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4. Diffusion

If you ignore all terms in the Navier-Stokes equation except the time-dependent
inertia and the friction you get

∂u
∂t

= ν ∇ 2u

You may recognize this as a diffusion equation. Thus viscous effects in fluid mechanics
are a diffusive phenomenon. To help us develop intuition about how diffusion works, we
shall begin by considering the diffusion of the scalar quantity temperature.

4.1. The thermal diffusion equation

Heat is a concept invented before scientists understood the molecular nature of
materials. We now know that it is the volume average of the kinetic energy associated
with the vibrational dance that all molecules do at temperatures above absolute zero. This
dance is chaotic and when the heat is uniform, net movement averages to zero. On the
other hand, if you place a hot object with rapidly dancing molecules next to a cold object
with slowly dancing molecules, collisions at the boundary pass momentum from some of
the fast molecules to some of the slow ones. The molecules in the cold material near the
boundary will then have somewhat higher average energy than they did before and will
appear to warm up. The molecules in the hot material near the boundary will have some-
what lower average energy than they did before and will appear to cool down. We say that
heat has flowed from the hot material to the cold material. We do not actually measure the
kinetic energy of vibration. Instead we measure the effect of the ensemble of vibrating
molecules on something else such as the volume of mercury in a thermometer or the elec-
trical resistance of carbon in a thermistor. Historically, these measurements have been
reported as a quantity called temperature. There is a particular temperature scale (called
the absolute or Kelvin scale) in which the temperature T is directly proportional to the
heat (i.e kinetic energy of vibration) per unit volume

q = ρc pT

where c p is called the specific heat.

The first really quantitative study of heat flow was done by Fourier who conducted
a series of careful experiments that in their most general form can be summarized as a
relation between the temperature gradient and the directional flux of heat per unit area

h = − K ⋅ ∇ T

with components

hx = Kxx
∂T

∂x
+ Kxy

∂T

∂y
+ Kxz

∂T

∂z
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hy = Kyx
∂T

∂x
+ Kyy

∂T

∂y
+ Kyz

∂T

∂z

hz = Kzx
∂T

∂x
+ Kzy

∂T

∂y
+ Kzz

∂T

∂z

The thermal conductivity tensor K is symmetric (i.e Kxy = Kyx) so it has only six inde-
pendent elements. These could in principle be predicted using statistical mechanics. More
simply, they can be measured. Unless otherwise stated, we shall consider only the case of
isotropic diffusion in which the diagonal elements of K are all equal to K and the off-
diagonal elements are zero. Then Fourier’s Law reduces to

h = − K∇ T

The conservation of energy implies that the rate of change of heat inside any vol-
ume V attached to the material must be equal to the flux of heat into the volume. Thus

D

Dt
V
∫ q dV =

A
∫ − h ⋅ n̂ dA

where A is the surface of V and n̂ is the outward unit normal. Using the defining relation
between heat and temperature on the the left side and applying Gauss’ Theorem and
using Fourier’s (isotropic) Law on the left we obtain

V
∫ ρc p

DT

Dt
DV =

V
∫ ∇ ⋅ h dV =

V
∫ ∇ ⋅ K∇ TdV

For simplicity, I have assumed that ρ and c p are constant (always very good approxima-
tions in the ocean) and I will now add the additional simplification that K is constant.
Note that this equation is valid for both Centigrade and Kelvin temperatures because only
the derivatives of temperature enter and the two scales differ by only a constant. Now the
volume used for the above integral is arbitrary as long as it is attached to the material.
Therefore the integrals can be equal only if the integrands are equal. Thus we finally have
the partial differential equation for isotropic thermal diffusion

