start of current cycle on fault n). (Note that in all
the numerical models presented in this study the recurrence
intervals (also called cycle times in other studies) we
calculate differ from those predicted by fully dynamic
failure models. This is because we compute failure times
using a quasi-static model for initial conditions at time sn
(see Table 2) that are not exactly those characterizing the
system at the time of the last earthquake. This difference has
almost no effect on the numerically modeled rate changes at
short timescales (times � Tn) and thus on most of the
results we present. It does affect the quantitative aspects of
the model presented in section 4, but we interpret the model
qualitatively only to illustrate more general implications.
The index n also indicates the order of occurrence of
earthquakes in the population.) We omit the subscripts in
Table 1 so that the relevant variables apply to models in
both this and Gomberg et al. [2005]. If the population is
composed of identical faults (i.e., all sources have identical
constitutive properties and initial conditions) Tn is the same
for all faults; therefore we initially assume that the recur-
rence interval is constant, but later we consider the possi-
bility that different faults have different Tn. The time of the
next failure of fault n will be sn + Tn. Similarly, failure of the

(n�1)th fault occurs earlier at sn�1 + Tn�1. The interevent
time (interval between two subsequent events on two
distinct faults) is

dn ¼ Tn � Tn�1 þ sn � sn�1 ð1Þ

in which sn > sn�1 and the instantaneous seismicity rate is
rn = 1/dn.
[7] Now consider the effect of a perturbing stress step

applied to all faults in the population, produced by a large
earthquake occurring at time t0 (t0 > sn). For accelerating
failure models, the clock advance on fault n depends on the
fault’s maturity, mn = t0 � sn [Dieterich, 1994; Gomberg et
al., 2000; Gomberg, 2001; Belardinelli et al., 2003]. The
perturbed interevent time becomes

d0n ¼ T 0
n � T 0

n�1 þ sn � sn�1 ð2Þ

where T 0
n = T 0

n(mn) and T 0
n�1 = T 0

n�1(mn�1) are the
perturbed recurrence intervals on faults n and n�1,
respectively, which depend on the maturities of
the respective faults. The perturbed seismicity rate is r 0n =
1/d0n, which also depends on the maturities of both faults.

Table 1. Time Parameters in the Models Presented in This Paper and by Gomberg et al. [2005]

Symbol Background/Aftershock Seismicity Single Fault Failure Probability

t0 time when static stress step is applied
d time interval between successive

earthquakes on different faults
T recurrence time, or time interval

between failures
T0 perturbed recurrence time
s time of the last earthquake 0
m maturity at t0, t0 � s
tc clock advance, change in recurrence

time
t elapsed time since the application of

the stress perturbation, T0 � t0
te elapsed time

Description of time parameters employed in our model of seismicity rate change for a population of faults, as in
background and aftershock seismicity (middle column), and as they relate to the failure probability of a single fault (right
column), discussed by Gomberg et al. [2005]. For the seismicity rate change application, unless specified otherwise,
absolute or interval times refer to an individual fault in the population. Times (not interval times) are absolute, all relative
to the same arbitrary origin. For the single fault failure probability application, times are relative to the time of the last
earthquake.

Table 2. Model Parameters Used to Compute Figures 2 and 4a

Parameter Value

A 0.005
B 0.010
m0 0.7
dc 1 mm
Stiffness k 0.05 m�1

Reference velocity V0 10�9 m s�1

Failure velocity Vf 0.1 m s�1

Tectonic loading velocity V 10�9 m s�1

Initial velocity Vinit 10�9 m s�1

Initial stress (friction) as
negative percent from stable
friction minit

�10%

Perturbation amplitude 0.5 m
aSee Gomberg et al. [1997, 2000] for explanation. If the normal stress is

s = 10 MPa, these parameters become stiffness 0.5 MPa m�1, stress step
amplitude Dt = 0.25 MPa, tectonic stressing rate 5 	 10�10 MPa s�1 =
0.016 MPa yr�1; these parameters scale linearly with s.

