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7. More Wav es

7.1. Phase and group velocities in higher dimensions

In this chapter, we will study wav es that have more complicated phase and group
velocity behavior than the surface wav es discussed in the last chapter. We therefore need
to generalize phase and group velocity to wav es that propagate in two and three dimen-
sions. We begin by generalizing the concept of wav enumber k to the wav e vector
k ≡ kx̂ + lŷ + m ẑ. A three-dimensional plane wav e can then be expressed as

q = A cos (kx + ly + mz − σ t) = A cos (k ⋅ x − σ t)

Here q is some quantity such as pressure or a displacement or velocity component andx
is the position. The phase velocity is again the velocity at which an observer must move
to keep the phase,φ = k ⋅ x − σ t, constant. This obviously has the same direction ask
(see Figure 42). Thus we can write

cp = |c p|n̂k

where

n̂k =
k
|k|

is unit vector in the direction ofk, and

|c p| =
σ
|k|

|k| = √ k2 + l2 + m2

In a similar manner, the vector group velocity becomes the gradient of the disper-
sion relation in ‘‘k-space’’

cg =
∂σ
∂k

x̂ +
∂σ
∂l

ŷ +
∂σ
∂m

ẑ ≡ ∇ kσ

which does not have to be in the same direction ask or cp. The two-dimensional ana-
logue of these expressions is recovered by simply setting the terms associated with the
un-wanted component to zero.

7.2. Sound waves

We now briefly consider wav es in a compressible fluid. If we ignore gravity, rota-
tion and viscosity and let density be variable, we can let

ρ = ρ0 + ε ρ1 + ε2ρ2 + ε3ρ3 + . . .
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The first order momentum equation for a perturbation aboutu0 = 0 becomes

ρ0
∂u1

∂t
+ ∇ p1 = 0

Taking the divergence of this equation, ignoring second order terms, gives

ρ0
∂
∂t

(∇ ⋅ u1) + ∇ 2 p1 = 0

The first order conservation of mass equation (see section 2.2.3) becomes

∂ρ1

∂t
+ ρ0(∇ ⋅ u1) = 0

Using the definition of compressibility,β (see section 3.2), and assuming that it is con-
stant, we can write

β ρ0
∂p1

∂t
=

∂ρ1

∂t

(to first order). Thus the mass conservation equation becomes

β
∂p1

∂t
+ ∇ ⋅ u1 = 0

which can be used to eliminate∇ ⋅ u1 in the momentum equation. We get

β ρ0
∂2 p1

∂t2
− ∇ 2 p1 = 0

Finally, substituting a plane wav e,p1 = P cos (kx − σ t), we obtain the dispersion relation

σ =
k

√ ρ0β

The phase velocity for these sound wav es is

c p =
1

√ ρ0β

which proves a result used in section 3.2.

Like shallow water surface wav es, sound wav es are non-dispersive. The tempera-
ture, salinity and pressure-dependence of sound speed in the ocean conspire to create a
minimum in sound speed at a depth of about 1 km (see Figure 43(a)). This low velocity
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zone traps sound energy generated within it and permits the sound energy to propagate
vast distances (because the amplitude falls off as range squared rather than cubed). There
are many possible ray paths between any source and receiver pair In a flat ocean, the
slowest ray would travel exactly along the axis of minimum sound speed and is called the
axial ray. Other rays have paths which oscillate up and down with rays that have their
extremal points furthest from the sound minimum having the least travel time. There
would furthermore be an infinite number of rays, with most of them having angles with
respect to the axis, which are small. Due to the curvature of the earth, however, no ray
can continuously follow the sound minimum. There will therefore only be a finite number
of rays for a given sour-receiver configuration and the axial ray is defined as the ray that
remains closer to the sound minimum then any other ray (see Figure 43(b)). The fact that
different sound rays sample different depths makes it possible to determine the average
vertical profile of sound speed in a vertical slice between a source and receiver. This is
called ocean acoustic tomography (OAT). If, additionally, travel time measurements are
made for both directions of travel, one can use the Doppler-shift to simultaneously deter-
mine the average fluid motion in the vertical slice. Using arrays of sources and receivers
(in both depth and horizontal position) OAT has the potential to determine the three-
dimensional oceanic structure much more rapidly than can a ship. OAT also provides
spatial averages of the structure and is thus a more appropriate (and perhaps more cost-
effective) way to study larger scale phenomena (such as eddies) than is an array of current
meters. The large scale averaging potential of OAT has particular relevance to the prob-
lem of measuring the slow warming of the ocean that should be expected if our planet is
warming up due to the greenhouse effect.

