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Slow-slip phenomena refer to specific deformation modes 
that are observed seismically or geodetically. The variabil-
ity of slow-slip phenomena reflects a suite of unique fault-

slip characteristics (Fig. 1). When faults slip at sufficiently fast 
velocities, dynamic forces become significant and seismic waves 
radiate. The energy carried at wavefronts can overcome frictional 
forces on locked sections of the fault, resulting in large displace-
ments and ‘fast’ earthquakes1. Under some conditions the slip may 
not reach dynamic velocities, but low-amplitude, low-frequency 
seismic waves still radiate. These seismic slow signals have only 
recently been identified, facilitated by networks of high-sensitiv-
ity surface and borehole seismometers that record continuously 
in the frequency band of ~0.001–100 Hz. Among these signals, 
the most commonly observed are weak continuous vibrations 
having no clear impulsive phases, known as deep ‘non-volcanic’ 
tremor2. Tremor often accompanies the aseismic events, with the 
coupled phenomena named ‘episodic tremor and slip’ (ETS)3. 

A range of other seismic signals indicative of a spectrum of 
slow source durations and rupture speeds, and limited slip (rela-
tive to earthquakes), have been classified as low-frequency earth-
quakes (LFEs)4,5 and very low-frequency earthquakes (VLFs)6,7, 
with source durations of less than one second and a few tens of 
seconds, respectively (Figs 1 and 2). These weak seismic events 
have been observed in Japan2, Cascadia3, Central California8, 
Mexico9 and Costa Rica10 (Fig. 3). In several regions where tremor 
signals are well recorded, a significant fraction of the tremor signal 
seems to comprise superposed LFE waveforms10,11. This implies 
that tremor represents the chatter from tiny, distributed sources 
that radiate randomly. VLFs are found buried in tremor signals, 
further suggesting that occasionally LFEs coalesce into an organ-
ized rupture that radiates seismic waves at a lower frequency12,13. 

Aseismic signals reflect fault slip so slow that inertial forces and 
seismic radiation are negligible. The occurrence of such ‘quasi-static’ 
slow slip has been known for many years (for example, ref. 14), but 
its significance along plate boundaries was not recognized until 
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plate-boundary-scale GPS networks became operational in continuous 
mode ~15 years ago15–17. Less abundant strainmeters and tiltmeters 
also measure aseismic transients, and with much greater resolution 
than GPS18. 

The pervasiveness of slow-slip phenomena in plate boundary 
regions, the spontaneity and regularity with which they some-
times occur, and some of the seismic signals they emit are new 
and exciting. However, some of the phenomena have been docu-
mented for decades. Early seismological studies have shown that 
some earthquakes are relatively depleted of high frequencies19, 
reflecting source durations longer than expected from standard 
relationships20. These include slow, mostly shallow earthquakes 
on oceanic transform faults19,21 and in shallow sediments22, tsu-
nami earthquakes23 and glacial earthquakes24. 

Slow-slip phenomena have also been documented in the context 
of other, more familiar types of fault slip. Examples include after-
shocks and afterslip, repeating earthquakes and creep, swarms and 
various types of aseismic deformation. Although driven by gravity 
instead of stresses resulting from relative plate motions, glaciers 
and landslides also share many commonalities with slow slip of 
tectonic origins.

slow-slip phenomena along tectonic plate boundary faults

When and where. The sources of the slow geodetic signals are gen-
erally consistent with shear slip on the plate interface16,25 (Fig. 2). 
The locations of the slipping surface and the interface generally 
have uncertainties of several kilometres or more. Plate interfaces 
have been mapped using seismic imaging techniques, potential 
field methods, and high-resolution locations of earthquakes26,27.

The most well-constrained sources of seismic slow slip (LFEs) 
and plate boundary locations come from the Nankai subduction 
zone in southwest Japan. Here, the slow-slip sources coincide 
with the plate boundary26. LFE sources in the Cascadia sub-
duction zone28 and along the San Andreas fault (SAF)29 system 
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transform boundary locate on the respective plate interfaces. A 
geographically broader study of LFEs in the subduction zones of 
Japan, Costa Rica and Cascadia also places sources on the plate 
interface, but samples only three-hour time windows10. Slip vec-
tors estimated from LFEs and VLFs in Japan indicate slip along 
the plate interface in the convergence direction13,30.

In Cascadia, quasi-static slip of several centimetres on the plate 
interface has been inferred directly downdip from the locked zone 
of the plate interface, between the 25- and 45-km-depth contours16. 

However, the non-uniqueness of the modelled solutions also permits 
slip zones at different depths or shear distributed over a depth range 
of more than 10 km (ref. 31). In much of Cascadia, tremor sources 
are consistent with origins on the plate interface10,28, but their distri-
bution beneath Vancouver Island extends from the plate interface 
to near the surface with the densest concentration being well above 
the interface31,32.

