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Abstract We present an inversion strategy capable of using real-time high-rate GPS data to
simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We
employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models
for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can
solve this complex inversion problem (including calculating the uncertainties on our results) in real time.
Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time,
the time required to obtain a source model of the earthquake does not depend on the computational
cost. Instead, the time required is controlled by the duration of the rupture and the time required for
information to propagate from the source to the receivers. We apply our modeling approach, called
Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki
earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases,
the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our
inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance
tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time
series are the best data to use for determining the moment magnitude of the event, but slightly smoothing
the raw time series helps stabilize the inversion for fault geometry.

1. Introduction

Earthquake early warning (EEW) algorithms aim to estimate the location and magnitude of an earth-
quake in real time and use that information to both issue warnings and as input into shaking simulations
which can then be used to issue more informative warnings. However, there are many additional source
parameters which, if known in real time, could improve the usefulness of EEW significantly. For example,
real-time information about the faulting mechanism or the spatial distribution of slip could improve shak-
ing forecasts and tsunami hazard assessments. (The fault geometry of the source is particularly important
for evaluating tsunami hazard from an offshore event since a transform event is less likely to produce a
tsunami than a thrust event of the same magnitude.) Knowing the locations of large asperities or even sim-
ply the spatial extent of rupture could help in determining where emergency response resources should
be deployed.

All of the above source parameters could be known if we could solve for a distributed earthquake source
model in real time as the earthquake rupture propagates. Performing a finite fault slip inversion can be
computationally expensive even though it is fundamentally a linear inverse problem (for linear elastic con-
stitutive laws). Moreover, finite fault slip models are traditionally calculated by utilizing a known, fixed fault
geometry. However, in an EEW setting, we do not know the rupture geometry a priori. Thus, it will be neces-
sary to simultaneously solve for the fault geometry, which is a nonlinear inverse problem. Here we introduce
an approach that combines an analytical solution to the linear finite fault slip inversion problem with a
parallelizable exploration of potential rupture geometries. The algorithm produces a solution to the simul-
taneous inversion for slip and rupture geometry that is so computationally efficient it can be computed and
updated in real time. Since we use Bayesian inference to obtain our solutions, our approach yields not only
real-time finite fault slip models but also uncertainties on our model parameters.
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2. Semianalytical Bayesian Finite Fault Inversions

Let us assume that we have real-time observations of quasi-static surface offsets as they accumulate dur-
ing the earthquake rupture. (Our suggested approach to estimating real-time static offsets from high-rate
GPS time series is discussed in section 3.) In traditional, post-earthquake finite fault slip inversions, the dis-
tributed slip model is usually parameterized by discretizing a fault of known size, orientation, and location.
In a real-time setting, we can expect to know the earthquake’s epicenter from the existing EEW infrastruc-
ture, although we may not know the focal depth since most current EEW systems do not estimate the
hypocentral depth. (This approach is practicable only in regions with sufficient instruments, telemetry, and
processing infrastructure for both seismic and real-time high-rate GPS-based EEW.) However, we cannot
assume that we will have any information about the rupture size or fault orientation. The size of the rupture
obviously cannot be known a priori because in real time the earthquake is evolving and growing in size.
Because a distributed slip inversion solves for slip at each point on a model fault plane, it is not necessary
that the fault plane be the same size as the actual rupture. As long as our fault plane is at least as large as
the eventual size of the rupture we are modeling, the inversion should assign zero slip to the excess fault
area and, because we adopt an analytical solution to the slip inversion, the additional computational cost of
including extra subfaults is not prohibitive.

Given location information from existing EEW methods and using a priori knowledge of the anticipated
largest rupture, we then have to solve in real time for the fault orientation and the distribution of slip on the
fault. By knowing a location that the fault plane intersects (e.g., the earthquake hypocenter), the geometry
of the fault plane can be described with just two parameters: the strike and dip of the fault plane. For any
fault geometry, solving for slip at various points on the fault plane is a linear inverse problem. In practice,
however, it is an underdetermined inverse problem with potentially many solutions. We avoid the instability
associated with solutions to such problems and capture the nonuniqueness by using Bayesian analysis to
infer both the ensemble of all plausible slip models for a particular fault geometry and the relative likelihood
of each fault geometry. Further, we employ a Bayesian linear regression that has a closed-form solution so
that the inversion for slip on a fault plane can be solved analytically. This leaves only two nonlinear param-
eters unknown (strike and dip). Because almost all model parameters can be determined analytically, the
entire joint inversion for slip and fault geometry is calculable in real time.

Bayes’ theorem [Bayes, 1763] gives the relationship between inverse conditional probabilities. Thus, for
random variables A and B, if p(A|B) is the conditional probability of A given B, then

p(B|A) = p(A|B)p(B)
p(A)

(1)

Thus, it follows that the solution to any inverse problem can be expressed according to Bayes’ theorem as

p(𝛉|) =
p(|𝛉)p(𝛉)

p(|)
(2)

where 𝛉 is a vector containing the value of each model parameter and  is a vector of observations. The data
likelihood, p(|𝛉), is a probability density function (PDF) describing how well the predictions from a given
set of model parameter values, 𝛉, fit the observed data. The prior PDF, p(𝛉), describes our a priori knowledge
of the relative plausibility of different parameter values. The scalar p(|) is the marginal likelihood or evi-
dence in favor of a particular model class, , where a model class is a group of models characterized by
the same set of parameters. (For example, all linear functions parameterized by a slope and intercept could
be said to comprise one model class, , and each model in that model class is defined by a two-element
vector, 𝛉, containing the intercept and slope. Thus, any value of 𝛉 uniquely defines one realization of a lin-
ear model, while  represents the family of all linear functions.) The posterior PDF, p(𝛉|), is traditionally
considered the solution to the inverse problem. The posterior PDF is the probability of any potential set of
model parameter values, 𝛉, given our a priori constraints, p(𝛉), and the misfit between the predictions of our
forward model and the data, p(|𝛉), normalized by the evidence in favor of the model class (), p(|).

For our purposes, the “model class” refers to the particular fault geometry (strike and dip) assumed. In many
applications, the inverse problem is solved by evaluating p(𝛉|) ∝ p(|𝛉)p(𝛉) and ignoring the constant of
proportionality which is the marginal likelihood, p(|). But in our case, p(|) is an important quantity
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as it is the probability associated with our model design, i.e., our choice of fault geometry. Effectively, the
marginal likelihood, p(|), helps measure the probability of a particular fault geometry given all potential
slip models inferred for that fault geometry. Equation (2) is a common shorthand notation. But the reason
that p(|) can be used to infer the optimal model class can be more clearly seen by rewriting equation (2)
to explicitly include the model class, :

p(𝛉|,) =
p(|𝛉,)p(𝛉|)

p(|)
(3)

To infer which model design is best based on the observed data, we want to find p(|). This quantity can
be obtained by applying Bayes’ theorem (equation (1)) to the denominator of equation (3):

p(|) ∝ p(|)p() (4)

where p() represents our prior preferences for each model class. If we assume that all model classes are
equally likely a priori, then maximizing p(|) is equivalent to maximizing p(|).

The marginal likelihood is a principled method for identifying which of a set of possible model classes is
optimal: it favors models that fit the data better while penalizing those that are needlessly complex, where
the complexity of the model is measured as deviation from the prior PDF. (See Appendix A for details.) By
evaluating the marginal likelihood for all model classes (i.e., all fault geometries), we will find the relative
probabilities of all fault geometries and thus which fault geometry is most likely. By evaluating the poste-
rior PDF for our preferred fault geometry, we will obtain the ensemble of all plausible slip models on that
fault plane. Furthermore, by employing the Bayesian model class selection framework, we are assured that
the solution will adapt appropriately if we were to change our slip priors or the prior information on the
fault geometry.

The key to solving for the fault geometry and slip distribution with sufficient speed for real-time applications
is to use analytical solutions for almost all of the model parameters so that only a very few model parame-
ters must be inferred by numerical methods. By using an analytical solution for our slip inversion and fixing
the fault location, the only nonanalytical part of the inversion is solving for the fault orientation uniquely
described by two parameters (strike and dip). In general, the number of samples required to describe the
space of model parameters increases exponentially with the number of free parameters in what is called
the “curse of dimensionality” [Bellman, 1957]. But since we have written the problem so that there are only
two free parameters that cannot be determined analytically, it is computationally feasible to sweep through
the limited domain of candidate fault geometries in real time. The domain of possible strikes and dips can
be explored using a variety of methods, including a simple grid search or a variety of Monte Carlo sampling
algorithms [Mosegaard and Tarantola, 1995] such as the Metropolis algorithm [Metropolis et al., 1953; Chib
and Greenberg, 1995]. Because evaluating the slip inversion and marginal likelihood for a given fault geom-
etry is independent of the other fault geometries, the search over strike and dip is embarrassingly parallel
and thus well suited to computing in parallel across multiple processors.