7.3. Rossby waves

As I have stated, there are many similarities between all wav es. Once you have
identified the restoring force, it is usually a simple matter to equate it to the fluid acceler-
ation and deduce first the dispersion relation and then the phase and group velocities.
However, not all wav es hav e the simple behavior observed for surface (and other wav es
like sound) in which the phase and group velocities are in the same direction. An exam-
ple is the wav e associated with deviations from geostrophic balance.

The fundamental premise of geostrophic balance is that horizontal pressure gradi-
ents are balanced by the horizontal component of the Coriolis force. We already know
that this requires large horizontal scales and we have previously argued that a conse-
quence of this balance is a strong tendency for the fluid to move as ‘‘vortex tubes’’ that
always remain parallel to the rotation axis. Consider a meander in an eastward
geostrophic current in the Northern Hemisphere (see Figure 44(a)). Because the Earth is
curved, fluid displaced northwards requires shortened vortex tubes, while fluid that is dis-
placed south requires stretched tubes (see Figure 44(b)). The conservation of angular
momentum for a northward displaced tube requires that its rotation must slow down and
it will find itself rotating clockwise relative to its environment (see Figure 44(c)). This
clockwise rotation will induce northward flow of fluid to the west and southward flow of
fluid to the east. The conservation of angular momentum for these induced flows results
in secondary flows which will sweep the original displaced vortex tube back to its
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original position (again, see Figure 44(c)). The fact that the initial northward displace-
ment propagates westward implies that the phase velocity of the wav e associated with
this restoring mechanism is to the west. A tube which is initially displaced south will
also be restored to its original position and will also imply a westward phase velocity.

It is not easy to estimate the magnitude of the restoring force directly from the
above physical argument primarily because the flows are fundamentally two-dimensional.
However, it is fairly straightforward to derive the desired result directly from the momen-
tum equation for geostrophic balance modified to allow time variations

Du
Dt

+ 2Ω × u =
1

ρ
∇ p

Consider a small deviationu′ to a uniform steady eastward geostrophic currentu0 = U0x̂.
If we assume that vertical motions are essentially zero, we can letu = (u′ + U0)x̂ + v′ŷ
with x̂ east and̂y north (hencêz upwards) and we can write

Du
Dt

=
∂u′
∂t

+ U0
∂

∂x
u′

The components of the modified geostrophic balance equation can then be written

(
∂
∂t

+ U0
∂

∂x
)u′ − f v′ = −

1

ρ
∂p

∂x

(
∂
∂t

+ U0
∂

∂x
)v′ + f (u′ + U0) = −

1

ρ
∂p

∂y

where the Coriolis parameterf ≡ 2Ω cos(θ). Now assume that the unperturbed current
satisfies geostrophic balance

0 = −
1

ρ
∂P0

∂x

fU0 = −
1

ρ
∂P0

∂y

If we subtract these equations from the previous two and define the pressure perturbation
p′ = p − P0, we obtain

(
∂
∂t

+ U0
∂

∂x
)u′ − f v′ = −

1

ρ
∂p′
∂x
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(
∂
∂t

+ U0
∂

∂x
)v′ + f u′ = −

1

ρ
∂p′
∂y

The pressure deviation can be eliminated from the problem by taking the y partial
derivative of the first equation and subtracting it from the x partial derivative of the sec-
ond equation. The result is

(
∂
∂t

+ U0
∂

∂x
)(

∂u′
∂y

−
∂v′
∂x

) − β v′ = 0

In writing this we have definedβ ≡
∂ f

∂y
and used the fact that if the vertical velocity is

zero and the fluid is incompressible, north-south stretching must compensate for east-
west squeezing, i.e.