The durations of aseismic-slip events in numerous subduction 
zones range from days to years, with magnitudes of displacement 
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Figure 1 | illustrative examples of slow-slip signals. a, Tremor and b, VLF from Japan, filtered between 2–8 and 0.005–0.05 Hz, respectively. c, LFE from Japan. 
d, M1.9 earthquake in western Washington. e, Top: daily GPS E–W displacements measured on Vancouver Island. Bottom: averaged and detrended GPS data 
(pink lines show the fit trend) reveal a slow-slip event (shaded). f, Slow slip in differential shear strain measured in western Washington. Strain transient onset 
coincides with increased tremor activity. g, GPS N 55° displacement ~100 km from the 2001 M8.4 Peru earthquake. The large offset reflects the coseismic slip 
and the subsequent decaying deformation may be afterslip99. Figures reproduced with permission from: a,b ref. 77, © 2008 GRL; c, ref. 5, © 2006 NPG; e, ref. 16, 
© 2001 AAAS; f, ref. 98, © 2008 AGU; g, ref. 99, © 2005 JGR.
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of up to several tens of centimetres31,33. In Japan and Cascadia these 
events occur quasi-periodically, with periods of ~3 to ~19 months 
that vary along each subduction zone3,25,34,35. Elsewhere, for exam-
ple Alaska, Mexico, New Zealand and Costa Rica, slow-slip events 
sometimes recur but with no apparent regularity17,36,37. 

Quasi-static-slip events are accompanied by a variety of seismic 
phenomena. In many regions where aseismic slip occurs beneath 
the locked zone, for example Cascadia and southwest Japan, tremor 
always accompanies quasi-static slip. However, the converse is not 
true, for the reasons noted below3,25,38. A few studies in Japan note 
that aseismic slip begins before the onset of tremor activity and, in 
some places, occurs without any detectable seismic signals39,40.

Aseismic slip at shallow depths has correlative seismic signals 
that have spectral and scaling characteristics more typical of ordi-
nary ‘fast’ earthquakes. Examples include regions just downdip of 
the shallow slow-slipping zones of the subduction zones of northern 
New Zealand41 and the Boso peninsula, Japan42. Shallow quasi-static 
slip accompanied by increased rates of regular earthquakes has also 
been observed along the creeping section of the SAF14 and the south 
flank of the Kilauea volcano, Hawaii43. The coupled earthquakes 
locate where ambient seismicity occurs, beneath the zone of quasi-
static slip.

Seismic slow-slip signals observed without geodetic counter-
parts, such as along the SAF29,44,45 and in the subduction zones noted 
above, plausibly can be attributed to detection differences between 
geodetic and seismic instrumentation. Such differences between 
regions may explain some apparent regional variations in slow-slip 
phenomena. Surface GPS instruments are sensitive only to quasi-
static-slip events below ~25 km depth with magnitude (M) > 6, 
whereas small M5–6 events can be detected only by borehole tilt-
meters in Japan25. Even with borehole strainmeters, M~5 slow-slip 
events could go undetected if at depths below ~15 km45. The obser-
vation of tremor both during ETS events and between them sug-
gests that quasi-static slip may often occur between such events but 
go undetected40,46. On the other hand, deep ETS events have been 
measured in southwest Japan47, but have not been observed directly 
in northeast Japan, yet both regions contain equally dense seismic 
and geodetic instrumentation. 

Shear slip on frictional, pressurized, near-failure faults. Numerous 
lines of evidence strongly suggest that slow-slip phenomena result 
from shear slip on faults near failure with low effective confining pres-
sure, most probably owing to near-lithostatic fluid pressures. Tremor 
in a wide range of tectonic environments can be instantaneously trig-
gered by transient stresses on the order of a few to tens of kilopascals, 
imparted by surface waves of regional and teleseismic events44,48–51 
(Fig. 4). Static-stress changes on the order of a few kilopascals from 
neighbouring earthquakes also trigger changes in rates of tremor52 
and LFEs29 along the SAF. Furthermore, tremor activity seems to be 
modulated by the Earth’s tidal deformation53–55, with tidally induced 
fault-parallel shear stresses correlating best with the tremor activity56. 
Correlations between slow-slip phenomena and stress perturba-
tions on the order of a few kilopascals from atmospheric57 and other 
climatic-driven events58,59 also indicate that participating faults are  
critically stressed.

It is generally agreed that near-lithostatic fluid pressure reduces 
the effective stresses and makes slow-slip events highly sensitive to 
external stress perturbations. Evidence of elevated fluid pressures 
comes from tomographic imaging of elastic properties around the 
source region of the slow-slip phenomena5,27,60–62. These studies 
show that tremor and aseismic slip occur preferentially in regions 
with high ratios of compressional- to shear-wave seismic velocity, 
anomalously high Poisson’s ratios, or ultralow shear-velocity layers. 
These all indicate that fluids are widely present, with pore pressures 
near lithostatic values (Fig. 2). Fluids may come from dehydration of 
hydrous minerals in the subducting sediments and oceanic crust63, 

becoming sealed in and pressurized where the plate boundary has 
low permeability27,61. The presence and source of fluids in the lower 
crust near strike-slip faults such as the SAF are still speculative, 
although recent seismic imaging studies have revealed conductive 
properties at the base of the crust64.