We use conjugate priors to obtain closed-form expressions for the marginal likelihood (i.e., the evidence
for a particular choice of fault geometry), p(|), and the posterior PDF (i.e., the PDF describing the dis-
tribution of possible slip models on that fault plane and the regression variance), p(𝛉|). A conjugate
prior is any prior PDF such that the posterior PDF p(𝛉|) ∝ p(|𝛉)p(𝛉) belongs to the same family as the
prior PDF, p(𝛉) (i.e., the prior and posterior PDFs have the same functional form). We adopt the well-known
normal-inverse-gamma conjugate prior for linear regression with unknown variance. This particular con-
jugate prior requires us to use a Gaussian prior PDF on our slip model, 𝛃, and an inverse-gamma prior for
updating the regression variance, 𝜎2. The details of the normal-inverse-gamma prior, proof of its conjugacy,
and derivations of the marginal likelihood and posterior mean and covariance of our model parameters are
given in Appendix B following O’Hagan [1994]. The relevant results from the appendix are

p(|) = 1
(2π)n∕2|𝐃|1∕2

|𝐕∗|1∕2

|𝐕|1∕2

(a∕2)d∕2

(a∗∕2)d∗∕2

Γ(d∗∕2)
Γ(d∕2)

(5)

with

𝐕∗ = (𝐕−1 + 𝐗T𝐃−1𝐗)−1 (6)
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Figure 1
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𝐦∗ = (𝐕−1 + 𝐗T𝐃−1𝐗)−1(𝐕−1𝐦 + 𝐗T𝐃−1𝐲)
= 𝐕∗(𝐕−1𝐦 + 𝐗T𝐃−1𝐲) (7)

a∗ = a +𝐦T𝐕−1𝐦 + 𝐲T𝐃−1𝐲 − (𝐦∗)T (𝐕∗)−1𝐦∗ (8)

d∗ = d + n (9)

where 𝐲 is an n × 1 vector of observations, 𝐗 is our n × p design matrix (matrix of Green’s functions for a
given fault orientation defined by strike, 𝜙, and dip, 𝛿), 𝐃 is the n × n covariance matrix of errors, 𝐦 (which
is p × 1) and 𝐕 (which is p × p) are the prior mean and variance on our slip model, respectively. Since we
solve for strike-slip and dip-slip motions on each of our fault patches, p will be twice the number of fault
patches. Thus, 𝛉 is a (p + 1) × 1 vector containing 𝛃 (a vector composed of the two components of slip on
each patch) and 𝜎2 (the regression variance), so that 𝛉 = (𝛃, 𝜎2). Γ(⋅) denotes the gamma function. The
prior PDF on the regression variance is defined by a and d which are, for our purposes, nuisance parameters
that appear as part of the normal-inverse-gamma conjugate prior formulation of the inverse problem. Their
influence decreases as they go to zero (equations (8) and (9)), and so we will always set them to some small
arbitrary value.

Equation (5) is the marginal likelihood describing the relative plausibility of a particular model class. In our
case, the model class is equivalent to the fault orientation. However, we are also interested in the posterior
distribution of slip on each fault orientation, which can be obtained from equation (2) by integrating over
all regression variances. It is shown in Appendix B that the resulting posterior PDF on slip is a multivariate t
distribution for d∗ degrees of freedom with mean, 𝐦∗ (equation (7)), and covariance

a∗

d∗ − 2
𝐕∗ (10)

where 𝐕∗, a∗, and d∗ are given by equations (6), (8), and (9), respectively.

The optimal fault orientation can be found by maximizing p(|) (equation (4)). However, in our imple-
mentation, we assume that we have no a priori knowledge of the fault orientation, i.e., our prior PDF on the
fault orientation, p(), is uniform. Thus, maximizing p(|) is equivalent to maximizing the marginal like-
lihood, p(|). (Alternatively, if we wanted our prior constraints on the fault orientation to know about
historical seismicity in a given region, we could use p() proportional to the relative frequency of observed
focal mechanism orientations and maximize p(|)p().) Specifically, we assume that all orientations of
the fault normal vector are equally likely. This is not equivalent to using uniform prior PDFs on strike, 𝜙, and
dip, 𝛿, because a uniform prior on dip would oversample shallowly dipping faults because the area element
in spherical coordinates is a function of colatitude. Instead, to obtain a uniform distribution of fault normal
vectors on a sphere, we use a uniform prior on strike [𝜙 ∼  (0◦, 360◦)] while the prior PDF on dip is given by
u ∼  (0, 1), where 𝛿 = cos−1(u). Thus, our uniform prior PDF is a uniform distribution on  =  (𝜙, cos 𝛿).

Our Bayesian inversion methodology for fault geometry and distributed slip can be summarized as follows
(Figure 1):

1. For each of a suite of potential fault orientations, evaluate the marginal likelihood, p(|) (equation (5)),
associated with Bayesian linear regression of a slip model on that fault plane.

2. Select the strike and dip that maximizes p(|) as the most likely fault geometry.
3. For the most likely fault geometry, report the posterior slip model associated with that fault plane. Useful

summary statistics of the posterior include the mean posterior slip model, 𝐦∗ (equation (7)), the standard
deviation associated with each slip (the square root of the diagonal elements of the posterior covariance
matrix in equation (10)), and the moment magnitude calculated from the mean posterior slip model.

We will refer to this inversion methodology as Bayesian Evidence-based Fault Orientation and Real-time
Earthquake Slip (BEFORES).

Figure 1. Flowchart showing progression of simultaneous inversion for slip and fault geometry as a function of time.
The algorithm is triggered by an event hypocenter (or epicenter) and origin time. For each time after the trigger, stations
within P wave range of the epicenter are chosen for inclusion in the inversion and quasi-static offsets are estimated
for those stations. The next step is to evaluate the marginal likelihood (or evidence) for all fault geometries. Rupture
parameters are reported for the slip model associated with the fault geometry that maximizes the marginal likelihood.

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3205
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Figure 2. Location maps of real and scenario earthquakes used in performance tests. The red stars mark the assumed
hypocenter locations. Black vectors are the horizontal components of the final estimated static offsets. Displacement
time series for stations marked in pink are shown in Figure 3.

3. Data

In section 2, we designed a static slip inversion that is driven by a set of quasi-static surface displacements
estimated at each second (or whatever interval is desired for updating the model) during the earthquake
rupture. This is now operationally possible due to the introduction of real-time high-rate GPS networks. In
theory, surface displacements could be derived from seismic data, but broadband velocity seismograms can
clip for large earthquakes, and double integration of acceleration records can yield unstable and inaccurate
estimates of displacements. In contrast, real-time high-rate GPS data do not suffer from clipping and directly
measure surface displacements in real time.

Figure 3. Comparison of smoothed displacement time series for selected stations in Figure 2. The original observed
(or simulated in the case of the Hayward fault scenario) displacement time series are shown in black. The colored traces
are these same time series smoothed using an EWMA for various values of the decay constant, 𝜆.

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3206
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Figure 4. Results of geometry inversion at 300 s after the origin time of the 2011 Tohoku-oki earthquake using different
data covariance matrices. The log of the marginal likelihood (LLK) is plotted for all values of strike and dip. The most
likely fault geometry found by inversion is marked with a black diamond. The geometry determined from a W phase
focal mechanism is shown with a pink focal mechanism [Duputel et al., 2011].

High-rate GPS data, like seismic data, record the dynamic wavefield as it propagates outward from the earth-
quake source. Our goal is to estimate the quasi-static component of these waveforms, i.e., the accumulation
of permanent static offset as a function of time without any transitory contributions from body waves or
surface waves. But it is not obvious how this subset of the full time-dependent displacement history can
be obtained.

There have been several publications on the topic of deriving static offsets from high-rate GPS data. Allen
and Ziv [2011] suggested using the short-term average versus long-term average (STA/LTA) triggering
method of Allen [1978] to detect when the seismic waves reach a station, wait for one full oscillation of the
waveform or some critical amount of time (whichever comes first) and then begin calculating a cumulative
average of the displacement time series from that point in time. Similarly, Ohta et al. [2012] used a variation
of the STA/LTA algorithm to detect the arrival of motion and, once triggered, began computing the differ-
ence between a 20 s moving average and a reference position for the station calculated 5 min previous to
the trigger time. An even simpler approach was adopted by Crowell et al. [2012] and Melgar et al. [2012], who
used moving averages of 50 s and 120 s, respectively.

All of the above estimates of static offsets are derived from smoothed averages (either moving or cumulative
averages) of the observed time series, although the different authors employed very different amounts of
smoothing resulting in very different estimates of displacement as the rupture occurred. (In the long run,
all of these methods will converge to the final static offset, although they converge at different rates and
may produce differing offset estimates prior to convergence.) We can view this ensemble of data smoothing
approaches as low-pass filtering.

