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ABSTRACT. Knowledge of ice flow and strain rate in the vicinity of the Taylor Dome (East Antarctica)
ice-core site enhances interpretation of the paleoclimate information from the ice core. We measured
surface ice motion by repeated optical and GPS surveys of a network of 253 markers. We developed a
robust data reduction method that uses least squares based on singular value decomposition, to
simultaneously calculate positions and velocities of these markers in a geocentric coordinate system.
Constrained by these surface velocities, we used a finite-element model to compute the modern ice
velocity field at depth. As the geometry of Taylor Dome appears to have been steady through the
Holocene, we used particle paths from a steady-state model to track ice particles to the ice core from
their points of origin on the surface. By removing the effects of path-dependent vertical strain, we
derived past accumulation rates at the origin points of those particle paths from measured layer
thicknesses in the ice core. Comparison with accumulation rates estimated from concentrations of 10Be
and SO4 in the core suggests that significant amounts of snow were lost by wind scouring during the Last
Glacial Maximum and at ��50 kyr BP.

INTRODUCTION
The shape, extent and internal structures of polar ice sheets
are influenced by climate, and evolve in response to climate
change. Glacial ice also contains impurities and isotopic
signatures that are determined by environmental factors.
Analysis of the geochemical content of polar ice recovered in
ice cores is a well-established way to provide highly resolved
temporal information about climate history (e.g. Dansgaard
and others, 1973; Alley and others, 1997; Mayewski and
others, 1997; Taylor and others, 2004). Ice-flow calculations
combined with detailed geophysical measurements made in
the vicinity of an ice-core site are fundamental glaciological
contributions to ice-core paleoclimate programs. For exam-
ple, before drilling begins, modelled depth–age relationships
allow identification of sites with acceptable maximum age or
satisfactory temporal resolution in a particular age range. The
accuracy of such determinations is limited by factors that
include inadequate knowledge of the flow field and the
accumulation rate history. Once various core properties have
been sampled, ice-flow models are important tools for
interpretation of the ice-core record. For example, Cuffey
and others (1995) used borehole temperature measurements
and an ice-flow model to calibrate the stable-isotope
‘thermometer’ and to infer the magnitude of surface
temperature change that occurred with the Wisconsin–
Holocene transition in central Greenland. To the extent that
the model accurately describes the controlling physics,
mismatches between measured and modelled depth–age
scales can reveal differences between the assumed and
actual accumulation history. Ice-flow models can calculate
the cumulative vertical strain experienced by layers during
burial and subsequent flow. The calculated fractional
thickness of any layer in the ice core relative to its initial
thickness (in ice equivalent units) is often called the ‘thinning
function’. Cutler and others (1995) and Cuffey and Clow
(1997) used modelled thinning functions to infer accumu-
lation rate histories from the measured spacing of annual
layers in the Greenland Ice Sheet Project 2 (GISP2) ice core.

An ice-core paleoclimate project was carried out at
Taylor Dome, East Antarctica, (Fig. 1) during the 1990s. In
1993/94, a 554m ice core to bedrock was recovered from a
site approximately 3 km from the ice divide. The resulting
paleoclimate record (Mayewski and others, 1996; Steig and
others, 1998, 2000; Grootes and others, 2001) spans a
complete ice-age cycle with good resolution, and extends
(though highly compressed) through two or more glacial
cycles. Prior to core recovery, geophysical and geochemical
surveys were performed to select an ice-core site (Grootes
and others, 1991, 1994; Waddington and others, 1991,
1994; Grootes and Steig, 1992; Morse and Waddington,
1992, 1993). These studies concluded that ice in the Taylor
Dome core probably fell as snow within 3 km of the core site
and the site has conditions that are conducive to good
preservation of geochemical records on decadal timescales
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Fig. 1. Map showing Antarctica (inset) and the location of Taylor
Dome in relation to the Ross Ice Shelf and McMurdo Dry Valleys.
The dot marking the primary Taylor Dome drill site is enclosed in a
box that shows the region of Figure 2.
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or longer. The mean annual surface temperature is below
–408C (Waddington and Morse, 1994), and the snow accu-
mulation rate ranges from �0.02 to 0.2ma–1 ice equivalent
across the dome (Morse and others, 1999). In addition to
these observations, ice thickness, surface topography and ice
temperature measurements were presented by Morse (1997).
In this paper, we report on ice motion measurements at
Taylor Dome and ice-flow models used to augment the
climatic interpretation of the ice-core measurements.

ICE MOTION MEASUREMENTS
Ice motion measurements provide strain-rate data needed to
constrain ice-flow models. We established a strain network
consisting of 253 marker poles (most of which are shown in
Fig. 2), to measure the surface pattern of ice deformation.
We first established a reconnaissance network that covered
a large area at coarse (nominally 2.5 km) spacing. We then
halved and quartered the grid spacing to improve the spatial
resolution in the vicinity of the selected ice-coring site and
along its flowline. Due to longitudinal stress coupling, flow
conditions as far as ten ice thicknesses upstream and
downstream can affect ice flow near the core site (e.g.
Raymond, 1983); our survey spanned this range. Each
marker was surveyed at least twice over six successive field

seasons. In 1990–94, the markers were surveyed by
traditional optical techniques, using a Wild T1000 theodo-
lite and DI5S electronic distance meter (EDM). In 1994/95
and 1995/96, we used Trimble 4000SST GPS (global
positioning system) receivers and Trimble GPSurvey
(WAVE 2.00b) post-processing software to measure the
position and motion of one central marker relative to two
nearby stationary (bedrock) benchmarks and another distant
GPS base station, and to measure positions of other markers
relative to that central marker.

Normally, even with modern GPS software, velocities are
found using the reduction-to-epoch approach, in which all
observations are interpolated or extrapolated to two or more
distinct times or epochs at which the marker positions are
calculated. The calculated positions are then differenced to
give velocities averaged over the time interval. Because of
the large scale of the Taylor Dome network, the limited time
for surveys in each field season and the evolving focus of the
motion survey, only portions of the entire net were surveyed
in any one field season. In addition, the surveyed portions
could not always be tied to control points until subsequent
years, and the exact combination of observations was not
repeated. Therefore, we could not use the reduction-to-
epoch approach. Instead, we developed a procedure that
uses all the survey observations to solve simultaneously for