B05S03 GOMBERG ET AL.: A MODEL OF SEISMICITY RATE CHANGE

3 of 10

B05S03



Since we have assumed that all faults have identical
constitutive properties and initial conditions (although
the absolute times, sn, differ), and thus have the same
unperturbed recurrence intervals (i.e., Tn = Tn�1 in
equation (1)), then the perturbed interevent time becomes

d0n ¼ dn þ T0
n � T0

n�1 ð3Þ

In section 5 we examine the case in which the faults in the
population have different constitutive properties (i.e.,
unequal recurrence intervals). It is important to note that
in this population model of seismicity rate change, the
distribution of Tn and sn within the population determine
both the background seismicity rate (when no perturbation
is applied) and the seismicity rate change caused by a stress
step. Our model simulates a constant background seismicity
rate simply by assuming a constant Tn (i.e., a population of
identical faults) and values of sn distributed evenly at equal
time intervals within the population.
[8] Although we have not assumed any particular failure

mechanism in the discussion so far, equation (3) provides
insight into how a perturbing earthquake changes the
seismicity rate. Advancing the failure times (or decreasing
the recurrence intervals) does not necessarily increase the
population’s seismicity rate. In particular, the interevent
time and seismicity rate remain constant if the recurrence
intervals on all faults are perturbed by the same amount.
This is the case for immature (far from failure) frictional
faults, that is, if T 0

n = T 0
n�1, then d0n = dn and r 0n = rn. For the

seismicity rate to increase (interevent time to decrease), the
perturbed cycle time must be greater for the more mature
faults than for faults farther from failure (i.e., T 0

n�1 > T 0
n in

equation (3) or dT0/dm > 0 [see also Gomberg et al., 1998,
Figure 3b]).
[9] Equation (3) is a general formula for the seismicity

rate and from it an equally general relation for the change in
seismicity rate due to some perturbing stress can be derived
[see also Gomberg et al., 2000; Beeler and Lockner, 2003;
Gomberg et al., 2005]. This general relation can be turned
into analytic expressions if, for a given type of stress
perturbation (which theoretically can have any time history),
the relationship between recurrence interval change and
fault maturity is known (or assumed). Indeed, the Dieterich
[1994] seismicity rate change model can be derived using
this approach. Here we summarize the derivation of this
general rate change and show in more detail how it leads
to the Dieterich [1994] model, <D, in Appendix A. The
change in recurrence interval or clock advance is tc(mn) =
Tn � T0n, which as noted, depends on the fault’s maturity.
If we let Dtc(mn) = tc(mn) � tc(mn�1), then we can rewrite
equation (3), and thus the rate change, in terms of the
dependence of the clock advance on maturity. Recalling
that the unperturbed recurrence times are the same on all
faults, or Tn = Tn�1, equation (3) can be written as

d0n ¼ dn þ T 0
n � T 0

n�1 ¼ dn þ T 0
n � T 0

n�1 � Tn þ Tn�1

¼ dn � Dtc mnð Þ ¼ dn 1� Dtc mnð Þ
dn

� �
ð4aÞ

Noting that d0n/dn = rn/r
0
n and the definitions of dn in

equation (1) with Tn = Tn�1 and maturity as mn = t0 � sn,

then dn = Dsn = �Dmn and we can write the rate change
as

r0n
rn

¼ 1þ Dtc mnð Þ
Dmn

� �
ð4bÞ

Since in this model the unperturbed recurrence intervals
are constant Dtc(mn) = �DT 0

n and, using differentials
instead of differences, the instantaneous rate change
becomes

r0n
rn

¼ 1

1� dT 0
n

dmn

ð4cÞ

[10] We show in Appendix A how an analytic expres-
sion for the derivative in equation (4c) can be obtained,
yielding <D when substituted into equation (4c). Summa-
rizing the derivation, determination of an analytic solution to
equation (4c) requires an analytic description of the response
of a single fault to a stress perturbation. To obtain<D, we use
the description derived by Gomberg et al. [1998] of how the
recurrence interval (or clock advance) depends on maturity
and a perturbation applied at time t0. In this aftershock
model the time of the last failure of each fault, sn, differs
for each fault and t0 is a single time, all measured relative
to some arbitrary origin. The identical distribution of
maturities, mn = t0 � sn, would result by shifting sn to
be the same for all faults, and considering t0 to vary for
each fault, so that the derivative in equation (4c) becomes

dT 0
n

dmn

¼ dT 0
n

dt0
¼ 1� e�Dt=As

h i
e�t=ta ta ¼

As
_t

ð5Þ

where t = T 0
n � t0 represents the time that has passed since

the application of the stress perturbation (i.e., the ‘‘trigger-
ing delay’’ [Belardinelli et al., 1999, 2003]), Dt is the
amplitude of the shear stress step, s is the ambient effective
normal stress, _t is the tectonic stressing rate, and A is an
empirical frictional parameter. If the background rate is
assumed to be constant, as in the work by Dieterich [1994],
substitution of equation (5) into equation (4c) results in the
Dieterich [1994] model,