Physical models of slow-slip phenomena. The macroscopic behav-
iours of plate boundary faults under the stresses caused by relative 
plate motions are typically described in terms of frictional prop-
erties65. Thus, most models of aseismic slow-slip events appeal to 
shear slip on frictional faults5,30,50. Figure 2 illustrates the broad vari-
ation in frictional properties that are ascribed to subduction zones, 
but applicable to several plate boundary zones. The same picture 
can be drawn for transform boundaries by simply plotting the inter-
face vertically66. Frictional models explain the occurrence of quasi-
static-slip events with rates and displacement values consistent with 
observations67–71, although the physics assumed in these models may 
differ. Moreover, they seem to require low confining stresses and, in 
some models, significant involvement of fluid-pressure processes71, 
consistent with the aforementioned inferences.

Other explanatory models involve fluids, either exclusively 
through mechanisms such as hydraulic fracturing or permeability 
pumping2,32, or in combination with frictional processes49,70,71. An 
intriguing example of the latter involves dilatant strengthening. 
Here, frictional faults dilate as they accelerate towards dynamic 
failure at rates that prohibit draining, such that pore pressures 
drop. This raises the effective normal stress and thus limits or 
quenches dynamic rupture70,71. The lack of phase lag between seis-
mic waves and tidal forces, the tremor and slip rates they modu-
late, and high tremor-migration rates (as high as 5–45 km hr−1 
(ref. 11), in excess of plausible fluid-diffusion rates) imply that 
changing fluid pressures cannot involve diffusion or flow72. 

A primary role for quasi-static slip. The earliest ETS observations 
clearly demonstrated the coupled nature of seismic and aseismic 
slow-slip events3. Corroborative subsequent studies have led to 
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proposals that tremor could be used as a proxy to monitor aseismic 
slip29,38,73. As well as the broadscale temporal and spatial coincidence 
of seismic (tremor, LFE and VLF) and quasi-static-slip sources 
within tens of kilometres and days, in Cascadia and Japan both also 
show clear along-strike migrations that track each other, at speeds 
on the order of a few tens of kilometres per day12,46. These correla-
tions warrant exploration of a causal connection between the seis-
mic and aseismic phenomena. ‘Causal’ in this context refers both 
to the processes that load or supply the strain energy fuelling the 
eventual fault slip, and those that may initiate (trigger) a slip event 
early. The relative timing and moments of seismic and aseismic slow 
slip provide key constraints on the driving and triggering processes. 
The moment measures the potency of a slip episode to relax accrued 
stresses, and is proportional to the product of the slipping area and 
the distance slipped74. 

Although resolvable in only a few cases, the fact that the 
onset of aseismic slip precedes the start of the seismic activity in 
Hawaii43 and Japan39,40 means the seismic slip does not trigger the 
quasi-static slip. However, the reverse may be inferred. We also 
conclude that the seismic slip is not causal in the sense of provid-
ing the energy that drives the aseismic slip, because when meas-
urable, the relative moment of the cumulative seismic activity is 
orders of magnitude smaller than that of the aseismic slip (Fig. 5). 
In Japan, aseismic-slip events near the Boso peninsula region 
have moments that significantly exceed those of the earthquakes 
that accompany them42. In the Nankai region the rate of seismic 
moment released from detectable VLF sources was 0.1% of the 
rates from adjacent, contemporary slow-slip events13. In Cascadia, 
for each of eight ETS episodes the moment of the aseismic slip 
exceeds that of the cumulative tremor by more than a factor of a 
million75. Tremor represents only the energy radiated above ~1 Hz, 
thus the latter probably underestimates the total seismic moment. 
Indeed, coherent seismic waveforms with energy at frequencies as 
low as 0.002 Hz have been observed in association with aseismic-
slip events, but always in the tremor signals12,76. This demonstrates 
the detectability of such low-frequency radiation and shows that 
biases in band-limited estimates of seismic moment are probably 
too small to account for their much smaller values relative to aseis-
mic moments. 

Thus, we conclude that quasi-static slip is the primary mode in 
which the accrued tectonic stresses are relieved. The observations 

do not distinguish between the seismic slip also being tectonically 
driven or relaxing stresses redistributed as a result of the aseismic 
slip. Although uncertain, the possible balance between the cumu-
lative aseismic slip over complete ETS cycles and that accrued 
owing to plate motion in Cascadia would argue in favour of the 
first proposition46,77. 

Slip-mode stationarity. We suggest that the specific slip mode at 
a particular location is an inherent property of the fault, rather 
than being determined by transient conditions (for example, the 
causative load itself, or fluid flow). The observation of only a single 
mode of slip at a given locale for the duration of our observational 
window of several decades supports this inference, and further 
implies that the properties governing the slip mode are station-
ary on this timescale. Corroborative observations include spatially 
anticorrelated distributions of earthquakes and slow-slip sources, 
observed for both large and small earthquakes. Sources of slow 
quasi-static slip in Alaska abut the rupture zone of the great M9.2 
Alaska earthquake78 of 1964. In Japan, slow-slip sources occur on 
the edges of the rupture planes of the M7.9 Kanto earthquake42 of 
1923 and just below the M7.9 Tonankai 1944 and M8.0 Nankai 
1946 earthquakes79. In Cascadia, the locations of tremor sources 
are anticorrelated with the section of the plate interface inferred 
from palaeoseismic data to have slipped during past megathrust 
earthquakes76 and, curiously, also with earthquakes in the crust of 
the overriding plate31. 