Fig. 2. Ice surface elevation contours at 20m intervals from airborne surveys conducted during 1991/92 (Morse, 1997). Ice motion marker
poles are shown as dots. Fixed bedrock markers are near ðx, yÞ ¼ (20,0) and (48,10). The primary ice-core site is near (15,19) in the region of
densely spaced markers. The dashed box around the core-site region defines the region shown in Figure 3. An additional dense network of
markers was emplaced and surveyed in the vicinity of a secondary core site at ‘Taylor Mouth’, (43,11). Velocities of these markers are
analyzed by Waddington and others (in press).
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the positions and velocities of all the markers. This approach
was pioneered by Dahl-Jensen and others (1986). Using a
large set of redundant observations, they directly solved for a
set of parameters describing the trajectory of a single marker.
Our method, described in the Appendix, extends the
method by simultaneously finding parameters describing
the trajectories of many markers. Discrepancies among
redundant observations are balanced among the obser-
vations in a least-squares sense. Chadwell (1999) also
described a procedure that could find trajectory parameters
using a standard least-squares formulation. In a standard
least-squares formulation, the so-called normal equations
(e.g. Press and others, 1986, p. 23) are solved by finding the
inverse of a square matrix; however, this matrix can be
singular or near-singular, subjecting the solution to serious
error, or causing the solution to fail. Our approach is more
robust, because we solve for marker-trajectory parameters
using singular value decomposition (SVD) (e.g. Press and
others, 1986, p. 59) which consistently gives the best
solution in a least-squares minimization sense, while avoid-
ing singularities and round-off issues (see Equation (A6) in
the Appendix).

Morse (1997) gives a detailed discussion of the survey
data reduction. First we solved for the relative marker
positions in each of the seasons, to remove erroneous optical
observations identified as outliers of the statistical distri-
bution of discrepancies. The remaining observations from all
seasons were then combined to simultaneously determine
the marker trajectories. Refraction due to temperature
gradients in the near-surface atmosphere causes optically
surveyed targets to have an apparent vertical offset (e.g.
Paterson, 1955; Moffitt and Bouchard, 1982). We applied
small distance-dependent corrections to the observed ver-
tical angles (e.g. Rasmussen, 1986) to remove this effect (see
Equation (A13)). We used a value of –1.5� 10–8m–1 for the
factor f, found by minimizing the vertical angle discrep-
ancies in the 1990/91 dataset. Combining optical and GPS
observations is not straightforward. Vertical and horizontal
angles measured by a theodolite are naturally referenced to a
local curvilinear coordinate system that is tied to the local
geoid, whereas GPS positions are more naturally referenced
to a geocentric Cartesian coordinate system that is inde-
pendent of the Earth’s gravitational field. In order to simul-
taneously analyze data of both types, we first transformed all
optical data into the GPS geocentric Cartesian coordinate
system, approximating the direction of gravity by the normal
to the World Geodetic System 1984 (WGS84) ellipsoid.
Further details can be found in the Appendix.

The simultaneous reduction of survey observations
involves minimizing the observation discrepancies weighted
by their standard errors (see Equation (A2)). The standard
errors determine the relative importance of each observation
in forming the combined solution. Using a standard error
that was too small on a particular (possibly erroneous)
observation would yield a solution overly influenced by that
observation. In practice, we used observation standard error
values that were larger than typical bench-measured
instrument precisions, since, in addition to instrumental
imprecision, the standard errors must accommodate errors
associated with markers that wobble and settle in compact-
ing firn, as well as undetected observer errors. A single
standard error was assigned to each of the optical obser-
vation types: 7 arcsec for horizontal angles, 20 arcsec for
vertical angles and 25mm for EDM ranges. GPSurvey

software reports standard deviations for individual baseline
solutions as part of its output. To balance the GPS obser-
vation discrepancies with those of the optical observations
in the simultaneous solution, we uniformly scaled the
reported standard deviations so their horizontal and vertical
components had medians of 13 and 133mm, respectively.

The resulting velocities and expected errors (see Equa-
tion (A17)) for markers in the core-site subregion of the
Taylor Dome network are shown in Figure 3a. These were
obtained by combining all GPS and optical observations
collected over six successive field seasons. The errors are
very small relative to the velocities; the error ellipses are
barely visible over most of the grid. Those markers with
trajectories constrained by GPS observations (this includes
most markers except those with x > 22 km) have compara-
tively smaller parameter error estimates for two reasons.
First, the GPS data show higher precision over long baselines
than the optical survey data. Second, these markers were
observed over a longer time-span, thus reducing the signal-
to-noise ratio for their trajectory parameters. To a good
approximation, the flow direction follows the surface slope.
Ice velocities in the surveyed region are generally <1ma–1,
except on the south slope where accumulation rate is high
and the ice flows into a deep subglacial channel. The strain-
rate pattern in Figure 3b shows, predominantly, extension in
the direction of flow, and relatively minor strain rates
transverse to the flow. This means we can assume plane
strain when modelling the flow, particularly between the
divide and the core site.

ICE-FLOW MODELLING
The measured surface velocity field can be used both to
identify flowlines for plane-strain modelling and to constrain
the calculated velocity. The ice-core site at Taylor Dome is
3 km south of the flow divide. Ice in the top of the core was
deposited at the core site; ice deeper in the core originated
closer to the divide. Since the cross-flow divergence along
the flowline between the flow divide and the core site is
small (see Fig. 3b), the flow can be treated as approximately
two dimensional. Waddington and others (1993) used the
two-dimensional, plane-strain, flow model developed by
Raymond (1983) to predict the ice-core depth–age scale at
Taylor Dome prior to drilling the core. Here we improve on
this earlier ice-flow model by using higher-resolution pro-
files of surface and bed topography (Morse, 1997), measured
accumulation rates (Morse and others, 1999) and finer grid
resolution. The modelling presented here was also used to
support the analyses of Morse and others (1998) and Steig
and others (2000), although few details were presented in
those papers.

The surface and bed topography measured along the path
of the (approximately) flow-parallel radar profile shown by
the solid curve in Figure 3 define the model domain. The
radar transect was diverted by several hundred meters to
avoid radar interference from the core site (star in Fig. 3). As
a result, the profile does not closely follow the ice-flow
direction 2 km downstream from the core site. However,
because lateral gradients in surface and bedrock slope are
small near the core site, that offset section closely approxi-
mates the geometry along the dotted transect. The radar
dataset can also represent the flowline through that dotted
section, which also passes close to the core site. We
discretize the cross-section using increased vertical node
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density with depth to accommodate strain-rate gradients
near the bed, and increased horizontal node density, where
necessary, to resolve steep bed topography and associated
velocity gradients (Fig. 4a). The bed profile was smoothed to
avoid node-to-node roughness in the velocity fields, and the
overall ice thickness from radar measurements was reduced

by 22m to account for the firn column density being less
than that of ice (i.e. the model is in ‘ice equivalent’ thickness
units). The model puts the surface topographic crest and the
flow divide at � ¼ 19 km (Fig. 4), consistent with the ice
motion measurements. The modelled cross-section extends
more than 15 km in each direction from the divide, to

Fig. 3. Surface ice motion in the region of the core (see box in Fig. 2) with 10m surface elevation contours. The star marks the core site and
the heavy solid line is the path of the ground-based radar profile used to define the domain for the ice-flow model. Surface and bed
topography closely resemble those along the flowline shown by the dashed transect. (a) Ice velocity from a combination of GPS and optical
survey data. Velocity uncertainties are indicated by ellipses at the downstream end of the velocity vectors. A 1ma–1 scale bar with a 10%
error ellipse is shown. (b) The strain rates calculated from the velocity field shown in (a). A scale bar for a strain rate of 3� 10–4 a–1 is shown.
Outward arrows indicate extension.
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reduce the influence that inexact boundary conditions at the
ends of the model domain might exert on the flow solution
near the core site.