To explore the effects of different smoothing choices, we employ an exponentially weighted moving aver-
age (EWMA) [Roberts, 1959], which is essentially a simple resistor-capacitor low-pass filter. An EWMA can be
defined by

EWMAt = 𝜆zt + (1 − 𝜆)EWMAt−1 (11)

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3207
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Figure 5. Effects of varying a and d on inversion results for Hayward fault simulation. The differences between
the output moment magnitude, slip model, fault strike, fault dip, and the input values for each of these quantities
are shown. The differences between the input and output slip vectors are quantified by their variance reduction,

VR = 100% ×
[

1 −
Σp

i=1(𝐦true i−𝐦∗
i)2

Σp
i=1𝐦true

2
i

]
.

where 𝜆 is a decay constant which controls the depth of memory of the EWMA (0 < 𝜆 ≤ 1) and zt is the tth
sample of time series, 𝐳.

For our performance tests we focused on three events, the 2011 great Mw 9.0 Tohoku-oki earthquake, the
2003 Mw 8.3 Tokachi-oki earthquake, and a simulated Mw 6.76 earthquake on California’s Hayward fault
(Figure 2). (This simulation is scenario hs_r02_hypoF_vr92_tr15 in Aagaard et al. [2010].) The exponentially
weighted moving average (using a variety of decay rates) of data from select stations for these earthquakes
is shown in Figure 3. As the decay rate, 𝜆, decreases, the smoothed version of the data moves from some-
thing which is almost identical to the raw time series to something which is entirely devoid of any kinematic
component. However, the highly smoothed time series also take substantially longer to reach the final per-
manent static offset than the original data do. We find that applying large amounts of smoothing adds a
substantial and undesirable lag between the estimated magnitude and the actual magnitude, and can even
introduce a lag into estimating the slip distribution and geometry of the rupture. (See section 5.)

4. Sensitivity to Inversion Design

Any inversion is highly dependent on the assumed errors in the observations and the assumed errors in the
predictions of the forward model. The combined effects of these errors can be expressed as

𝐃 = 𝐂𝐝 + 𝐂𝐩 (12)

where 𝐂𝐝 and 𝐂𝐩 are covariance matrices for the observational errors and the prediction errors, respectively.
(For a more complete introduction to the role of observational and prediction errors in finite fault source
modeling, see, e.g., Minson et al. [2013].) These errors should ideally be updated as part of the inversion pro-
cess, but this is not always computationally feasible. For our inversions, we experimented with a number of
different forms for the covariance matrix 𝐃 (Figure 4). We found setting 𝐃 to the formal observational errors
of 5 mm and 15 mm for the horizontal and vertical components of the surface offsets, respectively, did a
poor job of recovering the strike and dip of the fault plane (Figure 4, first row). This is not due to the effects
of down weighting the contribution from the vertical observations because using an uncertainty of 5 mm

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3208
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Figure 6. Effects on inversion results of varying v. The differences between the output moment magnitude, slip model,
fault strike, fault dip, and the input values for each of these quantities are shown for both an Mw 7 Hayward fault
simulation and Mw 9 Tohoku-oki simulation.

Figure 7. Effects on inversion results for fault geometry of varying v. The log of the marginal likelihood is plotted for all
values of strike and dip for various values of v for two simulated earthquakes. The most likely fault geometry found by
inversion is marked with a black diamond. The input fault geometry is shown with a pink star.

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3209



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010622

Figure 8. Effects on inversion results for slip of varying v. The mean posterior estimate for the (left) strike-slip and (right)
dip-slip components of motion are shown for a simulated Mw 7 Hayward fault earthquake. For reference, the input slip
model is shown in the top row. Variance, v, is in units m2.

for all components yields equally poor results (Figure 4, second row). To be able to resolve the fault geom-
etry, we found that it was necessary to weight each data point by how close the observation location is to
the source. For example, by assigning a variance to each observation of 10−5 m2

km2 diag{r2} where r is the epi-
central distance of each observation location in kilometers (Figure 4, third row). However, as the rupture
grows, weighting stations by their epicentral distance might be a poor metric for a station’s final effective
source-receiver distance especially if the earthquake ruptures toward the station or if the centroid of slip is
located far from the rupture’s point of initiation. The closer a receiver is to a locus of slip, the larger the dis-
placement at that receiver. Thus, the magnitude of the observed surface offsets can themselves be used as a
proxy for proximity to the rupture. While this approach has the disadvantage that a station reporting a large
spurious excursion will have its contribution to the inversion increased, it has the significant advantage that
the station weighting dynamically updates as the rupture evolves. In fact, the results for an inversion for the
geometry of the Tohoku-oki rupture using an expression for 𝐃 that is inversely proportional to the observed
data amplitude (Figure 4, fourth row) are even better than the results using a weighting scheme based
on epicentral distance, and so we adopt the displacement-amplitude-based form of 𝐃 for the inversions
presented in the remainder of this paper.

Our inferred fault geometry (equation (5)) and slip distribution (equation (7)) depend on four parameters: a
and d (the priors on the regression variance) and 𝐦 and 𝐕 (the prior mean and covariance of the slip model,
respectively). To explore the influence of these four parameters, we conducted a series of synthetic tests
using the network geometries of the Hayward fault simulation and Tohoku-oki earthquake. Our input slip
models are uniform with length and width proportional to the magnitude of the source using the scaling
relationships of Wells and Coppersmith [1994]. We added realistic noise based on the characteristic noise
spectra of Langbein and Bock [2004] to our synthetic displacement time series. The noise spectra included
60 s and 300 s of random walk noise for the Hayward fault and Tohoku-oki simulations, respectively.

We essentially have no a priori information on what the regression variance should be. But the influence of
a and d decrease as they approach zero. As can be seen in Figure 5, once a and d are set to sufficiently small
values, changing their value has little effect on the inversion. (The effect of varying a and d is seen most
clearly in the inversion results for fault orientation and the moment magnitude of the source.) So any small
values for these parameters may be safely used.

Figure 9. Quality of inversion results for slip as a function of earthquake size. The input slip model and the mean
posterior estimate for the strike-slip component of motion are shown for a number of simulated Hayward fault events.

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3210
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Figure 10. Quality of inversion results as a function earthquake size. The differences between the output moment mag-
nitude, slip model, fault strike, fault dip, and the input values for each of these quantities are shown for a number of
simulated Hayward fault earthquakes which vary in magnitude.

Our prior distribution on slip,  (𝐦,𝐕), represents the distribution of possible values of slip for each patch in
our source model. Since we do not know a priori which direction the fault will slip (and thus have no a priori
knowledge of the sign of 𝐦), we assume 𝐦 = 𝟎. Furthermore, we do not have a priori information on either
the spatial distribution of the rupture’s asperities (where larger or smaller amounts of slip will occur) or the
spatial covariances of the slip distribution. Thus, we will only consider isotropic covariance matrices of the
form 𝐕 = v𝐈𝐩, where 𝐈𝐩 is the p dimensional identity matrix.

From a practical standpoint, our prior PDF,  (𝟎, v𝐈𝐩) effectively acts as a minimization constraint where
slips whose magnitude is large compared to v are penalized. Thus, for a given value of v, the minimization
constraint will be stronger for larger earthquakes. Since we do not want our inversion to falsely force the
solution to have smaller slips (and thus smaller implied moment magnitudes) than the true source process
being observed, we want to make v sufficiently large to allow slips as large as those expected for great earth-
quakes. However, we also want to ensure that the inversion is well constrained for both large and moderate
earthquakes. In Figures 6–8, we plot the results of inversions for various values of v for a simulated Mw 7
Hayward fault rupture and a simulated Mw 9 Tohoku-oki rupture, which roughly corresponds to the range
of earthquake magnitudes we are most interested in modeling. We find that setting our prior variance, v, to
something on the order of 1000 m2 yields the best results. This a priori constraint is equivalent to saying that
we expect with 95% confidence there to be 62 m of slip or less for each component of motion on each fault
patch. While v = 1000 m2 was chosen empirically by comparing results from inversions with different val-
ues of v, this seems to be a reasonable choice. For comparison, the maximum slip for the Mw 9.0 Tohoku-oki
earthquake, which is the fourth largest earthquake observed worldwide since 1900 (U.S. Geological Survey,
http://earthquake.usgs.gov/earthquakes/world/10_largest_world.php) and thus an example of some of
the largest fault slips we might plausibly observe, is less than 80 m (S. E. Minson et al., Bayesian inversion
for finite fault earthquake source models II — The 2011 great Tohoku-oki, Japan earthquake, submitted to
Geophysical Journal International, 2014).
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Figure 11. Quality of inversion results for fault geometry as a function earthquake size. The log of the marginal likelihood
is plotted for all values of strike and dip for various values of input Mw for a Hayward fault simulated earthquake. The
most likely fault geometry found by inversion is marked with a black diamond. The input fault geometry is shown with a
pink star.