<D tð Þ ¼ r0=r ¼ e�Dt=As � 1
h i

e�t=ta þ 1
n o�1

ð6Þ

The predictions of this model agree very well with the
numerically calculated rate change of Figure 1c. This should
not be surprising because the numerical example shows that
it is the most mature faults that give rise to the rate change.
These are precisely the ‘‘self-accelerating’’ faults that
Dieterich [1994] assumed are most significant and justifies
the approximation he makes in developing his analytic
model (which explicitly neglects all faults earlier in their
cycles). Note that the less mature faults are all clock
advanced, but all by nearly the same amount (i.e., Tn =
Tn�1) so that their failure rate does not change.
[11] Equation (4c) is a general expression for rate change

that relies on the simple idea that seismicity rate change is
measured by the change in interevent time, which depends
on how the recurrence interval or failure time changes with
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fault maturity. We suggest that applying it to derive <D

(equation (6)) provides a clear connection to the underlying
physical system. Indeed, application of <D requires knowl-
edge of fewer parameters and computations than a numer-
ical solution of equation (4c). However, the simplicity of the
analytic solution comes at the price of needing to validate
the assumption of self-accelerating slip on all sources, and
at a loss of generality as it requires that state (in this case a
measure of contact properties) evolves according to the
slowness law [see Beeler et al., 1994] and that the pertur-
bation is a stress step. For most general perturbations both
the solution to equation (4c) and the procedure outlined by
Dieterich [1994] for finding rate change are numerical.
(One exception is an analytic solution for a transient
perturbation with a boxcar time function derived following
the same recipe as for the Dieterich [1994] model in
Appendix A but instead using the transient ‘‘load function’’
of Gomberg et al. [1998].) Equation (4c) also permits rate
changes to be derived for alternative failure mechanisms,
and in some cases analytic expressions may be found. One
example is illustrated by Gomberg [2001] in which a rate
change formula is derived for faults failing according to the
theory of subcritical crack growth. Finally, as discussed by
Beeler and Lockner [2003] and Gomberg et al. [2005,
equation [4c]] may be considered as a probability density
function and used directly to estimate changes in condition-
al failure probabilities.

3. Frictional Response Matters

[12] The Dieterich [1994] model assumes that the evolu-
tion of fault contact properties, or ‘‘state,’’ may be described
by a relation often referred to as a ‘‘slowness’’ law [see
Beeler et al., 1994]. The slowness law defines the temporal
evolution of a state variable that accounts for the changing
properties of the surface contacts. It represents one possible
realization of the evolution equation, which is one of the
two constitutive relations defining the rate and state fric-
tional formulation. We find that the seismicity rate change
depends strongly on how state evolves, i.e., on which state
evolution law faults obey. Figure 2 compares rate changes
calculated numerically for the slowness law and another
commonly invoked state evolution relation, the slip law [see
Beeler et al., 1994], on two timescales to emphasize the
differences.
[13] Again, for illustrative purposes we employ the sim-

ple seismicity model described in section 2. Immediately
after the perturbing stress, the slip law predicts a rate change
that is larger and decays more rapidly than that predicted by
the slowness law. The rate for the slowness law may be fit
by the modified Omori law, in which the rate of earthquakes
decreases with time as an inverse power law

dN=dt ¼ K= t þ cð Þp ð7Þ

in which N is the cumulative number of earthquakes and K,
c, and p are empirical constants [Utsu, 1961]. The longer-
term behaviors of the rate changes for these two state
evolution laws also differ significantly. The slip law predicts
a small quiescence following the initial rate increase, which
may last for years. The observational evidence for or against
such quiescence is mixed. Ziv et al. [2003] and Ogata et al.