The model uses a Glen-type, isotropic, non-linear flow
law of the form

_"ij ¼ EA�n�1�ij, ð1Þ
where _"ij is strain rate, � ij is deviatoric stress, and its second
tensor invariant, � , is the effective stress. We adopt the
value 3 for the exponent n, and 4.9� 10–25 s–1 Pa–3 (at –108C)
for the softness parameter A which has an Arrhenius tem-
perature dependence and an activation energy of 60 kJmol–1

(Paterson, 1994). E is a scalar enhancement constant that can
be adjusted to account for other factors influencing the
stiffness of the ice. We treat E as uniform over the model
domain, although it should depend on spatially varying ice
properties.

The temperature field at Taylor Dome is only weakly
coupled to ice flow because of the low accumulation rate
and associated slow rate of ice flow. This is evident in the
measured borehole temperature profile that varies nearly
linearly with depth (Clow and Waddington, 1996; Morse,
1997). We estimate the temperature field along the modelled
profile by extrapolating the measured surface temperature
downward with the same depth gradient as that observed in
the borehole. This simple assumption gives temperatures that
fall within 28C of the three-dimensional finite-difference
temperature modelling results of Morse (1997).

We apply a combination of velocity and stress boundary
conditions. The ice base is frozen to the bed and its velocity
is assumed to be zero. The upper surface has zero traction.
On the lateral boundaries, following Reeh (1998), we
specify the horizontal component of velocity by a profile
obtained from an integration of the surface-parallel strain
rate over depth, applying a temperature-dependent softness
parameter A. This approach is sometimes termed the
‘shallow-ice approximation’. The horizontal velocity at
these boundaries is scaled so the outward flux balances
the integrated upstream accumulation rate. The spatial
pattern of accumulation rate shown in Figure 4b was
derived from the depth of a continuous, shallow radar layer
calibrated to �-radioactivity accumulation rate measure-
ments (Morse and others, 1999). The finite-element model
calculates an internal velocity field and the upper, free
surface is allowed to evolve until the surface topography and
flow reach a steady state in balance with the prescribed
accumulation rate.

We use the flow-law rate enhancement parameter E as a
convenient, non-dimensional model ‘tuning’ parameter. Our
lateral boundary conditions prevent a change in average ice
thickness in the computational domain. Therefore, for a
given accumulation rate, softer ice produces an ice sheet
with lower surface slopes, since less stress is needed to drive
the required mass flux. Using a value of 5 for E made the
modelled steady-state surface geometry match the measured
surface elevation profile as closely as possible in the region
between the flow divide and the core site, while also
matching the measured surface velocity field (Fig. 4c).
Although values of E > 1 are typical to account for dust-
laden, hence soft, glacial ice in Greenland (e.g. Hvidberg
and others, 1997), the value E ¼ 5 for Taylor Dome ice
probably accounts for an enhanced rate of surface-parallel
shear deformation due to the moderately developed, ver-
tically aligned c-axis ice fabric observed in the ice core by

L. Wilen (personal communication, 1998). A scalar E cannot
also represent the increased stiffness for vertical thinning and
longitudinal extension associated with a vertically aligned
anisotropic c-axis fabric. However, at more than one ice
thickness from the divide, the shear deformation is dominant.

We expect that the modelled velocity and strain-rate
patterns are good representations of the flow leading to
the ice-core site. Since the surface fit was biased toward

Fig. 4. (a) Finite-element mesh used to model ice flow in vertical
section through the core site at � ¼ 21 km. Measured along the path
in Figure 3, this section extends from � ¼ 3 km (coinciding with the
right margin of Fig. 3) to � ¼ 32 km (corresponding to the left
margin of Fig. 3). The upper boundary is the best match to the
measured surface topography in the vicinity of the ice core,
following the adjustment procedure described in the text. (b) Ice
equivalent accumulation rate used for model calculations, derived
from the depth to a shallow, continuous radar reflector calibrated
by gross �-radioactivity measurements. (c) Comparison of meas-
ured (+) and calculated (solid curve) horizontal component of
surface flow along the profile. (d) Calculated particle trajectories
that intersect the ice core (indicated by the vertical line) at 50m
depth intervals.
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matching the topography in the divide region, including the
core site, the solution represents flow conditions farther from
the divide less accurately. For example, north of the divide
(to the right in Fig. 3a) the radar transect diverges from the
flowline, and near � ¼ 27 km (x ¼ 10, y ¼ 19 km in Fig. 3),
ice flows over a sharp bedrock pinnacle. The model requires
a more pronounced surface undulation over this feature than
is observed. This discrepancy arises from the plane-strain
restriction of the model; the actual flow probably goes
around as well as over the pinnacle. However, these
limitations have little impact on the calculated flow to the
core site.

MODELLING RESULTS
We can now use the modelled flow field to augment
paleoclimate interpretations of the ice-core data. Using a
thinning function, as described below, measured thicknesses
of layer packets of known temporal duration can provide
estimates of past accumulation rates after the expected
thinning due to ice flow has been taken into account.
However, spatial gradients in accumulation rate can com-
plicate this analysis. Therefore, an ultimate goal is to separate
known spatial patterns of accumulation from temporal
accumulation rate changes that represent changing climate.
Our goal here is to infer the accumulation rate history at the
locus of origin points of particle paths that end in the ice core
today, because this history relates geochemical tracer
concentrations in the core to fluxes from the atmosphere.

Spatial gradient in accumulation rate
Field measurements (e.g. Fig. 4b; see also Morse and others,
1999) show that the modern accumulation rate is approxi-
mately 20% greater at the core site (� ¼ 21 km) than at the
divide (� ¼ 19 km). This pattern is controlled by the surface
topography; the core site is on the upslope side of the dome
for modern moisture-bearing storm trajectories (Morse and
others, 1999). From the southward dip of internal layers,
Morse and others (1998) concluded that this pattern (of
higher accumulation to the south) persisted over most of the
Holocene, but was reversed during the Last Glacial Max-
imum (LGM).