The maxima of seismic and aseismic slow-slip source distribu-
tions also seem to locate in spatially adjacent, but not coincident, 
regions. The most recent estimates of tremor and quasi-static slow 
slip from Japan show the two migrating in temporal sync with one 
another, but with a bimodal tremor distribution that has peaks out-
lining the slower slip rather than being coincident with it80. Tremor 
source distributions mapped in the subduction zone regions of 
Mexico, Alaska and Cascadia all peak downdip of the greatest quasi-
static slip31,36,62.

Conditions for slow-slip phenomena. Although the mode of slip 
seems to be stationary, the requirements for triggering slip vary 
temporally and are not easily satisfied. Recent systematic surveys of 
tremor in California44,48 and Taiwan51, triggered by the seismic waves 
from distant earthquakes, revealed that triggered tremor occurs in 
only a few isolated regions, the locations of which varied for differ-
ent triggering earthquakes.

The particular conditions required for slow slip have become 
apparent as more regions have been studied. Thermal controls 
were initially thought to be key47 because ETS was first identified 
in the relatively young and warm subducted crusts of Cascadia 
and southwest Japan, and were absent in northeast Japan where 
the predicted pressure–temperature  paths are much cooler63. 
However, detailed finite-element thermal modelling of the 
Cascadia and southwest Japan subduction zones now shows quite 
different pressure–temperature paths in each region at depths 
where ETS is observed, suggesting that ETS does not require a 
specific temperature or metamorphic reaction81. Furthermore, 
tremor and slow-slip events have been recently observed in rela-
tively old and cold subducting crust in Costa Rica10 and Alaska36. 
Hence new hypotheses invoking differences in frictional or perme-
ability properties have been proposed to explain the lack of ETS in 
northeast Japan47,63. However, more work is required to fully test 
these hypotheses. 

slow-slip phenomena in a larger context
Coupled seismic- and aseismic-slip events on natural sur-
faces have been observed in many contexts, some fairly famil-
iar and well studied. As just noted in the context of the newly 
discovered plate boundary phenomena, investigations in many 
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settings are required to learn which factors are most relevant and 
provide opportunities to fill in observational gaps that arise from 
instrumental limitations in individual settings. We identify at 
least five hallmark characteristics of slow-slip phenomena: (1) the 
ratios of slip to slipped area are low and durations are long, relative 
to ‘fast’ earthquakes; (2) accrued stresses are relaxed dominantly 
through quasi-static slip that triggers a seismic response, evident 
in aseismic slip that precedes the seismic activity and has greater 
moment. The seismic response is sometimes quenched before 
reaching fully dynamic speeds, as in tremor, LFEs and VLFs;  
(3) explanatory models invoke shear slip on faults with frictional 
properties transitional between those that result in continu-
ous creep and those that are fully locked, punctuated by nearly 
instantaneous slip (stick–slip); (4) near-failure conditions prob-
ably reflect low confining stresses. Fluids at high pressure remain 
the most viable way to achieve these conditions, and may play 
important roles in quenching slip and in the recurrence of slow-
slip events; (5) local, stationary properties determine the domi-
nant slip mode.

Afterslip and aftershocks. Afterslip represents transient quasi-static 
slip triggered by the rapid stress release in a mainshock, which is 
typically followed by increased seismic activity known as ‘after-
shocks’. The underlying mechanism of aftershock generation is 

still debated82. A linear relationship between postseismic geodetic 
deformation, modelled as slow slip on the mainshock fault, and 
the cumulative number of aftershocks has led to suggestions that 
aftershocks may be driven primarily by afterslip83–85. These coupled 
seismic and aseismic processes exhibit almost all of the aforemen-
tioned hallmark characteristics of slow-slip phenomena: (1) the 
durations of the aseismic slip and aftershock sequences may last 
for days to months; (2) the afterslip moment exceeds the aggre-
gate moment of aftershocks by more than two orders of magnitude 
(Fig. 5)85,86; (3) frictional models akin to those applied to tectoni-
cally driven plate boundary slow slip explain not only the temporal 
decay of aftershocks and afterslip, but also their spatial migration87,88;  
(4) anti-correlated coseismic- and postseismic-slip distribu-
tions suggest that afterslip fills in gaps in slip remaining after 
a mainshock84.

Aseismic deformation and earthquake swarms. Sometimes 
sequences of clustered earthquakes strike in a short period of time 
with no obvious mainshock. The driving forces for these ‘earth-
quake swarms’ may be aseismic slip (measured in just a few cases), 
fluid, or magma migrations43,72,89,90. Swarms share several key fea-
tures with plate boundary slow-slip phenomena72: (1) durations of 
swarm activity and aseismic slip last days to months; (2) the aggre-
gate seismic moment is only a small fraction of the cumulative 
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aseismic moment90 (Fig. 5) and some swarm events migrate at 
rates of kilometres per hour, consistent with the propagation of 
slow-slip events72; (3) the magnitudes of swarm earthquakes tend 
to be small and irregularly distributed in a sequence, reminiscent 
of tremor activity; (4) pressurized fluids are often invoked in expla-
nations of swarms in magmatic and geothermal environments; (5) 
in the case of Hawaiian swarms, the earthquakes occurred in the 
same region as background seismicity43.