Figure 2. (a) Background and advanced failure times for
populations of identical faults (same as population shown in
Figure 1) obeying the slowness law (circles) and slip law
(triangles). The perturbing stress step is the same as in
Figure 1. Note that the advanced failure times pileup much
more for the slip law. Arrow connects the same fault under
background and perturbed stressing. (b) Rate changes,
normalized to the background rate, derived from the
interevent times of the slip law (triangles) and slowness
law (circles) populations as functions of time from the main
shock. Dieterich’s [1994] model is shown by thin black
curve. An Omori decay model (thick black curve) fits the
slowness law rate change model predictions better than it
does the slip law model. The Omori decay model shown
was fit by trial and error to best match both the slip and
slowness law predictions (and thus does not decay with a
value of p = 1.) The slip law model predicts a faster and
deeper rate decrease that temporarily drops below the
background rate. Vertical shaded area corresponds to time
period shown in Figure 2c. (c) Same models shown for a
shorter time range than in Figure 2b. Horizontal shaded area
corresponds to rate change range shown in Figure 2b.
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[2003] find evidence for quiescences following major
earthquakes, beginning several months after the main shock
and lasting for years. Toda and Stein [2003] also provide a
list of studies in which quiescences have been measured.
Other recent studies suggest that quiescences are rare,
particularly relative to predictions of Coulomb stress
modeling that predict rate changes that correlate with the
magnitude and sign of the stress changes [Felzer et al.,
2003; Marsan, 2003]. These studies examine rate decreases
inferred by others and show that they may be analysis
artifacts. They interpret the paucity of rate decreases as a
possible indication that dynamic triggering may promote
only rate increases, that stress change patterns are more
complex than the models predict, or that the seismicity
response to stress changes is asymmetric with respect to the
sign of the stress change.
[14] Differences in predicted rate changes between the

slip and slowness laws were also noted by Gomberg et al.
[2000]. As they explained, a positive stress step causes an
abrupt increase in slip velocity. The slip law model predicts
a sharp rate increase followed by quiescence because
strengthening only occurs when the fault is slipping in
some intermediate velocity range and weakening occurs
above this range. For the most mature, fastest slipping
faults, the increased velocity causes these faults to weaken
rapidly and fail almost immediately. The velocity of slower
slipping, less mature faults is elevated into the strengthening
range, causing them to decelerate and resulting in quies-
cence. The slip velocities of the least mature faults at the
time of the stress step are sufficiently low that there is little
frictional effect and the rate does not change. The slowness
law has a much smoother dependence on maturity (i.e., slip
velocity in this context) and a correspondingly smoother
rate change results.

4. Implications of Recycling Sources

[15] The formulation of Dieterich [1994] assumes that
sources do not fail more than once, which implies that there
is (in the model) an infinite population of sources. In
contrast, our model allows repeated failure of sources.
Dieterich [1994] also assumes that all sources are mature,
or near failure (experiencing self-accelerating slip). It fol-
lows that the response of a source to a stress perturbation
depends on those properties of the source that control
failure, but not on how long it took the source to reach

failure. In contrast, our model considers the importance of a
source’s maturity in its response to a stress perturbation. For
time intervals short compared to typical source recurrence
intervals, these differences appear to have insignificant
impact, as evidenced by the close agreement between the
rate change we obtain numerically and that obtained by
Dieterich [1994] (Figure 1). We examine the possible
implications of these model differences for longer-timescale
calculations. We acknowledge that the Dieterich [1994]
model was not developed for this purpose, but believe that
such an comparison may still be instructive for understand-
ing the implications of the respective sets of assumptions
and the limitations of each model.
[16] We consider what happens when sources in a finite

population each recur quasiperiodically. The assumption of
quasiperiodic recurrence underlies many probabilistic mod-
els of earthquake occurrence, consistent with observations
of large to very small earthquakes [see Matthews et al.,
2002, and references therein]. To explore the implications of
assuming that the source population is finite, we return to
the simple population used for Figures 1 and 2 and interpret
only the most general features of its behavior. (Although
highly simplified, adoption of a nearly identical model of
recurring clusters by Meade and Hager [2004] lends it
credibility.) The maturity of sources in the population is
assumed to be distributed evenly at equal time intervals.
Recall that a main shock-generated stress step clock advan-
ces the failure times of the faults close to failure, causing a
pileup of failures and an immediate increase in failure rate
(Figure 3). Faults farther from failure have larger but nearly
equal clock advances, so that the failure rate at later times is
only minimally affected. In this context, the fact that the
number of faults, N, is finite means that a quiescence (a
reduced or zero rate) must occur after the failure of the Nth
fault (Figure 3). The clock advance for the faults farthest
from failure is approximately equal to the Coulomb clock
advance Dt/ _t. Hence the duration of the quiescence is
approximately equal to the Coulomb clock advance. In
reality, the duration of quiescence will vary, depending on
the particular distribution of source maturity (which may not
be distributed evenly at equal time intervals, as we have
assumed) at the time of the perturbing earthquake, the true
complexity of failure processes, and source interactions.
(Preliminary fully dynamic calculations indicate that the
recurrent nature of the failure pattern may be more complex
than these quasi-static models predict.)