Finally, we are interested in determining what range of earthquakes we can successfully model in real time.
Of particular interest is determining the smallest magnitude earthquake we can model since, given the
noisiness of real-time 1 Hz GPS data, the signal-to-noise ratio will be low for even moderate magnitude

Figure 12. Array of potential geometries for a fault whose updip
limit is the free surface. This variation is plotted for a 30 km wide
fault (our assumed width for continental faults) (inner axes) and a
375 km wide fault (our assumed width for offshore faults) (outer
axes) using equally spaced samples of cos(𝛿).

earthquakes at close range. Toward this end,
we conducted a series of inversions using
synthetic observations for a uniform Hay-
ward fault rupture of varying magnitude.
The results shown in Figures 9–11 suggest
that real-time 1 Hz GPS data cannot be used
to constrain the geometry and slip distri-
bution of earthquake ruptures for events
smaller than approximately magnitude 6.5
even if the event is directly beneath a dense
network of instruments.

5. Application

To test the performance of our proposed
real-time finite fault slip inversion approach,
we applied the BEFORES inversion method-
ology of section 2 to 1 Hz kinematic GPS
data from the 2011 Mw 9.0 great Tohoku-oki
earthquake, the 2003 Mw 8.3 Tokachi-oki
earthquake, and a simulated Mw 6.76 earth-
quake on California’s Hayward fault. This is a
small set of test events, but it does include
both continental ruptures and offshore

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3212



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010622

Figure 13. Result of semianalytical Bayesian real-time finite fault inversion for the Tohoku-oki earthquake at 60 s after
the origin time. See text for explanation.

subduction zone events ranging over 3 orders of moment magnitude. The GPS data processing strategies
used for these three events are all different and represent a wide range of different processing schemes. The
Tohoku-oki data are not real time but are instead a best-case-scenario solution using refined orbits and pre-
cise point positioning processing. (See S. E. Minson et al., submitted manuscript, 2014, for details.) High-rate
data from the GPS Earth Observation Network (GEONET) were not being processed in real time when the
2003 Tokachi-oki occurred, so our time series for that event are a recreation of what real-time processing
might have looked like: it is a network solution based on ultrarapid orbits with a network adjustment made
for each epoch [Crowell et al., 2009, 2012]. We added to the Hayward fault scenario synthetic time series
noise generated from an empirical analysis of observed noise spectra from actual San Francisco Bay Area
real-time high-rate GPS data [Langbein and Bock, 2004]. The positions of each noisy time series were then
differenced with the simultaneous position estimate for a reference station, so that our final synthetic data
simulate actual noise characteristics of real-time high-rate differential GPS positions, which is the type of
real-time solutions currently generated operationally in the Bay Area. Given the moderate magnitude of the
Hayward fault simulation and our very high amplitude (but realistic) noise, the resulting time series are the
noisiest of the three events studied.
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Figure 14. Result of semianalytical Bayesian real-time finite fault inversion for the Tohoku-oki earthquake at 120 s after
the origin time. See text for explanation.

At each time t (where t is measured relative to the origin time), we determined the most probable fault
geometry by evaluating the marginal likelihood (equation (5)) for 5000 random samples of strike and dip. As
discussed earlier, we chose the mean and variance of the prior PDF on slip to be 𝐦 = 𝟎 and 𝐕 = 1000 m2 𝐈𝐩,
respectively. In section 4, we demonstrated that any small value for a and d will minimize their influence
on the inversion. So we selected a = d = 0.02. Also, based on the results in section 4, we used a diagonal
data covariance matrix whose nonzero elements are given by Dii = (𝜎d∕yi)2, where yi is the ith element of a
vector of estimated three-component surface offsets and 𝜎d = 0.3.

For each earthquake, we test our inversion methodology on both the raw time series and on data which
have been smoothed using an EWMA (equation (11)) for a variety of decay rates. The offsets, 𝐲, that we
used for our inversion at each point in time, t, are calculated by taking the difference between the sta-
tion’s position (smoothed or not) at time t and its position at the origin time. Rather than select which
stations to include in any given inversion based on some kind of triggering algorithm, we included in the
inversion at time t the data from all stations located at distances less than (6 km/s)t+10 km. (6 km/s)t is
an estimate of how far the P waves have traveled at time t, and the additional 10 km allows for the pos-
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Figure 15. Result of semianalytical Bayesian real-time finite fault inversion for the Tohoku-oki earthquake at 180 s after
the origin time. See text for explanation.

sibility that the hypocenter was mislocated by up to 10 km leading to the P waves arriving earlier. This
approach includes information from all stations that may have seen any kind of displacement from the
rupture and only eliminates data from stations which could not have received any signal yet. We use data
from all stations, no matter how small the observed displacement. Thus, stations with zero displacement
are used to help constrain the inversion (once they are in P wave range of the source), although their
contribution to the inversion is necessarily diminished by our data weighting scheme.

The two subduction zone events, Tohoku-oki and Tokachi-oki, are located well offshore, and we expect to
have poor spatial resolution on the slip distribution of those earthquakes. Therefore, we use a rather spatially
coarse fault parameterization: a 5 × 8 grid of square patches that are 75 km long on a side. The Hayward
fault rupture is located directly under our network of stations, so we use a finer grid composed of 10 km
long square patches. We chose a grid 3 patches wide and 30 patches long because we do not expect faults
to be wider than about 30 km in a continental setting, and a 300 km long fault model is probably sufficient
to describe a major rupture on a continental fault.
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Figure 16. Result of semianalytical Bayesian real-time finite fault inversion for the Tokachi-oki earthquake at 30 s after
the origin time. See text for explanation.

For every fault geometry, we center the fault on the epicenter of the rupture. Since many EEW systems cur-
rently do not report hypocentral depths in real time, we assume that the depth of the fault is unknown. In the
absence of any information about the depth of the earthquake, it seems most reasonable to assume that
the top of the fault is the Earth’s surface. So for each fault geometry we generate, we shift it vertically so that
the top edge of the fault intersects the surface (Figure 12). We then calculate Green’s functions for each fault
patch using the Okada [1985] solution for a rectangular dislocation in a homogeneous elastic half-space.

The results of our inversion for the geometry and slip distribution of the 2011 Tohoku-oki earthquake using
displacement estimates taken at 1–3 min after the origin time are presented in Figures 13–15. In Figures 13
(top), 14 (top), and 15 (top), our estimated static offsets (which are the data we use in our inversion) are
shown with black vectors. These offsets are the difference between the observed positions (smoothed using
an EWMA with 𝜆 = 0.1) of each GPS station at this second (60 s after the origin time in Figure 13, 120 s in
Figure 14, and 180 s in Figure 15) and the position of the station at the origin time. Figures 13 (bottom), 14
(bottom), and 15 (bottom) show the value of the log marginal likelihood, ln p(|), as a function of the
strike and dip of the fault plane. The fault orientation that maximizes p(|) is marked with a black dia-
mond. The mean of the posterior PDF on slip given the fault geometry marked with the black diamond
is shown in the top plot, and the predicted observations from this slip model are shown with red vectors.
The magnitude listed in the figure was calculated from the slip model assuming an elastic shear modulus
of 30 GPa. The posterior standard deviation of the strike-slip and dip-slip components of slip on the fault
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Figure 17. Result of semianalytical Bayesian real-time finite fault inversion for the Tokachi-oki earthquake at 60 s after
the origin time. See text for explanation.

(𝜎ss and 𝜎ds, respectively) are shown in insets in the top right corner. (Uncertainties are shown in units of
meters.) Note that the number of stations used in the inversion increases from Figures 13 to 14. This is
because more stations are within P wave range of the hypocenter at 2 min after the origin time than at 1 min
after the rupture begins. Inversion results for the 2003 Tokachi-oki earthquake and the Hayward fault simu-
lation are given in Figures 16–18 and Figures 19–21, respectively. All of the results shown are from inversions
where the displacement time series were smoothed by an EWMA with 𝜆 = 0.1. Full results at all times, t,
for all three earthquakes as well as additional inversions with unfiltered and more strongly filtered data are
presented in the supporting information.

From these figures, it is apparent that for all three earthquakes it takes longer to constrain the strike and
dip of the fault plane than it does to estimate the earthquake magnitude. In fact, early in the rupture, any
rupture is so spatially compact that it is indistinguishable from a point source, and the inversion is unable
to accurately determine which of the two conjugate planes is the true fault plane and which is the auxiliary
plane. This can be seen more clearly in Figure 22. We can conclude that the inversion results for moment
magnitude are robust and also rapid if either unsmoothed or minimally smoothed time series are used
(black and red lines in Figure 22). However, too much smoothing (e.g., blue lines in Figure 22) is clearly detri-
mental to the efficiency of the inversion, producing a significant and undesirable lag into the estimates of
the strike, dip, and moment magnitude. While either unsmoothed or minimally smoothed data produce
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Figure 18. Result of semianalytical Bayesian real-time finite fault inversion for the Tokachi-oki earthquake at 90 s after
the origin time. See text for explanation.

timely inversion results for moment magnitude, the estimate for strike and dip seems to converge more
rapidly if some smoothing is applied to the data.