Steady and transient fault creep and repeating earthquakes. 
Sections of the SAF91 and other principal plate boundary faults 
around the globe42 are known to creep steadily or exhibit tran-
sient aseismic slip. These often have associated seismic activity. 
‘Repeating earthquakes’ are one example and probably represent 
repeated seismic failure of a single strongly coupled spot loaded 
by aseismic creep on the surrounding fault plane91. Other sections 
of the SAF are characterized by occasional transient aseismic-slip 
events, some of which are accompanied by increased seismicity 
rates14, and others without any seismic response92. These coupled 
aseismic and seismic phenomena share the aforementioned dis-
tinguishing characteristics: (1) the transient aseismic slip lasts 
days to weeks14,92; (2) the aggregate moment release from the 
triggered earthquakes is negligible compared with that from the 
slow-slip events14; (3) although the materials and conditions may 
differ, the same frictional models and input parameters invoked 
to explain deeper plate boundary slow slip have been applied to 
explain shallow, steady and transient slip87; (4) high pore pres-
sures are inferred to be responsible for the creep and transient 

slip92; (5) triggered earthquakes occur in the same regions as 
ambient seismicity14.

Gravity-driven aseismic and seismic slip. Landslides and gla-
ciers occur on natural surfaces that move and exhibit many of 
the same behaviours as tectonic faults, including coupled seismic 
and aseismic slip: (1) slip is sufficiently slow that even the seismic 
radiation may have characteristics typical of slow tectonic events;  
(2) although simultaneous geodetic and seismic measurements 
have been made in only a few glacier studies, results indicate that 
the aseismic slip triggers the seismic motion and is the primary 
mode of relaxing the stored gravitational energy. A slip event on an 
Antarctic glacier has a geodetic moment that exceeds the seismic 
moment by orders of magnitude (Fig. 5), and the arrival time of the 
first seismic energy, corrected for the source-receiver travel time, 
lags the onset of geodetically estimated slip by 20–150 seconds93;  
(3) glacial quakes in Antarctica, Alaska and Greenland have been 
interpreted as frictional stick–slip behaviour at the base of ice 
masses24. A more detailed geodetic and seismic study of an Antarctic 
glacier infers dynamic slip on frictionally strong spots that radiate on 
an otherwise quasi-statically sliding basal surface93; (4) pore-pres-
sure evolution plays a significant role both in landslide and glacier 
movements. Theoretical models of landslide movement by stable 
and stick–slip sliding involve coupled frictional and pore-pressure 
diffusion processes94. Correlations between landslide velocities and 
diurnal changes in atmospheric pressure have been attributed to 
pore-pressure-diffusion processes that modulate basal pore pres-
sure and thus the shear strength and velocity95. Weakening resulting 

Figure 5 | seismic moment versus source duration for a variety of fault-slip observations. Augmented version from ref. 96, © 2007 NPG, which 
infers two distinct scalings between moment and duration (diagonal bands). Open and filled symbols denote geodetic and seismic measurements, 
respectively. Measurements from ref. 96 have plus signs on the symbols, and all others are cross-referenced to sources listed in Supplementary 
Table S1. ‘Fast earthquakes’ and ‘shallow subduction earthquakes’ are too numerous to list but are listed in Supplementary Table S1. Data from the 
former come from only two sources. Dashed horizontal lines connect related geodetic and seismic data. Solid horizontal lines highlight the gap 
between seismic and geodetic durations.
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from pore-pressure changes associated with seasonal variations in 
water availability has been postulated to be responsible for a greater 
rate of glacial quakes during the summer months in Greenland24.

a continuum of slip modes?
The fault surface we propose primarily slips quasi-statically, such 
that the amplitude and rate of slip are limited, perhaps because the 
fault surfaces are inherently weak or the failure process becomes 
quenched. This slow slip probably involves intermediate fric-
tional processes between stick–slip behaviour and steady creep 
that result in the nucleation of failure or slip, and other processes 
involving fluid pressures that may quench the acceleration of slip 
(for example, dilatant hardening). Scattered on or near this fault 
surface are tiny fault patches that may accelerate to dynamic or 
near-dynamic rupture velocities and radiate seismic waves.

The time required for slip events of particular efficacy to com-
pletely release accrued stresses can be quantified in terms of the 
scaling between duration and moment. This scaling is diagnos-
tic of the underlying mechanics. We hypothesize that slip modes 
observed in nature should span a continuum, given the heteroge-
neity and complexity of natural systems, rather than separating 
neatly into distinct fast or slow groups, as has been suggested96. 
We test this hypothesis by augmenting the plot of moment ver-
sus duration observations that led to the latter conclusion, with 
measurements from the broader range of sources described herein 
(Fig. 5). We plot the aggregate durations and moments for after-
shock and swarm sequences as proxies for aseismic slip, noting 
that the aseismic moments are likely to be much larger and thus 
would be within the distribution of the other slow geodetic meas-
urements. The few swarms and aftershock sequences for which 
both seismic and geodetic observations (connected by dashed 
lines) exist support this assumption.