DT

Dt
=

∂T

∂t
+ u ⋅ ∇ T =

K

ρc p
∇ ⋅  ∇ T = κ ∇ 2T

The quantity κ =
K

ρc p
is called the thermal diffusivity. For ocean water its numerical

value is 1. 4 × 10−7 m2/s.
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The above argument can be extended directly to the diffusion of salinity. The only
difference is that the diffusivity for salinity is two orders of magnitude smaller
(1 . 3 × 10−9 m2/s) because the large, heavy salt molecules experience difficulty wandering
through the dense forest of water molecules. The derivation can also be extended to the
eddy model for turbulent diffusion if T is replaced by its average over time and space T
and the concept of the transfer of thermal energy by molecular collisions is replaced by
the idea that mixing a hot and cold fluid will result in a fluid whose T is an average of the
two parents. The highly local gradients generated by the mixing process are finally
destroyed by molecular processes, but in a much shorter time than predicted by the spatial
and temporal scales of T . An interesting point is that eddy diffusivity is primarily a prop-
erty of the dynamics of the flow. This means that salinity, whose molecular diffusivity is
much less than the thermal diffusivity, will never-the-less have an eddy diffusivity that is
the same as for temperature.

4.2. Estimation

I now want to introduce a technique for figuring out the likely behavior of the solu-
tion of a partial or ordinary differential equation without solving it. The basic idea is to
say that the solution has characteristic length and time scales over which it has a signifi-
cant change in value. By ‘‘significant’’ we almost always mean a change in amplitude
comparable to the maximum variation of the solution in the region of interest. We
approximate each derivative in the differential equation by the range of the solution
divided by the appropriate length scale. We then use the approximated differential equa-
tion plus prescribed information about some of the scales to deduce information about
unknown scales.

We can make this process a little more precise in the following way. We shall con-
sider only one-dimensional diffusion in the vertical direction for which the diffusion
equation becomes

∂T

∂t
+ w

∂T

∂z
= κ

∂2T

∂z2

Substitute the following into this equation

T = ΘT ′ w = W w′

t = τ t′ z = δ z′

where T ′, w′, t′, and z′ are non-dimensional and the scales Θ, W , τ , and δ are chosen so
that the non-dimensional derivatives

∂T ′
∂t′

= O(1 )
∂T ′
∂z′

= O(1 )
∂2T ′
∂z′2

= O(1 )

Then the diffusion equation becomes approximately
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Θ
τ

+
WΘ

δ
≈ κ

Θ
δ2

Note that Θ can be cancelled out. This means that the amplitude of the temperature
enters the solution only as a multiplicative constant and does not affect the shape of the
depth variation.

One can justify this idea more rigorously for the many geophysical processes that
involve oscillations in space and/or time (i.e. wav es) or approximately exponential growth
or decay. Then the solutions to the appropriate equations can reasonably be approximated

by products of functions like sin(
2π
λ

x), cos(
2π
τ

t), e
t

τ or e
z

δ , where λ is the wav elength,

τ is either the period or a scale time for growth or decay (depending on its sign) and δ is
a scale length for growth or decay (often called the ‘‘skin’’ depth). All of these functions
have the property that their derivative with respect to space or time is essentially the func-

tion itself divided by the appropriate scale (
λ

2π
,

τ
2π

, τ or δ ) and their second derivatives

are the function divided by the scale squared. This leads directly to the approximation
idea outlined above with the further refinement that we should divide the wav elength or
period by 2π before using them as scales whenever we expect wav elike solutions.

Now suppose we want to know how the annual temperature variation diffuses into
the ocean. We expect that the variation will decay downwards and thus we must be deal-
ing with an exponential-like and not a wav elike variation in the vertical. Second, the
important horizontal length scale is likely to be much larger than the vertical one (we
should check whether this is reasonable after the fact). We can therefore ignore the hori-
zontal derivative terms relative to the vertical term and can use the one-dimensional
approximate equation above. If we ignore advection (i.e. take W = 0) the approximate
diffusion equation immediately implies

δ ≈ √ κ τ

where I have renamed the vertical length scale δ , which is the depth (sometimes called
the skin depth) at which the annual temperature oscillation will have fallen to about
e−1 ≈ 40% of its surface magnitude. (It will be down to only 5% of its surface magnitude
at a depth of 3δ .) The molecular diffusivity of water is 1. 4 × 10−7 m2/s. Since the annual
temperature cycle is roughly sinusoidal and there are π × 107 seconds in a year (a handy
number to remember along with 105 seconds in a day), the appropriate scale time is
0. 5 × 107 and δ ≈ 1 meter. This scale is small enough that our assumption that it was
small compared to any horizontal length scale seems likely to be very good. The diffusiv-
ity of rock and soil is very similar to water so this calculation also demonstrates why cel-
lars have a very even temperature all year round.