Figure 3. Simulated seismicity for the same population of identical faults shown in Figure 1 but for a
longer time window that includes failures of all the faults in the finite population (N = 200 in this
example). Note change in timescale. Arrows connect the failure times one fault (fault N) in the
unperturbed and perturbed states. In this example, the unperturbed cycle time is 76.86 years and the clock
advance for faults far from failure is 17.56 years, which results in a quiescence period of 17.56 years. The
Coulomb clock advance for this example is 15.86 years. The greater frictional clock advance is consistent
with the results of Gomberg et al. [2000].

B05S03 GOMBERG ET AL.: A MODEL OF SEISMICITY RATE CHANGE

6 of 10

B05S03



[17] In summary, a positive stress perturbation in a finite
source population creates a pattern of increased failure rate,
waning failure rate, and then zero failure rate (the popula-
tion becomes quiescent). Curiously, the effect of the stress
perturbation in this model endures well beyond the quies-
cence (theoretically forever!). As tectonic loading contin-
ues, this pattern repeats (Figure 3) unless perturbed by
another transient stress change (e.g., another main shock).

We expect our model of recycled sources, and thus finite
source populations, to be most relevant to the case in which
the minimum magnitude of observed earthquakes is rela-
tively large. Albeit overly simple, this model may explain
some observations of repeated clustering of large earth-
quakes (e.g., as documented by Pollitz et al. [2003] and
Meade and Hager [2004]).

5. Effects of Frictional Heterogeneities

[18] What happens if, contrary to our assumptions thus
far, faults in the population are not identical? We show that
the rate change is still predictable on average, even if the
background rate fluctuates and the population is composed
of faults having differing constitutive properties but all
obeying the same frictional laws. Since we are concerned
only with the temporal behavior of the failure process, the
only relevant individual fault properties are those that
determine the background and perturbed cycle times. For
a rate-state frictional model these properties include empir-
ical constitutive parameters A and B, the length scale
parameter, dc, the material stiffness, and initial conditions
in a quasi-static model. We simulate seismicity for a
population of faults composed of a mixture of three different
homogeneous subpopulations, one of which we showed in
the previous examples. These subpopulations are character-
ized by differing constitutive parameters dc and B and thus
by differing recurrence intervals. However, the distributions
of perturbed interevent times and failure rates in each
subpopulation are identical (Figure 4). This apparent lack
of dependence on constitutive parameters dc and B (and thus
the recurrence intervals, which may be viewed as proxies
for constitutive properties), further validates the assump-
tions underlying the Dieterich [1994] model (i.e.,
equation (5) does not depend on these parameters). As
noted in section 4, this should not be surprising because
the response to a stress perturbation of sources that are near

Figure 4. (a) Below time axis, the failure times for three
subpopulations of faults under tectonic loading alone
(‘‘background state’’) are shown by open squares, triangles,
and circles and, with the addition of a positive stress step
at t = 0 (‘‘perturbed state’’), by corresponding solid symbols.
The faults within each subpopulation have identical cycle
times (but differing maturities). Cycle times differ between
subpopulations. Above time axis, interevent times and
failure rate change are shown for each subpopulation. The
dependence of interevent time and failure rate on the delay
time (time from the main shock) is the same in each
subpopulation). The cycle times are altered by changing dc to
0.01 m in one case (triangles, cycle times 69.0 years), and B
to 0.02 in another (squares, cycle times 130.7 years). For the
reference case (circles, cycle time 76.9 years) dc = 0.001 m
and B = .01. (b) Interevent times (open diamonds) are highly
variable for a population of faults containing all three fault
types shown in Figure 4a. However, interevent times
averaged over three samples vary smoothly with delay time
(solid diamonds). The inverse of these averages, or the
averaged seismicity rate change (asterisks), is identical to
that of the individual fault populations in Figure 4a. The
solid curve through the numerically calculated rate changes
is the Dieterich [1994] model. Figure 5. Below time axis, failure times for a population