The augmented scaling data suggest a more careful considera-
tion of the existence of two distinct failure modes — fast and slow. 
Two distributions clearly exist in the data, but we suggest that they 
are observational, comprising either geodetic or seismic meas-
urements. These are separated by a gap in duration of more than 
two orders of magnitude (Fig. 5, horizontal lines). This gap may 
be attributed partly to instrumental limitations18. It is reasonable 
to question whether the slow-scaling relation originally inferred 
even fits this larger dataset, as well as the validity of fitting a single 
line to widely separated clusters of data. We suggest that as more 
data are added, the lines separating slow- and fast-slip events will 
blur even more, indicating a continuum of slip modes.

Measurements of earthquakes and slow-slip events from a 
broad range of global settings are found to overlap with measure-
ments of slow-slip events at plate boundary settings (Fig. 5). This 
overlap implies that the recently discovered slow-slip phenomena, 
generated at plate boundaries as a result of tectonic processes, are 
not so extraordinary. Furthermore, we suggest that a continuum 
of slip modes exists, rather than the distinct separation between 
slow slip and earthquakes. The mode of slip is determined by 
the inherent properties of the fault surface. Studies of slow-slip 
phenomena, viewed from a global, integrated perspective, are 
leading to a more complete picture of how faults slip and release 
tectonic stresses. Such an integrated perspective is critical for 
evaluating the hazards posed by earthquakes and other natural 
systems involving catastrophic slip. For example, it has been sug-
gested that slow-slip phenomena could be used to delineate the 
updip and downdip limits of the seismogenic zone that ruptures 
in megathrust earthquakes76. Slow slip also imparts stress changes 
on nearby locked faults and may act as a trigger for large earth-
quakes, although robust observations of this process are rare97. 
The strong sensitivity of slow-slip phenomena to stress perturba-
tions suggests that they could serve as natural ‘stress meters’ to 
monitor fault zones during large earthquake cycles.
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The Supplementary Information includes the following document: 

Peng_Gomberg_SuppTable_NGEO_2010.pdf: This table contains the estimates of slip 
event durations and moments displayed in Figure 5.  For each event the table lists the 
event place name and date, epicentral coordinates, seismic moment and duration, 
geodetic moment and duration, and the number of the reference from which the 
information was obtained. The latter number corresponds to the references, with 
explanatory notes if applicable, listed below the table.  Reference numbers also are noted 
on Figure 5. 
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Supplementary Table 1  

 

This table contains the estimates of slip event durations and moments displayed in Figure 

5.  For each event the table lists the event place name and date, epicentral coordinates, 

seismic moment and duration, geodetic moment and duration, and the number of the 

reference from which the information was obtained. The latter number corresponds to the 

references, with explanatory notes if applicable, listed below the table.  Reference 

numbers also are noted on Figure 5. 

 

Figure 5 Measurements and References 
Source Location, Date Latitude Longitude Seismic 

Moment 

(N-m) 

Seismic 

Duration 

(sec) 

Geodetic 

Moment 

(N-m) 

Geodetic 

Duration 

(sec) 

Ref.

No, 

Slow Earthquakes 

Mid-Atlantic Ridge 

3/20/78 

0.90 -29.34 2.400e+18 20.00   1 

Prince Edward Islands 

8/21/78 

-47.48 32.46 5.500e+18 28.00   1 

East-Pacific Rise 

12/25/78 

10.41 -103.80 9.300e+18 28.00   1 

Prince Edward Islands 

2/18/79 

-43.43 41.85 4.900e+18 18.00   1 

Mid-Atlantic Ridge 

6/10/79 

8.17 -38.11 1.600e+18 26.00   1 

South of Panama 

6/27/79 

7.05 -82.40 4.200e+18 36.00   1 

Costa Rica 

8/24/79 

9.02 -83.31 5.800e+18 21.00   1 

North-Atlantic Ridge 

8/25/79 

10.75 -41.70 1.590e+19 34.00   1 

North Sumatra 

9/29/79 

1.23 94.24 2.210e+19 29.00   1 

   6.7e+20 200   19 

   3.5e+20 80   19 

   4e+20 45   19 

   3.7e+20 160   19 

Kalapana, HI 

11/29/75 

18.86 -154.95 3.8e+20 72   17 

Santa Maria Basin, 

California 1/31/91 

34.8 -120.4 4e+14 3   20 

Very Low-frequency Earthquakes 

Shikoku, Japan 

3/14/07 

33.618 132.357 3.162e+14 17   2 

Shikoku, Japan 

3/15/07 

33.372 132.478 2.239e+14 12   2 

Shikoku, Japan 

3/15/07 

33.436 132.478 6.310e+14 12   2 

Shikoku, Japan 

3/14/07 

33.627 132.514 3.162e+14 18   2 
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Kii Peninsula, Japan 