Another example of implying information from the diffusion equation is the pene-
tration of a temperature change through a 2 km thick ice sheet in Antarctica. Since the
Antarctic ice sheet is so cold that there is no free water, conduction theory may be
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reasonable. Using the value of κ for water, we get τ ≈
L2

κ
≈ 600, 000 years. The problem

with this number is that it is long compared to the typical residence time of about 75,000
years for ice in the sheet. (Residence time is the time from the initial snowfall to the even-
tual calving of the same ice into the sea at the terminus of the ice sheet.) Thus advection
is the dominant process controlling the internal temperature of the sheet and the ice very
nearly conserves its temperature as it moves.

From the last calculation, it should be obvious that molecular diffusion would be
unlikely to be the dominant process controlling the temperature of the ocean. Figure 14
shows typical vertical profiles of temperature in the arctic, mid-latitudes and the tropics.
The steep gradient of temperature from about 100 meters to 1 km in the mid and low-lati-
tudes is called the main or permanent thermocline. The secondary sharp gradient shal-
lower than 100 meters at mid-latitudes is called the seasonal thermocline because it varies
from summer to winter. From our earlier calculation it is obvious that molecular diffusion
cannot be responsible for this seasonal thermocline. Knowing the depth of the seasonal
thermocline, we can calculate an effective vertical eddy diffusivity using

κ ≈
δ2

τ

For τ = 0. 5 × 107 sec and δ = 30 meters we get κ eddy ≈ 2 × 10−4 m2/s. We can therefore
reasonably argue that mixing processes have increased the diffusivity of the upper ocean
by a factor of 100,000. We shall consider several processes that contribute to this mixing
later.

The main thermocline does not change with time. Therefore something must bal-
ance the effective diffusivity. The only possibility is upward advection. The appropriate
form of the approximate diffusion equation must be

WΘ
L

≈ κ
Θ
L2

which can be solved for an estimate of the advection velocity

W ≈
κ
L

Taking the effective diffusivity estimated above for the upper ocean as an upper bound
and L = 1 km we obtain W ≈ 2 × 10−7 m/s ≈ 2 centimeters per day ≈ 6 meters/year as an
upper limit on the required vertical advection. This velocity is so small that it cannot be
measured directly. We know it is there only because of the existence of the stable main
thermocline.

What causes the upward flow? If you look at the vertical temperature profile at high
latitudes, you see that it is almost constant. Furthermore the near-surface temperature at
high latitudes is the same as the deep temperature in most of the oceans. We can conclude
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that water cools and sinks at high latitude and fills up the deep ocean. The circuit is com-
pleted by the slow upward flow over the rest of the ocean and by a slight poleward net
flow in the surface layers.

4.3. Boundary layers

We now consider a fluid mechanical application that leads to the one dimensional
diffusion equation. Suppose we have a horizontal flat plate resting on a fluid half space
(see Figure 15). The plate oscillates horizontally and sinusoidally with an angular fre-

quency ω (i.e. it completes one complete cycle in a time
2π
ω

). Like Couette flow, the

motion is tangential to the boundary and has no variation in the x̂ or ŷ directions. We are
therefore justified in taking u = u(z, t)x̂, (u ⋅ ∇ )u = 0, ∇ p′ = 0 and ignoring gravity. The
Navier-Stokes equation reduces to

∂u

∂t
= ν

∂2u

∂z2

and we see that kinematic viscosity is the diffusivity for momentum. We shall assume
that the top surface is at z = 0 and the surface boundary condition on u is
u(0, t) = Ucos(ωt). The boundary condition as z → − ∞ is u → 0.