Most importantly, if we consider the evolution of the moment magnitude estimate for the Tohoku-oki earth-
quake (top right subplot in Figure 22), we see that using real-time high-rate GPS to estimate magnitude
in real time provides a significant improvement over magnitude estimates from existing EEW systems like
the one in use during the Tohoku-oki earthquake. For the largest earthquakes, we expect EEW magnitude
estimates based the first few seconds of seismic data to saturate [e.g., Wu and Zhao, 2006]. Indeed, the
seismic-only Japan Meteorological Agency (JMA) EEW system misidentified the Tohoku-oki earthquake as
a magnitude 8 event. However, the GPS-based Mw estimate, which can be obtained just as quickly as the
seismic estimate (once the hypocenter is known) does not saturate and correctly identifies the Tohoku-oki
earthquake as an Mw 9 event.

We also see in Figures 13–21 that the spatial distribution of posterior uncertainties on slip is controlled by
the spatial distribution of stations. For the offshore subduction zone events, slip on patches nearest the
coast are best resolved. In the case of the Hayward fault scenario earthquake, where the fault geometry
extends in both directions along strike beyond the network of stations, slip is best resolved in the central
part of the fault that is beneath the network of stations. Within this central region, slip on the shallow
patches is better resolved than deep patches, as is expected. Although the absolute magnitude of the
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Figure 19. Result of semianalytical Bayesian real-time finite fault inversion for the Hayward fault simulation at 20 s after
the origin time. See text for explanation. In the insets, the fault is plotted as horizontally dipping for ease of viewing.

uncertainties in Figures 13–21 tend to be small, it should be noted that each subfault is large and thus
the inferred slip amplitude (which is an average over the area of each subfault) tends to be lower than in
models with smaller subfaults because there is an increased chance of averaging a spatially small, high slip
amplitude asperity with an area with less slip. When these uncertainties are viewed relative to the posterior
mean slip on each patch (see supporting information), these are in fact quite large relative to the inferred
slip. This implies that the solution has significant uncertainties, which is what we would expect for a sim-
ple fault model, with no a priori knowledge of the fault geometry, constrained by a limited number of noisy
observations.

6. Operational Considerations

In this section, we will outline the steps necessary to implement our real-time Bayesian finite fault slip
inversion methodology, BEFORES. First, it should be noted that our inversion requires initialization with an
estimate of the earthquake’s location. Although we would prefer to center our fault model on the event’s
hypocenter, most EEW systems currently in operation report epicenters only, meaning that the user will
have to decide at what depth to place the fault. In this paper, we have always fixed the depth so that the top
of the fault intersects the surface. However, in principle, the depth of the event could be solved for as part
of the inversion by evaluating the marginal likelihood for many choices of hypocentral depth as well as all
possible fault orientations.
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Figure 20. Result of semianalytical Bayesian real-time finite fault inversion for the Hayward fault simulation at 40 s after
the origin time. See text for explanation. In the insets, the fault is plotted as horizontally dipping for ease of viewing.

Second, once a location has been specified, we must choose the shape and size of the discretized fault
plane. For the performance tests presented in this paper, we have used a rather crude scheme in which we
have used a coarse grid that is broad in both directions for offshore (and thus poorly resolved) earthquakes
and a fine grid that is only 30 km wide for continental earthquakes. The best practice would be for operators
to predetermine the spatial resolution at all potential source locations given their network of instruments
and then, when an earthquake occurs and its location is identified, use their library of model resolution
results to look up the appropriate grid spacing for that source location. Similarly, network operators might
determine in advance what the maximum rupture size could be for an earthquake at any location by con-
straining the fault length based on the lengths of mapped faults in that region and constraining the fault
width based on the observed depth extent of seismicity or geodetic models of locking depth. However,
given that solving for slip on the fault plane is the analytical part of the simultaneous inversion for slip and
fault geometry, there is relatively little computational expense associated with increasing the number of
fault patches and the inversion is free to put zero slip on patches which did not move. So operators should
be encouraged to use the largest physically plausible spatial dimensions so as not to underestimate the
actual size of the rupture.

Third, the prior PDF on the slip inversion needs to be chosen. But this can be done with a few rules of thumb.
We recommend 𝐦 = 𝟎, 𝐕 large and isotropic, and a and d small to produce stable inversion results over a
wide range of slip amplitudes.
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Figure 21. Result of semianalytical Bayesian real-time finite fault inversion for the Hayward fault simulation at 60 s after
the origin time. See text for explanation. In the insets, the fault is plotted as horizontally dipping for ease of viewing.

Finally, the user will still need to specify the data, 𝐲, Green’s functions, 𝐗, and data covariance matrix, 𝐃
for the inversion. In this paper, we used for our data, 𝐲, quasi-static surface displacements which we esti-

mated from high-rate GPS data. But other information about the static displacement field, such as borehole

strain data, could be used instead or in addition. We have already discussed our preferred choice for 𝐃 in

section 4. Our inversion results using Green’s functions for a simple elastic half-space seem of sufficient qual-

ity. Of course, using Green’s functions for more realistic Earth structures would be expected to give improved

results. In any case, a library of Green’s functions should ideally be calculated in advance and stored for use

on demand when an earthquake occurs.

From Figure 22, we can see that accurate moment magnitude estimates are obtained most quickly from the

least smoothed data, but some data smoothing may be required to stabilize the inversion for strike and dip.

(This behavior is most apparent for the Hayward fault simulation.) In an operational context and if sufficient

computational resources are available, it might be preferable to run multiple inversions simultaneously: one

using the unfiltered time series in order to determine Mw as quickly as possible and one using smoothed

data to produce more robust geometry solutions. If only one inversion is to be made, we recommend using

a small amount of smoothing (e.g., an EWMA with 𝜆 = 0.1).
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Figure 22. Comparison of strike, dip, and moment magnitude estimates from inversions using raw data (black) to those
using data smoothed with an exponentially weighted moving average with decay rates 𝜆=0.1 (red) and 𝜆=0.01 (blue).
The Mj magnitudes reported by the Japan Meteorological Agency (JMA) EEW system are shown with stars. The target
values for each quantity are shown with gray lines. The target strike and dip are assumed to be constant throughout the
rupture, while the total moment magnitude released increases as a function of time. The evolution of moment magni-
tude is calculated from the inferred source time functions of the Tohoku-oki earthquake (S. E. Minson et al., submitted
manuscript, 2014) and Tokachi-oki earthquake (H. Kanamori, personal communication, 2013), while the magnitude
release from the Hayward fault rupture is precisely known because it is a simulation. Vertical dotted lines indicate the
total source duration of each earthquake.

7. Conclusions

We have outlined a strategy that utilizes the strengths of Bayesian inference to solve for a finite fault dis-
tributed slip model on a fault of unknown orientation in real time. The inversions in this paper, in turn, rely
on newly available real-time high-rate GPS data. Perhaps the greatest single benefit of this approach is that
it can deliver, in real time, estimates of moment magnitude (the single most important source parameter
for hazard assessment, EEW, and emergency response) that do not saturate for large earthquakes. However,
by engaging the challenging problem of simultaneously determining the rupture geometry and spatial dis-
tribution of slip in real time, we can potentially provide much more information about the source than is
available from existing EEW systems. Additional information products which could be derived from these
real-time finite fault models include focal mechanisms, rupture extent, location of maximum slip, and the
location of surface ruptures along with estimated displacements. While the inversion methodology pre-
sented in this paper is purely static, by solving for slip at each second (or whatever time interval is desired or
practical) during the rupture, we obtain snapshots of the rupture at every moment in time. We then could
in principle reconstruct the full rupture evolution from these results. So potentially, these static inversions
could be used to estimate kinematic rupture properties such as rupture velocity and directivity. (How-
ever, since our inversion is based on a quasi-static representation of the source, any kinematic properties
derived from our inversion results would be an approximation.) Furthermore, all of these potential scientific
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Figure 23. Comparison of slip models and their predicted seafloor displacements for the Tohoku-oki earthquake. (a–c)
The spatial distribution of fault slip for a kinematic rupture model (S. E. Minson et al., submitted manuscript, 2014), the
results from this study at 180 s after the origin time (Figure 15), and a rectangular dislocation (length 650 km, width
125 km, focal mechanism from Duputel et al. [2011]), respectively. (d–f ) The predicted seafloor displacements for the
slip models in Figures 23a–23c, respectively. Seafloor uplift is shown in background color. Horizontal displacements are
shown with vectors. Seafloor displacements in Figure 23d were computed using the same layered elastic structure as
(S. E. Minson et al., submitted manuscript, 2014), while Figures 23e and 23f were calculated using a homogeneous elastic
half-space. Fault slip less than 10 m and vertical seafloor motion less than 1 m are shown transparent.

products could be used, in turn, as inputs into other analyses. These slip models could be used to make
high-quality shaking forecasts or could be used as detailed inputs into tsunami propagation models and
thus used for tsunami warnings.