5/28/06 

~34.0 ~135.8 1e+15 100   3 

Kii Peninsula, Japan 

7/18/07 

~34.0 ~135.8 4.467e+14 70   3 

Deep Slow Slip Events (New Zealand) 

Kapiti, 2003     9.5e18 3.154e7 22 

Manawatu, 2004     1.72e19 2.938e7 22 

Manawatu, 2004     3.07e19 1.642e7 22 

Deep Slow Slip Events (Shikoku, Japan) 

1/4/01 33.529 133.004   9.3e+17 691200 4 

8/16/01 33.517 132.868   1.01e+18 172800 4 

8/18/01 33.720 133.280   8.1e+17 172800 4 

2/10/02 33.488 133.169   9.6e+17 432000 4 

2/15/02 33.425 132.910   1.14e+18 259200 4 

8/6/02 33.438 132.835   6.4e+17 259200 4 

8/9/02 33.599 133.125   5.2e+17 345600 4 

4/17/03 33.166 132.470   9e+17 345600 4 

8/27/03 33.210 132.671   7.6e+17 259200 4 

8/30/03 32.370 132.836   1.15e+18 432000 4 

11/7/03 33.324 132.922   2.81e+18 518400 4 

11/19/03 33.680 133.345   1.05e+18 518400 4 

2/10/04 33.170 132.560   1.11e+18 259200 4 

4/19/04 33.400 133.020   1.35e+18 604800 4 

12/27/04 33.400 132.870   9.3e+17 432000 4 

5/12/05 33.284 132.653   1.21e+18 172800 4 

5/14/05 33.601 132.930   5.4e+17 345600 4 

10/23/05 33.400 132.844   5.1e+17 345600 4 

4/15/06 33.451 132.858   1.18e+18 432000 4 

9/8/06 33.380 133.030   2.89e+18 777600 4 

3/13/07 33.545 132.947   4.7e+17 345600 4 

8/27/07 33.629 132.861   5.5e+17 604800 4 

9/9/07 33.496 132.861   5.2e+17 259200 4 

12/19/07 33.108 132.773   1.99e+18 518400 4 

3/13/08 33.467 132.910   8.2e+17 518400 4 

11/08/06 34.003 134.293   9.89e+17 259200 4 

02/13/08 34.844 134.289   1.35e+18 432000 4 

Shallow Slow Slip Event (New Zealand) 

Gisborne, 2002     1e19 864000 22 

Gisborne, 2004     7.7e18 1469000 22 

Hastings, 2006     6.2e18 777600 22 

Gisborne, 2006     5e18 1037000 22 

Hastings, 2006     1.33e19 1555000 22 

Shallow Creep Event 

Superstition Hills fault, 

California 

10/3/06 

32.94 -115.71   1.429e+16 259200 5 

Slow or Creep Events 

     4.856e+19 1.581e+7 19 

     4.125e+20 1.555e+7 19 
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     9e+18 1.728e+6 19 

     6e+19 1.261e+8 19 

     1.512e+19 2.592e+7 19 

     1.26e+16 6.048e+5 19 

     1.8e+18 1.728e+6 19 

     1.8e+18 5.184e+6 19 

     1.134e+19 8.640e+5 19 

     7.875e+19 4.709e+7 19 

Swarms 

Wooded Island, WA 46.41 -119.28 6.410e+14 1.203e+7 6e+15 1.203e+7 6 

Kilauea Volcano, HI 

1/26/05 

19.30 -155.15 1.8e+14 172800 6.8e+17 190100 7 

Kilauea Volcano, HI 

1/31/2010 

19.30 -155.15   7.943e+17 129600 27 

Brawley fault, CA, 1975 32.88 -115.48 4.624e+16 280800   8 

West Moreland fault, CA, 

1981 

33.13 -115.63 6.383e+17 216000   8 

Obsidian Buttes fault, 

CA, 8/29/05 

33.17 -115.63 1.023e+17 424800   8 

Imperial fault, CA 2003 39.95 -115.55 7.328e+14 64800   8 

Galapagos Ridge 

transform, 2000 

1.8 -90.9 9.016e+17 129600   8 

Siqueiros transform, 2001 8.3 -103.5 7.586e+17 79200   8 

Gofar transform, 2007 -4.6 -105.5 4.786e+16 144000   8 

Earthquakes 

Off San Andreas, CA 

9/5/04 35.7685 -120.319 

3.199e+11 0.056   9 

Off San Andreas, CA 

9/28/04 35.7784 -120.33 

1.429e+13 0.0756   9 

Off San Andreas, CA 

9/28/04 35.7785 -120.33 

2.851e+13 0.0625   9 

Off San Andreas, CA 

9/28/04 35.7818 -120.323 

1.799e+12 0.0778   9 

Off San Andreas, CA 

9/28/04 35.7771 -120.329 

2.851e+13 0.1036   9 

Off San Andreas, CA 

9/28/04 35.7983 -120.342 

1.799e+12 0.0684   9 

Off San Andreas, CA 

9/29/04 35.7827 -120.334 

1.274e+12 0.068   9 

Off San Andreas, CA 

9/30/04 35.7812 -120.323 

4.519e+11 0.0812   9 

Off San Andreas, CA 

10/7/04 35.781 -120.332 

3.589e+12 0.0775   9 

Off San Andreas, CA 

10/18/04 35.7826 -120.334 

1.274e+12 0.0669   9 

Off San Andreas, CA 

10/18/04 35.7822 -120.334 

4.519e+11 0.0596   9 

Off San Andreas, CA 

10/19/04 35.7699 -120.321 

1.799e+12 0.0611   9 
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Off San Andreas, CA 