This partial differential equation can be solved by assuming u(z, t) = F(z)G(t). We
then have

∂u

∂t
= F

dG

dt

∂2u

∂z2
= G

d2F

dz2

Substituting these in the original equation and dividing by FG leads to the equation

1

G

dG

dt
=

ν
F

d2F

dz2

The left side of this equation depends only on t, while the right side depends only on z.
This can only be true for non-trivial functions G and F if both sides are equal to the same
constant. In this problem it is convenient to choose this constant to be iω. Then

dG

dt
= iωG

which has cosines and sines of ωt as solutions and

iωF =
ν
F

d2F

dz2

The original partial differential equation has been separated into two ordinary differential
equations which are coupled only by the constant. This process is called ‘‘separation-of-
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variables’’.

Assuming that ω is a real number, the solution to the equation for G(t) can be an
arbitrary sum of sines and cosines of ωt. Howev er, our surface boundary condition
clearly restricts the choice to

G = cos(ωt) = Re[eiωt]

If we try a solution of the form F = eα z in the second ordinary differential equation, we
must have

iω = να 2

and hence

α = ± √  iω
ν

= ± (1 + i) √  ω
2ν

In writing this, I have made use of the fact that i = e
iπ
2 and thus

√ i = e
iπ
4 = cos(

iπ
4

) + i sin(
iπ
4

) =
1

√ 2
+

i

√ 2
=

(1 + i)

√ 2

Putting the pieces together, the partial differential equation has the general solution

u(z, t) = G(t)F(z) = Re[(Ae
+ (1 + i)

z

δ + Be
− (1 + i)

z

δ ) eiωt]

where I have let δ = √ 2ν
ω

and the constants A and B are still to be determined.

The term with coefficient B blows up as z → − ∞, so we must have B = 0. The
term with coefficient A decays to zero as z → 0 as required and the boundary condition at
z = 0 implies that A = U. The solution finally becomes

u(z, t) = Re[Ue
z

δ e
i(

z

δ
+ ωt)

] = Ue
z

δ cos(
z

δ
+ ωt)

The amplitude of this solution decays by a factor e−1 = 0. 37 at z = δ and
e−3 = 0. 050 at z = 3δ . We see that, except for the factor √ 2 in the definition of δ this
behavior is exactly what we would have predicted with the estimation technique
described earlier. Howev er, the solution has another feature that we would not have pre-
dicted with the approximate analysis; the oscillation at depth has a phase which progres-
sively lags behind that at the surface. The oscillation will be exactly 180o out of phase at
z = π δ. The plate significantly affects the fluid only out to a distance several times δ .
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This region is called a boundary layer and δ the boundary layer thickness. For fixed fre-
quency, the boundary layer becomes thinner as the viscosity drops and in the limit of zero
viscosity, which we shall call inviscid, the boundary slips over the fluid without affecting
it at all. For fixed viscosity the boundary layer thickness also decreases with increasing
frequency. Physically, the information about the direction of the plate has less time
before the plate direction reverses and therefore penetrates a smaller distance.

4.4. The Blasius layer

The boundary layer that forms on a semi-infinite plate held parallel to a uniform
flow (Figure 16) is called the Blasius boundary layer. Upstream of the plate edge the
velocity is everywhere non-zero. If the fluid has non-zero viscosity, howev er, its velocity
must go to zero where it is in contact with the plate. We shall hypothesize the existence
of a transition region of thickness δ << L the downstream distance from the edge of the
plate. We shall furthermore assume both ρ and the velocity outside the boundary layer
(called the main stream) are constant. We can therefore ignore the pressure in the main
stream. We shall let the mainstream velocity be u = U x̂ .

The Blasius boundary layer is more complicated than the flows we have considered
up to now because it is two-dimensional and has two length scales. In approximating the
Navier-Stokes equation, we shall let

∂
∂x

≈
1

L

∂
∂z

≈
1

δ

We obviously want to use the magnitude of the upstream velocity as the horizontal veloc-
ity scale because the velocity varies from U outside the boundary layer to zero at the
plate. We can deduce the vertical velocity scale by approximating the continuity (conser-
vation of mass) equation

∇ ⋅ u = 0 =
∂u

∂x
+

∂w

∂z

by

U

L
≈

W

δ
and therefore

W ≈
δ
L

U

This vertical velocity associated with the deviation of the flow around the slower moving
fluid in the boundary layer will be small if the boundary layer is thin.