If the flow divide has been stable, then ice recovered in
the core travelled along the paths shown in Figure 4d. Ice at
progressively greater depths in the core originated from
surface sites progressively closer to the divide, where today
the accumulation rate is less than at the core site. Figure 5a
shows the scaling factor that relates the accumulation rate at
the deposition site to the contemporaneous accumulation
rate at the ice-core site. The scaling is derived by mapping
the relative accumulation rate at the surface onto the ice
core, following the particle paths in Figure 4d. This relation-
ship becomes uncertain below approximately 330m, i.e.
prior to establishment of the modern (Holocene) gradient. At
earlier times when the accumulation rate gradient was
reversed, the scaling factor could exceed unity. Future work
to infer regional Holocene climate change from Taylor
Dome core properties must take into account this 10–15%
spatial variation in accumulation rate associated with ice-
source location. For analysis of the record prior to the LGM,
the ice-source location is very close to the divide and re-
scaling to account for the spatial gradient is unnecessary.

Thinning due to ice flow
Since ice is incompressible, horizontal extensional flow at
divides is accommodated by vertical thinning of layers. With
increasing depth, the ice has undergone successively greater
total vertical compressive strain, and any climatic record
that may be recorded in the ice column becomes vertically
compressed. Using the modelled velocity field, we calculate
the depth profile of total vertical strain experienced by ice
within the core by tracking the total vertical shortening of
small ice volumes as they move along the particle
trajectories that lead to the core site. This gives the relative
layer thickness curve, or thinning function, �ð�c, zÞ, shown
in Figure 5b for the ice-core site at � ¼ �c. In steady state, the
thickness of an annual layer at depth z at a core site �c is the
product of �ð�c, zÞ and the accumulation rate at the origin
point �0ð�c, zÞ of the particle trajectory that intersects the
core at �c and depth z:

� �c, zð Þ ¼ � �c, zð Þ _b �0 �c, zð Þ½ �: ð2Þ

An ice-core depth–age relation can then be calculated by
integrating annual-layer thicknesses from the surface to
depth z in the core,

Age �c, zð Þ ¼
Z z

0

1
� �c, �ð Þ d�: ð3Þ

The dashed curve in Figure 6 gives the ice-core depth–age
relation resulting from temporally constant accumulation
rate, spatially distributed as shown in Figure 4b, and steady
ice flow that follows the trajectories in Figure 4d.

Fig. 5. (a) Accumulation rate at site of deposition, relative to con-
temporaneous accumulation rate at the core site, for ice recovered
at depth in the core. The gray region indicates uncertainty in
relationship over the 325–450m depth interval corresponding to
the period of reversed accumulation rate gradient (Morse and
others, 1998). (b) Thinning function, �(z), gives layer thickness
relative to thickness at time of deposition, as a function of depth in
the Taylor Dome ice core.
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An improved Taylor Dome accumulation rate history
An accumulation rate history can be inferred from the
depth–age relation of an ice core, when corrections can be
made for the amount of thinning experienced by layers at
each depth due to ice flow. Accumulation histories have
been previously derived for Taylor Dome (Morse and others,
1998; Steig and others, 2000) using this approach. Here we
update those results using the improved ice-core depth–age
scale of Grootes and others (2001) that was obtained by
correlating the stable-isotope record with that of the Vostok
(East Antarctica) ice core. This depth–age scale is consistent
with earlier Taylor Dome depth–age scales of Brook and
others (2000) from occluded gas concentrations correlated
with the annual-layer-counted GISP2 ice core, and of Steig
and others (1998, 2000) from combined stable-isotope, gas-
concentration and 10Be measurements. However, the
Grootes and others (2001) depth–age scale provides greater
temporal resolution. Control points for each of these
determinations are compared with the steady-state model
prediction in Figure 6.

The discrepancy between the modelled and observed
depth–age scales (Fig. 6) below 350m leads us to reconsider
the assumptions of the model. Several factors not included
in the physics of the flow model, such as evolving ice c-axis
fabric, and time-varying basal or lateral boundary condi-
tions, could have influenced the flow at the core site.
However, temporal variations of the accumulation rate have
the most direct bearing on the vertical velocity at or near an
ice divide. Morse (1997) showed that the spatial pattern of
ice flow at Taylor Dome has been stable for at least the last
104 years. Morse (1997) also concluded that the thickness
and slope of Taylor Dome during the last glaciation were
similar to today because the tendency for the ice sheet to
thin in response to the lower accumulation rate was
counteracted by its tendency to thicken due to colder, and
therefore more viscous, ice. Characteristic response times
are �d ¼ H= _b for dynamic thickness changes and � th ¼ H2/�
for thermal changes, where H � 550m is a characteristic ice
thickness, _b � 0.05ma–1 is a characteristic accumulation
rate and � � 10–6m2 s–1 is a characteristic thermal diffusiv-
ity. Because these times are both of the same order as the
time required for major climate changes (10 kyr), ice-sheet
response should not lag climate change significantly. In
addition, the underlying high topography has a stabilizing
influence on the divide position. It is therefore reasonable to
assume that Taylor Dome was always close to steady state, in
balance with its changing climate conditions (accumulation
rate and temperature). Furthermore, because the topography
did not change, the spatial pattern of flow did not change
and ice continued to move along the modern streamlines at
speeds that varied with the temporal changes in accumu-
lation rate and ice temperature. The thinning profile, �ð�, zÞ,
is determined by the spatial pattern of ice flow; in the
following analysis we assume that �ð�, zÞ is independent of
the magnitude of the ice-velocity field. If the accumulation
rate varied through time, but in such a way that the ice-sheet
surface and the particle paths were unaffected, then the
annual-layer thicknesses today are given by

� �, zð Þ ¼ � �, zð Þ _b �0 �, zð Þ, Age �, zð Þ½ � , ð4Þ
where the accumulation rate at the deposition site, �0, can
vary with time. This expression and Equation (3) can be used
to calculate an accumulation rate history consistent with an

independently determined depth–age scale (e.g. using dates
derived by correlating geochemical signatures with those in
a well-dated ice core). We constructed a trial function of
accumulation rate as a function of depth, converted it to a
function of age using the known depth–age scale, then
evaluated the depth–age scale it implied through Equa-
tion (3), and compared that depth–age scale to the known
ages. Iterating, we adjusted the accumulation history until
an acceptable fit was obtained with the known ages. Earlier
versions of accumulation rate histories inferred by this
procedure were given in Morse and others (1998) and Steig
and others (2000) based on the depth–age estimates
available at the time. We now use the updated depth–age
determinations of Grootes and others (2001) to improve on
the earlier accumulation history estimates. Choosing a
piecewise-constant form to be compatible with the Grootes
and others (2001) method of identifying age correlation
points at climate transitions, we compute the accumulation
rate history (shown as the bold line in Fig. 7b) that produces
the depth–age scale shown by the solid curve in Figure 6.
This history has not been re-scaled with the spatial gradient
of accumulation presented in the earlier section. It repre-
sents conditions at the time-varying site of snow deposition,
rather than at a fixed point in space, so it is directly
comparable with geochemical records from the core.