10/20/04 35.7978 -120.341 

5.070e+12 0.07   9 

Off San Andreas, CA 

10/29/04 35.781 -120.333 

1.135e+14 0.0887   9 

Off San Andreas, CA 

11/3/04 35.7667 -120.318 

3.199e+11 0.06   9 

Off San Andreas, CA 

9/20/01 35.9347 -120.487 

2.541e+12 0.0388   9 

Off San Andreas, CA 

9/28/04 35.9345 -120.487 

4.519e+11 0.0392   9 

Off San Andreas, CA 

9/28/04 35.9347 -120.487 

5.070e+12 0.0412   9 

Off San Andreas, CA 

10/2/04 35.9354 -120.487 

7.161e+12 0.0396   9 

Off San Andreas, CA 

1/8/05 35.9346 -120.487 

5.070e+12 0.048   9 

Off San Andreas, CA 

2/4/04 36.0951 -120.66 

1.603e+11 0.044   9 

Off San Andreas, CA 

2/9/05 36.095 -120.66 

1.274e+12 0.0585   9 

Off San Andreas, CA 

2/9/05 36.0953 -120.66 

1.603e+11 0.0516   9 

Off San Andreas, CA 

3/11/06 36.0362 -120.596 

5.248e+12 0.0668   9 

Off San Andreas, CA 

1/17/07 36.037 -120.595 

3.020e+12 0.0607   9 

San Andreas fault, CA 

6/4/02 35.932 -120.676 

3.589e+12 0.0325   9 

San Andreas fault, CA 

6/4/02 35.932 -120.676 

3.589e+12 0.0532   9 

San Andreas fault, CA 

9/6/04 36.148 -120.653 

2.018e+13 0.0924   9 

San Andreas fault, CA 

9/26/04 36.143 -120.666 

4.519e+14 0.1755   9 

San Andreas fault, CA 

9/27/04 36.154 -120.658 

2.018e+13 0.0811   9 

San Andreas fault, CA 

9/27/04 36.152 -120.658 

3.589e+12 0.0788   9 

San Andreas fault, CA 

10/3/04 36.153 -120.658 

2.018e+13 0.074   9 

San Andreas fault, CA 

6/27/06 36.065 -120.192 

7.763e+13 0.1039   9 

San Andreas fault, CA 

12/15/06 36.17 -120.298 

5.248e+12 0.1086   9 

San Andreas fault, CA 

3/12/07 35.938 -120.691 

1.567e+12 0.0256   9 

San Andreas fault, CA 

9/20/07 36.064 -120.194 

3.846e+12 0.1606   9 

M7.6 Chi-Chi, Taiwan 23.77 120.98 3.16e+20 28   10 
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9/20/99 

M7.1 Hector Mine, CA 

10/16/99 

34.597 -116.27 5.62e+19 14   11 

M7.9 Denali, AK 

11/3/02 

63.520 147.530 8.91e+20 120   12 

M6.5 San Simeon, CA 

12/22/03 

35.704 - 121.096 7.1e+18 11   13 

M6.0 Parkfield, CA 

9/28/04 

35.815 -120.374 1.3e+18 14   14 

Aftershock Sequences 

M6.5 Chengkung, Taiwan 

12/10/03 

23.065 121.357 6.3e+17 8.64e+7 6.2e+18 8.64e+7 15 

M7.9 Denali, AK 

11/3/02 

63.520 147.530 2.228e+18 8.64e+7   16 

M6.0 Parkfield, CA 

9/28/04 

35.815 -120.374 1e+17 8.64e+7 2.8e+18 8.64e+7 161

5 

M7.1 Hector Mine, CA 

10/16/99 

34.597 -116.27 1.135e+18 8.64e+7   16 

M7.6 Chi-Chi, Taiwan 

9/20/99 

23.77 120.98 1.24e+20 8.64e+7   16 

M6.5 San Simeon, CA 

12/22/03 

35.704 - 121.096 1.2e+17 8.64e+7   16 

M6.4 Nima-Gaize, Tibet 

1/9/08 

32.30 85.32 1.9e+17 6.765e+6 1.17e+18 6.765e+6 23 

Landslide 

Mantaro, Peru 

4/25/1974 

-12.6 -74.6 1.26e+15 240   25 

Mount St. Helens, WA 

5/18/1980 

46.214 -122.194 4e+13 100   26 

Glacial Slip 

Dall Glacier, AK 

9/2/99 

62.66 -152.43 4.027e+16 40   18 

Whillans Ice Stream, 

Antarctica 

-84.38 -158.84 1.1e+15 1500 4.9e+19 1500 24 
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