of faults with identical cycle durations but randomized cycle
start times (coefficient of variation is 0.25), under tectonic
loading alone (background case, open circles) and with the
addition of a positive stress step (main shock) at t = 0
(perturbed case, solid circles). Above time axis, interevent
times (open triangles) are averaged with a moving window
(solid triangles) and inverted to estimate the rate change
(solid circles). The solid curve shows rate changes predicted
by the rate-state seismicity rate change model.
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failure depends only on the properties that control failure
and not on how long it took for these sources to reach the
near-failure state.
[19] While real populations contain faults with a variety

of properties, we only can observe the failure times of an
entire population. Although combining these three homo-
geneous subpopulations into one resulted in background
interevent times that are no longer constant and perturbed
interevent times that no longer vary smoothly (Figure 5),
averaging the interevent times over a time window long
enough to include a failure of each type of fault results in a
rate change that varies in exactly the same way as the
individual single-fault populations. Similarly, if the back-
ground rate is only constant over some smoothing time-
scale, then the seismicity rate change remains predictable.
(The averaging window must be at least as long as the
interevent time of the population with the slowest back-
ground rate, or longest interevent time, which in this
particular example is 
11.6 days.) Next we illustrate these
ideas with a numerical example in which we perturb the
cycle start times of a population of identical faults randomly
about some constant background failure rate. If the random
variability is removed by averaging interevent times over an
appropriate window, the rate change remains predictable on
average (Figure 5).

6. Conclusions

[20] We have examined in some detail some of the
assumptions and predictions of the analytic Dieterich
[1994] model of seismicity rate change, <D. Dieterich
[1994] considers the general case of how seismicity may
be affected by a stress perturbation of arbitrary complexity,
modeling seismicity as a distribution of nucleation sources
obeying specific frictional laws. We focus on his analytic
model for the response of seismicity to a stress step, which
has been widely applied to explain the temporal behavior of
aftershocks. When viewed as an aftershock model, the
sources naturally may be considered as a specific population
of faults that obey rate-state frictional relations and that fail
at constant rate under tectonic loading alone. <D predicts
that a positive static stress step at time t0 causes an
immediate increase in seismicity rate that decays inversely
with time, as predicted by Omori’s law.
[21] <D may be derived from simple general ideas, which

we demonstrate using both numerically computed synthetic
seismicity and a simple mathematical formulation for seis-
micity rate. These demonstrations show that simply advanc-
ing the failure times (clock advancing) does not change the
seismicity rate unless the clock advances depend on fault
maturity in a particular way. The mathematical formulation
leads to a simple expression for seismicity rate change that
can be computed numerically or in some cases used to
derive an analytic expression, given a known relationship
between failure time and fault maturity. This formulation is
general in the sense that it applies to any failure mechanism
and stress perturbation time history. For one particular
laboratory-based failure relation, it leads to <D. Finally
the synthetic seismicity and the mathematical formulation
show that the largest seismicity rate increase is associated
with the faults closest to failure at the time t0 of the static
stress step. This results validates an assumption of the

Dieterich [1994] model that explicitly includes only faults
that are already close to failure at t0.
[22] Numerically computed seismicity rate changes show

that the model predictions depend strongly on how state
evolves, i.e., on which state evolution law faults obey. In
particular, assumption of a slip state evolution law, rather
than the slowness law assumed in the Dieterich [1994]
model, leads to larger predicted rate increases with faster
decay, followed by a quiescent period. This result suggests
that observations of seismicity rate changes could be used to
identify the more realistic set of frictional relations.
[23] We examine the implications of assuming that faults

fail repeatedly and regularly, and thus that a population of
faults is finite. Although these represent alternatives to the
assumptions made in the Dieterich [1994] model, they
matter only for timescales much longer than he considered.
If the fault population is finite, quiescence must result after a
seismicity rate increase, regardless of the specific frictional
relations. For the simple models we examined, in which the
fault maturities are distributed over the recurrence interval,
the duration of the quiescence would be of the same order as
Dt/ _t and occur after a time that depends approximately on
the average recurrence interval of the faults in the popula-
tion. Additionally, in the absence of any new load perturba-
tions the pattern of rate increase followed by quiescence
should approximately repeat. This model behavior may
provide a simple explanation for why the clustering of large
earthquakes often repeats, without relying on intercluster
event interactions or other complexities.
[24] The Dieterich [1994] model assumes that a constant

background rate exists. We show that the rate change is still
predictable on average even if the background rate varies
and the population is composed of faults having a range of
constitutive properties but obeying the same frictional laws.