Fig. 6. Depth–age scales for the Taylor Dome ice core. Age control
points were established from: (1) correlation of the d18O profile with
the Vostok (East Antarctica) dD profile (Grootes and others, 2001);
(2) correlation of bubble gas profiles with the GISP2 ice core (Steig
and others, 1998; Brook and others, 2000); and (3) the depth of two
prominent 10Be concentration peaks recognized in the GISP2 and
Vostok cores (Steig, 1996). If we assume that the modern spatial
patterns of ice flow and accumulation rate have been steady through
time, we calculate a depth–age scale (dashed curve) that diverges
from the observed ages below 350m. When those steady spatial
patterns of flow and accumulation rate are scaled through time by
the accumulation rate history shown in Figure 7b, we calculate a
depth–age profile (solid curve) that fits the observed ages.
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The accumulation rate history shows a strong correlation
with the climate inferred from the d18O profile (Fig. 7a);
warmer periods are generally associated with higher
accumulation. The departure from this trend before approxi-
mately 100 kyr BP may result from decreasing applicability of
the thinning function modelled for a steady-state ice-sheet
geometry in the lowest 10% of the ice column, although age
determination errors may also contribute. Notable are the
very low modelled accumulation rate values for the LGM
period (approximately 15–30 kyr BP) and around 50 kyr BP,
which corresponds with a ‘warm’ interval inferred from the
d18O record.

When a geochemical tracer is deposited onto the ice
sheet at a uniform rate (i.e. constant flux) it is diluted by
snowfall, so its measured concentration in the ice yields an
estimate of snow accumulation rate. Figure 7b includes two
additional estimates of snow accumulation, each based on
tracer dilution and thus each independent of the modelled
accumulation rate history. (However, they follow similar
deposition pathways, so they may not be independent of
each other.) First, Steig and others (2000) inferred an
accumulation rate history from the concentration of 10Be in
the ice core; we reproduce that record in Figure 7b. Second,
we derived an accumulation rate history from the concen-
tration of non-sea-salt sulfate. The latter is justified by

measurements on the Vostok ice core by Legrand (1995),
which suggest that variations in atmospheric loading (and
hence deposition rate) of non-sea-salt sulfate are small over
the glacial–interglacial transition, while Steig and others
(2000) showed that concentrations of 10Be and non-sea-salt
sulfate tracked each other closely at Taylor Dome. The
general agreement of these three accumulation rate histories
gives support for the modelled history. Notably, both the
10Be- and SO4-derived profiles show higher snow accumu-
lation values than the modelled result during the LGM and
50 kyr BP periods. The species concentration is compara-
tively low, considering such low snow-deposition rates and
assuming constant deposition flux for these species. We
suggest that this signature is indicative of post-depositional
wind scouring, which removed the trace species along with
a fraction of the surface snow. In effect, the geochemical
tracers record the total precipitation from the atmosphere,
while the ice-dynamics method infers the net accumulation,
after wind has blown away some of the deposited snow.
The ratio of the two independent estimates allows the
fraction lost to be estimated. Figure 7b suggests that wind
scouring may still be active, but the fraction of snow
removed has been much smaller in the Holocene than at
the LGM.

CONCLUSIONS
Measurements of surface topography and ice motion are
essential for constraining ice-flow model calculations which,
in turn, provide information about ice flow at depth. Inferring
the ice motion at the surface from a suite of observations is
not always straightforward. When various parts of the
network must be surveyed over extended and possibly non-
overlapping time periods, reduction-to-epoch methods
cannot always be applied. Here we use a least-squares
minimization procedure to simultaneously determine marker
positions and velocities from an overdetermined set of survey
observations. Using a geocentric coordinate system permits
assimilation of both optical and GPS observations. Robust
solution of the minimization is obtained by singular value
decomposition of the matrix relating observations to marker
positions and velocities.

Ice-flow modelling at Taylor Dome is simplified by its
near-planar configuration in the vicinity of the core site,
and by its relatively weak thermomechanical coupling.
Using our numerical ice-flow model, we identify stream-
lines and the associated source locations for ice at depth
in the core. Based on other considerations (see Morse,
1997) we treat these streamlines as invariant. By account-
ing for the total strain experienced by ice at depth in the
ice core, we calculate an accumulation rate history from
the thickness of datable layer packets in the ice core whose
time-span is known from geochemical analyses. This is the
accumulation history at the point of origin on the surface
for ice at each depth. Although these origin points change
through time, the accumulation record we obtain is
directly comparable to geochemical climate proxies in
the ice core, which originated along the same path over
the ice-sheet surface through time. Because this accumu-
lation rate history is independent of geochemical tracer
concentrations, it can be used to evaluate tracer de-
position-rate assumptions and/or post-depositional snow-
erosion effects.

Fig. 7. (a) Oxygen isotope profile from the Taylor Dome ice core
indicating major climatic events over the past 150 kyr, adapted from
Grootes and others (2001). The thick solid curve in (b) is the
piecewise-constant accumulation rate history that is consistent with
a combination of the Grootes and others (2001) age determinations
and the modelled ice dynamics at the site. We compare our
accumulation rates with histories derived from the concentrations
of 10Be (crosses) and SO4 (thin solid line) following the method-
ology of Steig and others (2000). We used dry-deposition fluxes of
1.2� 109 atomsm–2 a–1 and 2.9� 10–6 kgm–2 a–1, respectively. Wet
deposition is negligible at this site. Differences between the two
methods at 15–30 kyr BP and around 50 kyr BP may reflect post-
depositional loss of snow by wind scouring.

Morse and others: Ice deformation in the vicinity of the ice-core site at Taylor Dome456



ACKNOWLEDGEMENTS
We thank H. Conway, T. Gades, R. Hawley and all those
who helped us to acquire the field data. We are grateful to
R. Frolich for sharing ideas and experience with ice-motion
surveys at the British Antarctic Survey and to M. Truffer and
an anonymous referee for careful reviews of the manuscript.
Antarctic Support Associates provided field logistical sup-
port and the University Navstar Consortium (UNAVCO)
provided GPS support. This research was supported by
grants OPP-8619265, 8915924, 9221261, 9421644 and
0636997 from the US National Science Foundation.