To illustrate this last point, in Figure 23 we compare the predicted seafloor displacement from our real-time
finite fault inversion for the Tohoku-oki earthquake to the predicted seafloor deformation from naively
assuming a uniform source with length and width typical of an Mw 9 earthquake from Wells and Coppersmith
[1994] and to the best inferred seafloor deformation from a kinematic rupture model of the Tohoku-oki
earthquake constrained by postprocessed 1 Hz kinematic GPS time series, static GPS offsets, seafloor
geodesy, and both near-field and far-field tsunami data (S. E. Minson et al., submitted manuscript, 2014).
While the real-time finite fault slip model is a coarse approximation of the true slip distribution, it does a rea-
sonable job of predicting the seafloor deformation, suggesting that our inversion methodology would be
effective for tsunami warning applications.

Bayesian methods are increasingly being used in geophysics, generally, and earthquake seismology,
specifically [e.g., Fukuda and Johnson, 2008; Monelli and Mai, 2008; Fukuda and Johnson, 2010; Minson
et al., 2013]. However, most work has been directed toward obtaining Bayesian solutions to inverse
problems by simulating the posterior PDF using Monte Carlo methods. These numerical techniques are
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computationally expensive and thus not applicable to real-time monitoring. In contrast, in this paper we
present a semianalytical Bayesian model which can be computed in real time.

We have examined how best to estimate static offsets from kinematic GPS data. There have been a num-
ber of different papers published in which different averaging schemes were used to smooth the observed
GPS waveforms [e.g., Allen and Ziv, 2011; Ohta et al., 2012; Crowell et al., 2012; Melgar et al., 2012], sometimes
using substantial smoothing to remove any trace of the seismic waves. It should be noted that since the
kinematic data will eventually reach a steady-state offset, all methods of averaging out the dynamic wave
propagation will eventually converge to the final static offset. The question for the applications explored
here is not if a potential offset estimation method will obtain the right estimate but when. Our goal is to
identify as much information as possible about the earthquake rupture in real time as the rupture is evolv-
ing. Thus, the best way to evaluate these offset estimation techniques is to ask which produces the best
inversion solutions the fastest. When it comes to rapidly estimating moment magnitude, it appears that the
best data smoothing is none. This is consistent with Wright et al. [2012], who were able to accurately esti-
mate the magnitude of the Tohoku-oki earthquake using offset estimates based on the raw GPS time series.
However, the raw time series can make the inversion for strike and dip unstable. So we suggest that some
smoothing is desirable to stabilize the inversion for fault geometry.

While the estimated magnitude of the earthquake is robust and steadily grows in value, tracking the actual
moment release of the earthquake, the inversion for fault geometry is not stable early in the rupture process
because it is impossible to distinguish between the true fault plane and its conjugate until the rupture has
grown sufficiently in size that the effects of fault finiteness are significant. Since the inverse problem itself
can be calculated in real time at each epoch, the speed with which the inversion stabilizes is not controlled
by the computational cost of the inversion. Instead, it is controlled by the duration of the rupture and time
required for information to travel from the source to the receivers.

Appendix A: Evidence-Based Model Class Selection

Muto and Beck [2008] includes a thorough discussion regarding the use of the marginal likelihood, or evi-
dence, p(|) for choosing between different model classes. This process of choice is known as model
class selection. To better understand how the evidence acts to identify the optimal model class, let us
rewrite Bayes’ theorem (equation (2)) to explicitly include the model class, :

p(𝛉|,) =
p(|𝛉,)p(𝛉|)

p(|)
(A1)

=
p(|𝛉,)p(𝛉|)

∫ p(|𝛉,)p(𝛉|)d𝛉
(A2)

Rearranging the terms in equation (A1) yields

p(|) =
p(|𝛉,)p(𝛉|)

p(𝛉|,)
(A3)

All PDFs by definition must integrate to one. Thus, we can write

ln p(|) = ln p(|)∫ p(𝛉|,)d𝛉

= ∫ ln[p(|)] ⋅ p(𝛉|,)d𝛉

= ∫ ln

[
p(|𝛉,)p(𝛉|)

p(𝛉|,)

]
⋅ p(𝛉|,)d𝛉

= +∫ ln [p(|𝛉,)] ⋅ p(𝛉|,)d𝛉

− ∫ ln
[

p(𝛉|,)
p(𝛉|)

]
⋅ p(𝛉|,)d𝛉 (A4)

When the evidence is rewritten in this way, we see that it is the difference of two quantities. The first term
increases with increasing data fit, p(|𝛉). The second quantity, called the relative entropy, measures how
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different the posterior solution is from our prior PDF. It thus acts as a penalty term, reducing the evidence
for model classes which are overly complex or extract too much information from the data. This makes the
evidence not only an effective metric for evaluating the relative quality of different model classes but one
which is well grounded in the principles of information theory.

Appendix B: Derivation of Normal-Inverse-Gamma Conjugate Prior for Linear
Regression With Generalized Error Variance

For the convenience of the reader, we include the complete derivation of the solution to linear regression
with generalized error variance using a normal-inverse-gamma conjugate prior. The notation and proofs are
taken from O’Hagan [1994].

We define a generic linear model in matrix notation as

𝐲 = 𝐗𝛃 + 𝜖 (B1)

where 𝐲 is an n × 1 vector of observations, 𝐗 is an n × p matrix of known coefficients, 𝛃 is a p × 1 vector of
parameters, and 𝜖 is an n × 1 vector of random errors. The elements of 𝜖 are assumed to have zero mean
and common covariance 𝜎2𝐃, where 𝐃 is a known positive definite covariance matrix and 𝜎2 is an additional
parameter. Both the coefficients of our linear regression, 𝛃, and the regression variance, 𝜎2, are unknown.
So the vector of all unknown model parameters can be written as, 𝛉 = (𝛃, 𝜎2). Although for the rest of this
derivation we will consider generic linear regression problems only, for the inversion described in section 2
we can identify 𝐗 as a matrix of Green’s functions for a fault with a particular strike and dip, 𝐲 as our esti-
mated static offsets, and 𝛃 as a vector containing the strike-slip and dip-slip motions on all fault patches so
that p is twice the number of fault patches in our model.

The data likelihood is the multivariate normal distribution:

p(|𝛉) = p(|𝛃, 𝜎2)
=  (𝐗𝛃, 𝜎2𝐃)

= 1
(2π)n∕2|𝜎2𝐃|1∕2

⋅ e−
(𝐲−𝐗𝛃)T (𝜎2𝐃)−1(𝐲−𝐗𝛃)

2

= 1
(2π𝜎2)n∕2|𝐃|1∕2

⋅ e−
(𝐲−𝐗𝛃)T 𝐃−1 (𝐲−𝐗𝛃)

2𝜎2 (B2)

We assign a normal prior distribution to our linear regression coefficients, 𝛃,

p(𝛃|𝜎2) =  (𝛃|𝐦, 𝜎2𝐕)

= 1
(2π)p∕2|𝜎2𝐕|1∕2

e−
1
2
(𝛃−𝐦)T (𝜎2𝐕)−1(𝛃−𝐦)

= 1
(2π𝜎2)p∕2|𝐕|1∕2

e−
(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)

2𝜎2 (B3)

Since 𝜎2 is a positive quantity, we want to assign it a prior PDF which has support over the positive domain.
One such PDF is the inverse-gamma distribution, which is defined by shape parameters a and d:

p(𝜎2) = IG(a, d)

=
(a∕2)d∕2

Γ(d∕2)
(𝜎2)−(d+2)∕2e−a∕(2𝜎2) (B4)

Thus, we can define our prior distribution as

p(𝛉) = p(𝛃, 𝜎2)
= p(𝛃|𝜎2)p(𝜎2)
= NIG(a, d,𝐦,𝐕)

=
(a∕2)d∕2

(2π)p∕2|𝐕|1∕2Γ(d∕2)
(𝜎2)−(d+p+2)∕2e−

(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)+a
2𝜎2 (B5)
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where NIG denotes the normal-inverse-gamma distribution, i.e., the product of a normal PDF and an
inverse-gamma PDF.

By Bayes’ theorem, the posterior PDF is

p(𝛉|) =
p(|𝛉)p(𝛉)

p(|)
(B6)

where p(|) is the marginal likelihood.