Appendix A

[25] The Dieterich [1994] rate change model, <D, may be
derived from equation (4c), as well as expressions of
Gomberg et al. [1998]. To do this, we must find an analytic
expression for the derivative, dT0/dm, which for the case of
this fault population model equals dT0/dt0 (see the text
surrounding equation (4c)). This describes how the cycle
time, T 0

n, changes with respect to the time of the perturbing
stress, t0. This can be done for an approximate rate-state
frictional model. The derivation of the equations originates
with the frictional failure criterion that failure occurs when
the slip velocity becomes large. The cycle time is the
duration required to go from an initial velocity, Vs, (which
embodies the starting conditions) to the velocity at failure.
As in the work by Dieterich [1994], Gomberg et al. [1998]
also derive an expression for the slip velocity of a fault near
failure obeying a quasi-static rate-state frictional law (their
equation (10b)). The failure or cycle time may be found by
defining failure as when the velocity becomes infinite,
which happens at the time that makes the denominator of
equation (10b) zero, resulting in

T 0 ¼ ta ln _t=sgVs � L½ � � Dt=Asf g ta ¼ As= _t ðA1aÞ

(Because failure occurs within such a short duration, the
difference is insignificant between an infinite failure
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velocity and some finite rupture velocity.) L is a load
function that depends on the type of stress perturbation [see
Gomberg et al., 1998, Table 2] and the time of the
perturbation, t0. Here we use slightly different notation than
by Gomberg et al. [1998] (e.g., _t/s = _mb, Dt/s = B, A = a),
and g combines some of the constitutive parameters [see
Gomberg et al., 1998, equation (7)]. In the absence of any
perturbation the unperturbed cycle time can be computed
from equation (A1a) with L = �1 and Dt = 0, or

T ¼ ta ln
_t

sgVs

þ 1

� �� �
ðA1bÞ

The load function L is defined for a stress step in Table 2 of
Gomberg et al. [1998] as

L ¼ e _tt0=Asð Þ 1� e Dt=Asð Þ
h i

� 1 ðA2Þ

[26] The derivative, dT0/dt0, from equation (A1a),
becomes

dT 0

dt0
¼ � As

_t

� �
e Dt=Asð Þe _tT 0=Asð Þ dL

dt0
ðA3Þ

Taking the derivative of L with respect to t0, substituting
the result into (A3), and making the change of variables t =
T0 � t0 yields the needed derivative

dT 0

dt0
¼ 1� e�Dt=As

h i
e�t=ta ðA4Þ

We see that use of equation (A4) in equation (4b) results in
the Dieterich [1994] rate change model

<D ¼ r0

r
¼ 1� dT 0

dt0

� ��1

¼ e�Dt=As � 1
h i

e�t=ta þ 1
n o�1

ðA5Þ

Finally, for completeness and as background for Gomberg et
al. [2005] we derive <D as it applies to estimating the
probability of failure of a single fault. We consider a set of
potential earthquake failure times tf and number of events,
n, to define an earthquake rate r(tf) = Dn/Dtf. Since we now
consider a single fault, Dn = 1, the failure time equals the
cycle time, or tf = T and all potential failure or cycle times
are measured relative to the time of the last earthquake.
Letting d0 = DT0, d = DT in equation (4a) or noting that T0 =
T � tc, we can write

DT 0 ¼ DT 1� Dtc

DT

� �
ðA6aÞ

Again using differentials instead of differences, the rate
change becomes

<D ¼ r0

r
¼ DT

DT 0 ¼
1

1� dtc
dT

	 
 ðA6bÞ

As for the aftershock population model, the derivative in
equation (A6b) also describes how the cycle or failure time

changes with fault maturity, since for a perturbation applied
at some t0 (now measured from the time of the last
earthquake) a longer cycle time means a fault will be less
mature (farther from failure) than for one with a shorter
failure or cycle time. Equations (A1a) and (A1b) can be
combined to find the analytic expression for dtc/dT, which
yields exactly the same expression for the rate change as
equation (A5).
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