REFERENCES
Alley, R.B. and 11 others. 1997. Visual-stratigraphic dating of the

GISP2 ice core: basis, reproducibility, and application.
J. Geophys. Res., 102(C12), 26,367–26,382.

Brook, E.J., S. Harder, J. Severinghaus, E.J. Steig and C.M. Sucher.
2000. On the origin and timing of rapid changes in atmospheric
methane during the last glacial period. Global Biogeochem.
Cycles, 14(2), 559–572.

Chadwell, C.D. 1999. Reliability analysis for design of stake
networks to measure glacier surface velocity. J. Glaciol.,
45(149), 154–164.

Clow, G.D. and E.D. Waddington. 1996. Acquisition of borehole
temperature measurements from Taylor Dome and the dry
valleys for paleoclimate reconstruction. Antarct. J. US, 31(2),
71–72.

Cuffey, K.M. and G.D. Clow. 1997. Temperature, accumulation,
and ice sheet elevation in central Greenland through the last
deglacial transition. J. Geophys. Res., 102(C12), 26,383–26,396.

Cuffey, K.M., G.D. Clow, R.B. Alley, M. Stuiver, E.D. Waddington
and R.W. Saltus. 1995. Large Arctic temperature change at the
Wisconsin–Holocene glacial transition. Science, 270(5235),
455–458.

Cutler, N.N., C.F. Raymond, E.D. Waddington, D.A. Meese and
R.B. Alley. 1995. The effect of ice-sheet thickness change on the
accumulation history inferred from GISP2 layer thicknesses.
Ann. Glaciol., 21, 26–32.

Dahl-Jensen, D., J.P. Steffensen and S.J. Johnsen. 1986. Least
squares method used in reduction of data from theodolite
measurements on fast moving glaciers. Ann. Glaciol., 8, 42–46.

Dansgaard, W., S.J. Johnsen, H.B. Clausen and N. Gundestrup.
1973. Stable isotope glaciology. Medd. Grønl., 197(2), 1–53.

Grootes, P.M. and E.J. Steig. 1992. Taylor Dome ice-core study.
Antarct. J. US, 27(5), 57–58.

Grootes, P.M., E.J. Steig and C. Massey. 1991. ‘Taylor ice-dome’
study: reconnaissance 1990–1991. Antarct. J. US, 26(5), 79–81.

Grootes, P.M., E.J. Steig and M. Stuiver. 1994. Taylor ice dome study
1993–1994: an ice core to bedrock. Antarct. J. US, 29(5), 79–81.

Grootes, P.M., E.J. Steig, M. Stuiver, E.D. Waddington, D.L. Morse
and M.J. Nadeau. 2001. The Taylor Dome Antarctic d18O record
and globally synchronous changes in climate. Quat. Res., 56(3),
289–298.

Hvidberg, C.S., D. Dahl-Jensen and E.D. Waddington. 1997. Ice
flow between the GRIP and GISP2 boreholes in central
Greenland. J. Geophys. Res., 102(C12), 26,851–26,859.

Legrand, M. 1995. Sulphur-derived species in polar ice: a review. In
Delmas, R.J., ed. Ice core studies of global biogeochemical
cycles. Berlin, Springer-Verlag, 91–119. (NATO ASI Series I:
Global Environmental Change 30.)

Mayewski, P.A. and 13 others. 1996. Climate change during the last
deglaciation in Antarctica. Science, 272(5268), 1636–1638.

Mayewski, P.A. and 6 others. 1997. Major features and forcing of
high-latitude Northern Hemisphere atmospheric circulation
using a 110,000-year-long glaciochemical series. J. Geophys.
Res., 102(C12), 26,345–26,366.

Moffitt, F.H. and H. Bouchard. 1982. Surveying. Seventh edition.
Scranton, PA, Harper and Row.

Morse, D.L. 1997. Glacier geophysics at Taylor Dome, Antarctica.
(PhD thesis, University of Washington.)

Morse, D.L. and E.D. Waddington. 1992. Glacier geophysical
studies for an ice-core site at Taylor Dome: year two. Antarct.
J. US, 27(5), 59–61.

Morse, D.L. and E.D. Waddington. 1993. Glacier geophysical
studies at Taylor Dome: year three. Antarct. J. US, 28(5), 67–69.

Morse, D.L., E.D. Waddington and E.J. Steig. 1998. Ice age storm
trajectories inferred from radar stratigraphy at Taylor Dome,
Antarctica. Geophys. Res. Lett., 25(17), 3383–3386.

Morse, D.L. and 7 others. 1999. Accumulation rate measurements
at Taylor Dome, East Antarctica: techniques and strategies for
mass balance measurements in polar environments. Geogr.
Ann., 81A(4), 683–694.

Parker, R.L. 1994. Geophysical inverse theory. Princeton, NJ,
Princeton University Press.

Paterson, W.S.B. 1955. Atmospheric refraction above the Inland Ice
in north Greenland. Bull. Géod., 38, 42–54.
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APPENDIX
SURVEY ANALYSIS WITH MOVING MARKERS

Problem description
A geodetic survey measures geometric relationships be-
tween selected markers in three-dimensional space. In
practice, these measurements usually involve the relative
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positions of reference markers (e.g. optical survey targets
and reflecting prisms) and instruments (e.g. theodolites and
GPS antennas), each positioned at a known height above a
site. The measurements may be: the horizontal angle formed
by two markers and an instrument; the difference in zenith
angle between a marker and an instrument, or the distance
between them; any of the three coordinates of an instru-
ment, or differences in any of the coordinates between two
instruments. The first three are typical of optical surveying,
and the last two are typical of satellite surveying (GPS). We
use poles as markers for our survey sites so they are
observable from a distance. It is specifically the locations of
intersection of the poles with the snow surface that are the
site coordinates that we seek. In the analysis there is no
distinction between markers and instruments; in the follow-
ing we refer to them collectively as markers.

A well-constrained survey includes redundancy (i.e.
multiple measurements of markers) to reduce the uncer-
tainty in the overall result. Often ice velocity determination
is the objective, so surveys of identifiable markers are
performed over time. The essence of our method to
simultaneously analyze such datasets is the estimation of
trajectories of the markers such that calculated geometric
quantities (distances, angles, etc.) derived from positions
along those trajectories agree as closely as possible in a
weighted least-squares sense with field measurements of
those quantities.

We assume that each marker moves at constant speed
along a straight path according to six trajectory parameters
~X ¼ ðX,Y ,Z Þ and ~U ¼ ðU,V ,W Þ, in which ðX,Y ,Z Þ are its
initial position coordinates and ðU,V ,W Þ are its velocity
components. The position of a marker at time t is

~xðtÞ ¼ ~X þ ðt � T Þ ~U, ðA1Þ
where T is the time when it is at ~X. In general, the reference
time can differ from marker to marker, but to simplify the
formulation we assign the same T to each of them. The
method could easily be extended to nine trajectory par-
ameters by incorporating accelerations in each of the three
directions, but Equation (A1) is adequate for small t – T in
typical ice-sheet settings.