Since the flow is steady, we can obviously drop the term
∂u
∂t

in the Navier-Stokes

equation and its components become
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x̂: u
∂u

∂x
+ w

∂u

∂z
+

1

ρ
∂p

∂x
= ν (

∂2u

∂x2
+

∂2u

∂z2
)

and

ẑ: u
∂w

∂x
+ w

∂w

∂z
+

1

ρ
∂p

∂z
= ν (

∂2w

∂x2
+

∂2w

∂z2
)

Where p is the non-hydrostatic pressure. Now, since δ << L, we hav e that

∂2

∂x2
<<

∂2

∂z2

and we can ignore the derivatives along the plate in the viscous term on the right. Esti-
mating the magnitudes of the non-linear inertia terms on the left (using the scale for W
derived above) we get

u
∂u

∂x
≈

U2

L

w
∂u

∂z
≈

WU

δ
≈

U2

L

u
∂w

∂x
≈

UW

L
≈

U2δ
L2

w
∂w

∂z
≈

W2

δ
≈

U2δ
L2

Thus the two non-linear terms in each equation are approximately the same size and we
conclude that if wanted to actually solve for the flow, neither could be ignored. We can
finally approximate the equations for the two components by

x̂:
U2

L
+

∆Px

ρL
= ν

U

δ2

and

ẑ:
U2

L
(
δ
L

) +
∆Pz

ρδ
= ν

U

δ2
(
δ
L

)

where ∆Px and ∆Pz are typical pressure differences in the horizontal and vertical direc-

tions. If we multiply the ẑ equation by
L

δ
, it is obvious that it is the same as the x̂ equa-

tion and that
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∆Px

L
=

L

δ
∆Pz

δ
or

∆Pz = (
δ
L

)2 ∆Px

Thus ∆Pz is very small compared to horizontal pressure changes and we can conclude
that pressure at a point inside the boundary layer is the same as the pressure at a point
vertically above it in the main stream. Consequently the horizontal pressure differences
inside the boundary layer must be same as in the main stream just outside the boundary
layer. In our particular case, the horizontal pressure gradient in the main stream is zero by
assumption (it need not be in general) and thus ∆Px = ∆Pz = 0 and we can drop the pres-
sure terms. Then either component equation implies that

U2

L
≈ ν

U

δ2

and finally

δ ≈ √  ν L

U

The Blasius boundary layer thickness increases down stream as the square root of
the distance from the edge of the plate (see Figure 16). Since δ grows more slowly than
L, it will always be possible to satisfy the requirement δ << L by going far enough down-
stream. Alternatively, there will always be a finite region close to the edge of the plate in
which the boundary layer solution is invalid. An application which can be understood in
terms of the behavior of the Blasius layer is the development of Poiseuille flow down
stream from the entrance to a pipe. Blasius layers grow inwards from the walls of the pipe
beginning at the entrance (see Figure 17). The region in the center of the pipe outside the
layer has not yet felt the influence of the shear stress applied by the wall. Thus Poiseuille
flow will occur only after the Blasius layer has grown to completely fill the pipe. This

will occur when L >>
Ua2

ν
, where L is the distance down the pipe from the entrance, a is

the radius of the pipe and U is the entrance velocity (which can be estimated as the mass
flux divided by the cross-sectional area of the pipe).

Tritton (section 11.4) discusses a method to find the actual structure of the Blasius
boundary layer called a similarity solution. The key to this technique is to assume that
one can write

u(x, z) = f (η) U

where η is a vertical coordinate that stretches as one goes down stream from the edge of
the plate. The functional shape f of the velocity variation is the same at each x, but the
amount of stretching of the vertical coordinate increases in proportion to the boundary
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layer thickness. Thus η =
z

δ(x)
. I will not take time to go over this material in this course

because another type of boundary layer that exists when the fluid is rotating is of much
greater geophysical interest. One difficulty you may have with his discussion is the fact
that Tritton uses the stream function, which I have not yet introduced. The same mathe-
matical technique also applies to the flow when a jet enters a semi-infinite fluid and the
details (in Tritton, section 11.6) are easier to grasp and do not employ the stream func-
tion. I would suggest reading that section if you want to learn about how the similarity
solution works.