The posterior distribution is of the form

p(𝛉|D) = p(𝛃, 𝜎2|𝐲)
∝ p(|𝛉)p(𝛉)
= 1

(2π𝜎2)n∕2|𝐃|1∕2
⋅ e−

(𝐲−𝐗𝛃)T 𝐃−1(𝐲−𝐗𝛃)
2𝜎2

×
(a∕2)d∕2

(2π)p∕2|𝐕|1∕2Γ(d∕2)
(𝜎2)−(d+p+2)∕2 ⋅ e−

(𝛃−𝐦)T 𝐕−1 (𝛃−𝐦)+a
2𝜎2

∝ (𝜎2)−(d+n+p+2)∕2 ⋅ e−
(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)+a

2𝜎2 ⋅ e−
(𝐲−𝐗𝛃)T 𝐃−1(𝐲−𝐗𝛃)

2𝜎2

∝ (𝜎2)−(d+n+p+2)∕2 ⋅ e−Q∕(2𝜎2) (B7)

where,

Q = (𝐲 − 𝐗𝛃)T𝐃−1(𝐲 − 𝐗𝛃) + (𝛃 −𝐦)T𝐕−1(𝛃 −𝐦) + a

= 𝛃T (𝐕−1 + 𝐗T𝐃−1𝐗)𝛃 − 𝛃T (𝐕−1𝐦 + 𝐗T𝐃−1𝐲)
− (𝐦T𝐕−1 + 𝐲T𝐃−1𝐗)𝛃 + (𝐦T𝐕−1𝐦 + 𝐲T𝐃−1𝐲 + a)

= (𝛃 −𝐦∗)T (𝐕∗)−1(𝛃 −𝐦∗) + a∗ (B8)

with,

𝐕∗ = (𝐕−1 + 𝐗T𝐃−1𝐗)−1 (B9)

𝐦∗ = (𝐕−1 + 𝐗T𝐃−1𝐗)−1(𝐕−1𝐦 + 𝐗T𝐃−1𝐲)
= 𝐕∗(𝐕−1𝐦 + 𝐗T𝐃−1𝐲) (B10)

a∗ = a +𝐦T𝐕−1𝐦 + 𝐲T𝐃−1𝐲 − (𝐦∗)T (𝐕∗)−1𝐦∗ (B11)

d∗ = d + n (B12)

The results in equation (B8) can be proved by first noting that

(𝛃 −𝐦∗)T (𝐕∗)−1(𝛃 −𝐦∗) = 𝛃T𝐕∗−1𝛃 − 𝛃T𝐕∗−1𝐦∗ −𝐦∗T 𝐕∗−1𝛃 +𝐦∗T 𝐕∗−1𝐦∗ (B13)

and

𝐕∗−1𝐦∗ = (𝐕−1𝐦 + 𝐗T𝐃−1𝐲) (B14)

and

𝐦∗T 𝐕∗−1𝛃 = (𝐕−1𝐦 + 𝐗T𝐃−1𝐲)T𝐕∗ ⋅ 𝐕∗−1
⋅ 𝛃

= (𝐕−1𝐦 + 𝐗T𝐃−1𝐲)T𝛃
= (𝐦T𝐕−1 + 𝐲T𝐃−1𝐗)𝛃 (B15)
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Then,

Q = 𝛃T (𝐕−1 + 𝐗T𝐃−1𝐗)𝛃 − 𝛃T (𝐕−1𝐦 + 𝐗T𝐃−1𝐲)
− (𝐦T𝐕−1 + 𝐲T𝐃−1𝐗)𝛃 + (𝐦T𝐕−1𝐦 + 𝐲T𝐃−1𝐲 + a)

= 𝛃T (𝐕−1 + 𝐗T𝐃−1𝐗)𝛃 − 𝛃T (𝐕−1𝐦 + 𝐗T𝐃−1𝐲)
− (𝐦T𝐕−1 + 𝐲T𝐃−1𝐗)𝛃 + (𝐦T𝐕−1𝐦 + 𝐲T𝐃−1𝐲)
+ a∗ −𝐦T𝐕−1𝐦 − 𝐲T𝐃−1𝐲 + (𝐦∗)T (𝐕∗)−1𝐦∗

= 𝛃T (𝐕−1 + 𝐗T𝐃−1𝐗)𝛃 − 𝛃T (𝐕−1𝐦 + 𝐗T𝐃−1𝐲)
− (𝐦T𝐕−1 + 𝐲T𝐃−1𝐗)𝛃 + a∗ + (𝐦∗)T (𝐕∗)−1𝐦∗

= 𝛃T𝐕∗−1𝛃 − 𝛃T𝐕∗−1𝐦∗ −𝐦∗T 𝐕∗−1𝛃 + (𝐦∗)T (𝐕∗)−1𝐦∗ + a∗

= (𝛃 −𝐦∗)T (𝐕∗)−1(𝛃 −𝐦∗) + a∗ (B16)

Substituting for Q in equation (B7), we find

p(𝛉|) ∝ (𝜎2)−(d+n+p+2)∕2 ⋅ e−Q∕(2𝜎2)

= (𝜎2)−(d+n+p+2)∕2 ⋅ e−
(𝛃−𝐦∗)T (𝐕∗)−1(𝛃−𝐦∗)+a∗

2𝜎2 (B17)

Comparing equation (B17) to equation (B5), it can seen by inspection that the posterior PDF has the same
form as the prior PDF. Thus, the normal-inverse-gamma distribution is a conjugate prior and the posterior
PDF will also have a NIG distribution

p(𝛉|) = NIG(a∗, d∗,𝐦∗,𝐕∗)

=
(a∗∕2)d∗∕2

(2π)p∕2|𝐕∗|1∕2Γ(d∗∕2)
(𝜎2)−(d∗+p+2)∕2e−

(𝛃−𝐦∗)T (𝐕∗)−1(𝛃−𝐦∗)+a∗

2𝜎2 (B18)

The marginal likelihood is

p(|) =
p(|𝛉)p(𝛉)

p(𝛉|)

= 1
(2π𝜎2)n∕2|𝐃|1∕2

⋅ e−
(𝐲−𝐗𝛃)T 𝐃−1(𝐲−𝐗𝛃)

2𝜎2

×
(a∕2)d∕2

(2π)p∕2|𝐕|1∕2Γ(d∕2)
(𝜎2)−(d+p+2)∕2e−

(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)+a
2𝜎2

÷
(a∗∕2)d∗∕2

(2π)p∕2|𝐕∗|1∕2Γ(d∗∕2)
(𝜎2)−(d∗+p+2)∕2e−

(𝛃−𝐦∗)T (𝐕∗)−1(𝛃−𝐦∗)+a∗

2𝜎2

= 1
(2π𝜎2)n∕2|𝐃|1∕2

⋅ e−
(𝐲−𝐗𝛃)T 𝐃−1(𝐲−𝐗𝛃)

2𝜎2
(a∕2)d∕2|𝐕∗|1∕2Γ(d∗∕2)
(a∗∕2)d∗∕2|𝐕|1∕2Γ(d∕2)

(𝜎2)−(d−d∗)∕2

× e−
(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)+a−(𝛃−𝐦∗)T (𝐕∗)−1(𝛃−𝐦∗)−a∗

2𝜎2

= 1
(2π𝜎2)n∕2|𝐃|1∕2

(a∕2)d∕2|𝐕∗|1∕2Γ(d∗∕2)
(a∗∕2)d∗∕2|𝐕|1∕2Γ(d∕2)

(𝜎2)−(d−d∗)∕2

× e−
(𝐲−𝐗𝛃)T 𝐃−1 (𝐲−𝐗𝛃)

2𝜎2 e−
(𝛃−𝐦)T 𝐕−1 (𝛃−𝐦)+a

2𝜎2 e+Q∕(2𝜎2)

= 1
(2π)n∕2|𝐃|1∕2

(a∕2)d∕2

(a∗∕2)d∗∕2

|𝐕∗|1∕2

|𝐕|1∕2

Γ(d∗∕2)
Γ(d∕2)

× e−
(𝐲−𝐗𝛃)T 𝐃−1 (𝐲−𝐗𝛃)+(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)+a−[(𝐲−𝐗𝛃)T 𝐃−1(𝐲−𝐗𝛃)+(𝛃−𝐦)T 𝐕−1(𝛃−𝐦)+a]

2𝜎2

= 1
(2π)n∕2|𝐃|1∕2

|𝐕∗|1∕2

|𝐕|1∕2

(a∕2)d∕2

(a∗∕2)d∗∕2

Γ(d∗∕2)
Γ(d∕2)

(B19)

The choice of the data likelihood, p(|𝛉) =  (|𝛃, 𝜎2), the prior PDF on the slip model, p(𝛃|𝜎2) =
 (𝛃|𝐦, 𝜎2𝐕), and the prior PDF on the regression variance, p(𝜎2) = IG(a, d) are all justifiable on their
own. (Gaussian data likelihoods are the most commonly used, and their choice is justified by the principle
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of maximum entropy [see, e.g., Jaynes, 2003; Beck, 2010]. Similarly, Gaussian priors are commonly used for
regression variables. Finally, the inverse-gamma distribution satisfies the need for the regression variance
to only have support for positive values.) However, it is by choosing these specific families of PDFs for the
data likelihood and prior PDFs that we obtain a conjugate prior (i.e., a NIG prior PDF that when multiplied by
the normally distributed data likelihood yields a NIG posterior PDF), and because we have used a conjugate
prior, we obtain an analytical expression for the marginal likelihood, p(|).