Solution procedure
For Npts markers (‘pts’ to indicate surveyed ‘points’), some of
the 6�Npts trajectory parameters might be specified, such as
a known position for a stationary marker. The remaining Nadj

free parameters are determined as the solution of a non-
linear least-squares minimization problem, having as its data
Nobs > Nadj measurements of the geometric quantities
relating the markers. The quantity to be minimized is the
root-mean-square discrepancy R given by

R2 ¼ 1
Nobs

XNobs

I¼1

Qo
I �QI

�I

� �2

ðA2Þ

in whichQo
I is the measured quantity, and �I is the estimated

standard error in Qo
I . The corresponding quantity QI is

calculated from the trajectory parameters Pm of the markers
involved in the measurement. The problem is linearized by
first writing the measurement discrepancy in the form

QI þ�QI �Qo
I

�I
¼ 0 : ðA3Þ

The increment �QI is the amount QI would change if the

Nadj parameters Pm were changed by �Pm. A first-order
Taylor series expansion yields

�QI ¼
XNadj

m¼1

@QI

@Pm
�Pm : ðA4Þ

Here Pm is any of the parameters X,Y, . . . ,W for any location,
and �Pm is any of �X,�Y, . . . ,�W. When Equation (A4) is
substituted into Equation (A3), it can be rearranged as

XNadj

m¼1

1
�I

@QI

@Pm
�Pm ¼ Qo

I �QI

�I
, ðA5Þ

which expresses how discrepancies can be reduced or
eliminated by suitable changes �Pm in the parameters.
There are Nobs equations of the form of Equation (A5), for
l ¼ 1, . . . ,Nobs. These equations make up an over-
determined system of linear equations

A~p ¼ ~d ðA6Þ
in which: (1) row I of the Nobs�Nadj matrix A contains the
derivatives @QI /@Pm scaled by �l ; (2) the Nadj elements of
vector ~p are adjustments �PI to the adjustable param-
eters ~P ; and (3) the weighted measurement discrepancy
ðQo

I �QIÞ=�I is element I of the vector ~d which has Nobs

elements. The type of the measurement Qo
I (angle, distance,

etc.) determines how QI is expressed in terms of the
trajectory parameters.

To form the traditional normal equations for a least-
squares solution, the lefthand side of Equation (A5) would be
substituted into the righthand side of Equation (A2), then the
partial derivative of R2 with respect to changes �Pm in each
parameter Pm would be set to zero. A standard least-squares
solution ~p can be found by solving the Nadj normal
equations in Nadj unknowns. However, the solution of the
normal equations requires finding the inverse of matrix ATA,
which can be singular or near-singular. Instead of forming
the normal equations, we solve the overdetermined system
of equations (A6) directly, using the SVD method (e.g. Press
and others, 1986, p. 59) to find a pseudo-inverse for
matrix A. (In our case, we used the SQRLSS routine, which
is part of the US National Institute of Standards and
Technology Core Math Library (CMLIB).) When a stable
solution to the normal equations exists, the SVD approach
yields the same least-squares solution. When the normal
equations yield a near-singular matrix ATA, SVD can still
produce the best solution in a strict least-squares minimiza-
tion sense.

Using SVD, the non-square matrix A can be written as a
product of three other matrices,

A ¼ UWVT, ðA7Þ
where the columns of the Nobs�Nobs matrix U are
orthonormal vectors spanning the data space, and the
columns of the Nadj�Nadj matrix V are orthonormal vectors
spanning the parameter space. The Nobs�Nadj matrix W is
zero everywhere except along the diagonal of the upper Nadj

rows. These non-negative elements wnn arranged in decreas-
ing magnitude along the diagonal, are called the singular
values, which are also the square roots of the eigenvalues
of ATA. The pseudo-inverse of A, which we will call B, is
given by

B ¼ VŴU
T
: ðA8Þ
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The Nadj�Nobs matrix Ŵ is also non-zero only on the
diagonal of its first Nadj columns. The nth diagonal element
is 1/wnn where wnn is the corresponding singular value in
matrix W. When the ratio of the smallest to largest singular
values approaches machine precision, the smallest singular
values wnn produce large and meaningless values for 1/wnn

in Ŵ. SVD algorithms such as SQRLSS routinely replace
large values of 1/wnn by zero to eliminate problems caused
by near-singularity and machine round-off.

In general, the Nobs standard errors �I differ from obser-
vation to observation, and they remain as irreducible factors
in the normal equations formed from Equation (A2). While �I
appears only as a weighting factor on the I th equation in the
system of equations (A6), nevertheless the relative weights on
thoseNobs equations do matter in over-determined systems. If
�I is increased, the weight given to the I th equation (and
therefore to the I th observation) in Equation (A6) is
diminished in the SVD least-squares solution.

Because the elements of matrix A and vector ~d depend
on ~P , as will be detailed below, the system of equations (A6)
cannot be solved in a single pass. The adjustable param-
eters ~P that minimize R2 are found by iteration.

Formulation of measurement types
Although the minimization is found in terms of adjustable
parameters, ~P , the QI are more easily expressed in terms of
the coordinates ðxi , yi, ziÞ of the markers at the time of their
measurement. Application of the chain rule gives the partial
derivatives of theQI with respect to the trajectory parameters
to form the @QI /@Pm term in Equation (A6).

Coordinate and coordinate-difference measurements
The calculated coordinates of an instrument at site i are
~xi ¼ ðxi , yi, ziÞ þ~hi where ~hi relates the instrument location
to the marker location, ðxi , yi , ziÞ, and is assumed to be
known exactly. Differentiation with respect to the site
coordinates gives �~xi ¼ ð�xi, �yi , �ziÞ which, in terms of
the underlying trajectory parameters, becomes

�~xi ¼ �~Xi þ t � Tð Þ �~Ui: ðA9Þ
The row of matrix A corresponding to this measurement
contains six non-zero elements 1/�I for the three com-
ponents of ~Xi and (t – T ) /�I for the three components of ~Ui.

Similarly, a coordinate difference between markers at
sites i and j at time t, for example the difference in the
y coordinate 	yji ¼ yi – yj, becomes

�	yji ¼ �Yi þ t � Tð Þ�Vi ��Yj � t � Tð Þ�Vj : ðA10Þ

Distance measurements
The distance between a marker at site j and another at site i
is the length of the coordinate-difference vector ~Dji between
them:

Sji ¼ ~Dji

��� ��� ¼ ~xi �~xj
�� ��: ðA11Þ

When differentiated this gives, in terms of site coordinates,

�Sji ¼
xi � xj
Sji

�xi ��xj
� � þ yi � yj

Sji
�yi ��yj
� �

þ zi � zj
Sji

�zi ��zj
� �

: ðA12Þ

In terms of trajectory parameters we apply Equation (A9) to
�xi and other coordinate adjustments.

Vertical angle measurements
A vertical angle 
ji is measured from the local zenith at site i
to the marker at site j. Rearranging the expression for the
scalar product of the unit zenith vector n̂j and the coordinate-

difference vector ~Dji gives the cosine of the angle between
them

cos
ji ¼
n̂j � ~Dji �f Sji sin
ji

� �2n̂i

h i
Sji

: ðA13Þ

The f term corrects for the Earth’s curvature and for
atmospheric refraction (e.g. Moffitt and Bouchard, 1982).
A straightforward chain rule application gives the differential
of 
ji with respect to the underlying site i and j trajectory
parameters.

Horizontal angle measurements
For markers at sites i and k observed from site j, projections
of the coordinate-difference vectors ~Dji and ~Djk onto the
local horizontal plane are given by

~eji ¼ n̂j � ~Dji

� �
� n̂j ¼ ~Dji � n̂j � ~Dji

� �
n̂j

and
~ejk ¼ n̂j � ~Djk

� �
� n̂j ¼ ~Djk � n̂j � ~Djk

� �
n̂j :

The horizontal angle �jki observed by a theodolite is the
angle between these two vectors. Their scalar and vector
products yield two expressions for �jki

cos�jki ¼
~ejk �~eji
Sjk Sji

ðA14Þ

and

sin�jki ¼
n̂j � ~ejk �~eji

� �
Sjk Sji

, ðA15Þ

which are readily differentiated to express ��jki in terms of
the underlying trajectory parameters. Details can be found
in Morse (1997).

Error estimates
An advantage of our formulation for simultaneously deter-
mining all trajectory parameters is that it minimizes the
aggregate of all the discrepancies; in so doing, the solution
also explicitly takes into account the estimated error in each
measurement. An estimate of trajectory parameter errors can
be obtained directly from the measurement uncertainties �I.
Equation (A6) can be rewritten as

~p ¼ B ~d ,

where matrix B is the pseudo-inverse of A. With B so con-
structed, its elements approximate the derivatives @PI /@dm
of trajectory parameter PI with respect to measurement m.
The covariance between trajectory parameters Pi and Pj is
given by

C ¼ BDBT: ðA16Þ
Here, the i, j element of the Nadj�Nadj matrix C is the
covariance cov(Pi,Pj) of trajectory parameters Pi and Pj, and
the K, L element of the Nobs�Nobs matrix D is the
covariance cov(dK,dL) of the discrepancies associated with
measurements K and L. Because the discrepancies are scaled
by the uncertainties of the measurements, the elements of ~d
are dimensionless samples from distributions with zero
mean and unit variance, i.e. �2

d ¼ 1. As a consequence,
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cov(dK,dL) will be normalized also; that is, it will be nu-
merically equal to the correlation (–1 to 1) between
discrepancies dK and dL. If the measurement errors are
uncorrelated, D becomes the identity matrix, and Equa-
tion (A16) reduces to

C ¼ BBT: ðA17Þ
In this case, the diagonal elements of C are the squares of
the expected parameter errors.

It is worth checking whether the discrepancies (defined
by the righthand side of Equation (A5)) that are produced by
a solution ~P are consistent with the a priori standard devi-
ations �I. For example, when the expected errors for each
observation are normally distributed, and if the observations
are uncorrelated, then each normalized discrepancy is a
sample drawn from a distribution with zero mean and unit
variance. For sample sizes larger than 101 to 102, the
expected value of a sum of squares of random samples
approaches the number of samples (Parker, 1994, p. 124).
Equivalently, R2 in Equation (A2) should approach unity. If
R2 > 1, the a priori measurement uncertainties �I have been
underestimated. If R2 is smaller than unity, either �I have
been overestimated, or the solution overfits the data, i.e.
significant errors exist in the solution ~P .

If the measurement uncertainties �I have been checked
and found to be appropriate, SVD provides a way to select
a solution that produces the most reasonable match to the
data. Each singular value (diagonal element wnn ) is associ-
ated with the nth column of V, which is an orthonormal
basis vector ~vn in the model space. When the singular
value wnn is small, that particular linear combination of
parameters ~vn has little influence on predictions of the data.
As a result, ~P is not well constrained; a wide range of
parameter solutions, including a wide range of large
multiples of ~vn , is possible without significantly worsening
the fit to the data as expressed through R2 in Equation (A2).
By setting 1/wnn ¼ 0 in Ŵ, that particular poorly con-
strained linear combination of parameters represented by
~vn is eliminated from the parameter solution. This can
produce a parameter solution with reduced variances C

(Equation (A16) or (A17)), while increasing R2 by only a
small amount. By successively eliminating the smallest
singular value until R2 ¼ O(1), the best least-squares
solution that is consistent with the data uncertainties can
be obtained. Our solutions for the Taylor Dome dataset
produced R2 of order unity using the default number of
retained singular values from SQRLSS. This indicates that
the original measurement uncertainties were estimated
well, and that the parameter solution is reasonable.

Coordinate systems
A coordinate system must be chosen in which to form the
trajectory solutions. A complication arises for theodolite
measurements, since they measure the angles projected onto
horizontal and vertical planes as determined by local gravity,
thus requiring knowledge of the gravity vector in the chosen
coordinate system. For surveys that utilize theodolite
measurements and are less than �10 km in spatial extent,
it is common to construct a locally defined Cartesian space
in which the vertical coordinate axis is parallel to the gravity
vector at every point. An Earth-curvature correction that
increases quadratically with horizontal distance must then
be applied to vertical angles (e.g. Moffitt and Bouchard,
1982). Such a coordinate system is in a sense conformal, in
that great circle paths map to straight lines with constant
‘z ’ coordinate. Errors introduced from distortion of the
coordinate system are spread over the network.

We use a geocentric Cartesian coordinate system for the
Taylor Dome survey. Incorporation of the GPS-derived
observations in this system is straightforward: GPS-measured
positions are explicitly coordinate-type observations, and
baselines from differential surveys are triplets of coordinate-
difference measurements. Since the geoid is poorly known
in Antarctica, particularly adjacent to the Transantarctic
Mountains, we approximate the direction of gravity by the
normal to the WGS84 ellipsoid. This approximation is
justified since errors introduced from uncertainties in the
gravity vector primarily affect the vertical angle measure-
ments which themselves are of poor reliability due to
varying atmospheric refraction effects.
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