In many cases, the regression variance, 𝜎2, is a nuisance parameter, and we only wish to make posterior infer-
ence on 𝛃, so that we desire p(𝛃|) and not p(𝛃, 𝜎2|). To obtain the mean and variance of the marginal
PDF, p(𝛃|), we first need to derive the mean and variance of p(𝛃) and p(𝜎2). From the definition of the
mean and variance of the inverse-gamma distribution

E(𝜎2) = a
d − 2

for d > 2 (B20)

var(𝜎2) = 2a2

(d − 2)2(d − 4)
for d > 4 (B21)

The prior on 𝛃 conditional on 𝜎2 is  (𝐦, 𝜎2𝐕). Thus,

E(𝛃|𝜎2) = 𝐦 (B22)

var(𝛃|𝜎2) = 𝜎2𝐕 (B23)

Recalling the law of total expectation, E(𝐘) = E(E(𝐘|𝐗)), and the law of total variance,
var(𝐘) = E(var(𝐘|𝐗)) + var(E(𝐘|𝐗)),

E(𝛃) = E(E(𝛃|𝜎2)) = 𝐦 (B24)

var(𝛃) = E(var(𝛃|𝜎2)) + var(E(𝛃|𝜎2))
= E(𝜎2𝐕) + var(𝐦)
= E(𝜎2)𝐕

= a
d − 2

𝐕 (B25)

Since this is a conjugate prior, the posterior PDFs will be

p(𝜎2|) = IG(a∗, d∗) (B26)

p(𝛃|𝜎2,) =  (𝐦∗, 𝜎2𝐕∗) (B27)

Accordingly,

E(𝜎2|) = a∗

d∗ − 2
(B28)

var(𝜎2|) = 2a∗2

(d∗ − 2)2(d∗ − 4)
(B29)

E(𝛃|𝜎2,) = 𝐦∗ (B30)

var(𝛃|𝜎2,) = 𝜎2𝐕∗ (B31)

E(𝛃|) = 𝐦∗ (B32)

var(𝛃|) = a∗

d∗ − 2
𝐕∗ (B33)

Note that since a and d are positive and d∗ = d + n where n is the number of data points, the posterior
means and variances E(𝜎2|), var(𝜎2|), and var(𝛃|) are guaranteed to exist if there are at least 2, 4, and 2
observations, respectively.
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An analytical expression for the marginal posterior distribution of 𝛃, p(𝛃|), can be found by integrating the
joint posterior with respect to 𝜎2:

p(𝛃|) = ∫
𝜎2

p(𝛃, 𝜎2|)d𝜎2

= ∫
∞

0
NIG(a∗, d∗,𝐦∗,𝐕∗)d𝜎2

= ∫
∞

0

(a∗∕2)d∗∕2

(2π)p∕2|𝐕∗|1∕2Γ(d∗∕2)
(𝜎2)−(d∗+p+2)∕2e−

(𝛃−𝐦∗)T (𝐕∗)−1(𝛃−𝐦∗)+a∗

2𝜎2 d𝜎2

= c ∫
∞

0
(𝜎2)−(d∗+p+2)∕2e−

b
2𝜎2 d𝜎2 (B34)

with c = (a∗∕2)d∗∕2

(2π)p∕2|𝐕∗|1∕2Γ(d∗∕2)
and b = (𝛃 −𝐦∗)T (𝐕∗)−1(𝛃 −𝐦∗) + a∗.

If we make the substitution z = b
2𝜎2 so that d𝜎2 = − b

2z2 dz, then equation (B34) becomes

p(𝛃|) = c ∫
∞

0
(𝜎2)−(d∗+p+2)∕2e−

b
2𝜎2 d𝜎2

= c ∫
∞

0

( b
2z

)−(d∗+p+2)∕2

e−z b
2z2

dz

= c
(b

2

)−(d∗+p)∕2
[
∫

∞

0
(z)(d∗+p−2)∕2e−zdz

]
(B35)

We can recognize the part of equation (B35) in square brackets as the gamma integral. Thus,

p(𝛃|) = c
(b

2

)−(d∗+p)∕2
⎡⎢⎢⎢⎣
Γ
(

d∗+p
2

)
1

⎤⎥⎥⎥⎦
=

(a∗∕2)d∗∕2

(2π)p∕2|𝐕∗|1∕2Γ(d∗∕2)
×
(
(𝛃 −𝐦∗)T (𝐕∗)−1(𝛃 −𝐦∗) + a∗

2

)−(d∗+p)∕2

Γ
(

d∗ + p
2

)

=
(a∗)d∗∕2Γ((d∗ + p)∕2)|𝐕∗|1∕2πp∕2Γ(d∗∕2)

×
(
(𝛃 −𝐦∗)T (𝐕∗)−1(𝛃 −𝐦∗) + a∗)−(d∗+p)∕2

=
Γ((d∗ + p)∕2)

(a∗)p∕2|𝐕∗|1∕2πp∕2Γ(d∗∕2)
×
(

1 + (𝛃 −𝐦∗)T (a∗𝐕∗)−1(𝛃 −𝐦∗)
)−(d∗+p)∕2

=
Γ((d∗ + p)∕2)

(d∗)p∕2| a∗

d∗
𝐕∗|1∕2πp∕2Γ(d∗∕2)

×
(

1 + 1
d∗ (𝛃 −𝐦∗)T (a∗

d∗𝐕
∗)−1(𝛃 −𝐦∗)

)−(d∗+p)∕2

(B36)

Equation (B36) is td∗

(
𝐦∗,

a∗

d∗
𝐕∗

)
, the multivariate t distribution for d∗ degrees of freedom with mean 𝐦∗ and

scale matrix a∗

d∗
𝐕∗.

Notation

𝐂𝐝 n × n covariance matrix of observational errors.
𝐂𝐩 n × n covariance matrix of prediction errors.
𝐃 n × n covariance matrix of total errors.
 Vector of data predicted by stochastic forward model.

E(⋅) Expectation of (⋅).
IG(a, d) Inverse-gamma distribution with shape parameters a and d (equation (B4)).

 Model class.
𝐦 p×1 mean vector for prior PDF on linear regression variables, p(𝛃) =  (𝐦, 𝜎2𝐕).
𝐦∗ p×1 Mean vector for posterior PDF on linear regression variables,

p(𝛃|𝜎2,) =  (𝐦∗, 𝜎2𝐕∗).
n Number of observed data.

 (𝐦,𝐕) Normal distribution with mean, 𝐦, and covariance, 𝐕.
NIG(a, d,𝐦,𝐕) Normal-inverse-gamma distribution with parameters a, d, 𝐦, and 𝐕 (equation (B5)).

MINSON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3229



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010622

p Number of linear regression parameters.
p(x) Probability density function (PDF) for a continuous variable, x.

p(x, y) Joint probability density function of x and y.
p(x|y) Conditional probability density function of x given y.

p(𝛉) Prior PDF.
p(|𝛉) Data likelihood.
p(𝛉|) Posterior PDF.

p(|) Marginal likelihood (evidence).
r Epicentral distance.
t Time relative to origin time.

 (a, b) Uniform distribution on the interval (a, b).
v Scalar variance of model parameters, 𝐕 = v𝐈.

var(⋅) Variance of (⋅).
𝐕 p × p covariance matrix for prior PDF on linear regression variables, p(𝛃) =  (𝐦, 𝜎2𝐕).
𝐕∗ p×p covariance matrix for posterior PDF on linear regression variables,

p(𝛃|𝜎2,) =  (𝐦∗, 𝜎2𝐕∗).
𝐗 n×p matrix of coefficients for linear regression problem, 𝐲 = 𝐗𝛃 + 𝝐.
𝛃 p × 1 vector of parameters for linear regression problem, 𝐲 = 𝐗𝛃 + 𝝐.

Γ(⋅) Gamma function.
𝛿 Fault dip.
𝝐 n×1 Vector of total errors between the observed data and the predictions of the

forward model.
𝛉 (p + 1)×1 vector of model parameters which specify stochastic forward model.
𝜆 Decay rate for exponentially weighted moving average (EWMA).
𝜎d Observational uncertainty.
𝜎2 Regression variance.
𝜙 Fault strike.
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