∂u′
∂x

= −
∂v′
∂y

The term
∂u′
∂y

−
∂v′
∂x

is the component of vorticity perpendicular to the Earth’s surface

(∇ × u). The termβ v is the rate of change of vorticity due to the squeezing (stretching)
of a vortex tube as it moves north (south) in the Northern Hemisphere of a curved Earth.
Thus the above equation is simply a statement of the conservation of angular momentum
on a curved earth.

The value ofβ can be easily derived. Supposeθ increases (southward displace-
ment) by an angleα (see Figure 44(b)).

f (θ + α ) = 2Ω cos(θ + α ) = 2Ω[cos(θ) cos(α ) − sin(θ) sin(α )]

where I have used a standard trigonometric identity. For smallα , cos(α ) ≈ 1 and

sin(α ) ≈ α ≈ −
y

α
, where -y is the southward displacement and a is the radius of the

Earth. Thus

f (θ + α ) = 2Ω cos(θ) +
2Ω sin(θ)

a
y = f (θ) + β y

and obviously
∂ f

∂y
= β with β =

2Ω sin(θ)

a
.

Taking the x derivative of the vorticity conservation equation and the y derivative of
the mass conservation equation, we can easily eliminateu′ and obtain

(
∂
∂t

+ U0
∂

∂x
)[

∂2

∂x2
+

∂2

∂y2
] v′ + β

∂v′
∂x

= 0



-79-

Substituting a ‘‘wav e’’v′ = V sin(kx − η t) whose crests and troughs run north-south (cor-
responding to a sinusoidal meander in the original eastward current) into the above equa-
tion gives

(η − U0k)k2V cos(kx − η t) = − β k cos(kx − η t)

The dispersion relation is

η = U0k −
β
k

and

c p =
η
k

= U0 −
β
k2

< U0

cg =
∂η
∂k

= U0 +
β
k2

> U0

Note that the effect of the background velocityU0 is simply to sweep the disturbance
along. We could, in fact, have simplified the algebra if we had shifted into a coordinate
system moving along with the basic flow. IN this moving coordinate system, the magni-
tude of the phase and group velocities is the same, butc p is alwayswestward (because
β ≥ 0) while cg is always eastward. At θ = 45o, β =1. 6×10−11 (m sec)−1. With a

wavelength of 300 km (k = 2. 1×10−5 m−1) the wav e has a period
2π
η

= 90 days and a

phase velocityc p = 4 cm/s. It is extremely slow moving relative to the speed of the
unperturbed current (typically 10-300 cm/s).

These wav es are called Rossby or Planetary wav es. Because of their very large
scale, their very slow phase and group velocities and the effects of stratification and finite
amplitudes, which result in non-linear behavior, they are difficult to find in the form con-
sidered in our discussion. The spectacular wav es seen in the atmosphere of Jupiter are
closely related to Rossby wav es and they play an important role in weather systems on
Earth. However, the meanders in the surface currents such as the Gulf Stream after it has
separated from the coast north of Cape Hatteras (Figure 45) are probably the closest situ-
ation to our analysis. The strong stratification at the thermocline inhibits vertical motion
sufficiently that our physical argument based on the conservation of angular momentum
is still approximately correct. The eastward component of the current substantially
exceeds the westward phase velocity, so that the meanders (see Figure 46) are swept
along by the current and appear to move physically eastward. The westward phase veloc-
ity can be deduced from the fact that the current flows through the meanders and thus the
phase of the meanders must be traveling eastward at a slower rate than the current.

Meanders that grow so large that they pinch off to form rings can maintain their
existence for a long time and drift into areas of the ocean which are much less energetic
(particularly to the south). In this situation, it has been possible to actually see the
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westward phase and eastward group velocity. The problem of course has been to suffi-
ciently instrument a patch of ocean to observe the motion of a geostrophic eddy (i.e.
Rossby wav e group) over time.

7.4. Stably stratified fluids

7.4.1. Internal interface waves

When a perturbation occurs at an internal interface between two fluids of constant
densityρ1 > ρ2 (ρ2 on top), the restoring pressure becomes

p = (ρ1 − ρ2)gh

This expression differs from that at the top surface only becauseρg has been replaced by
the much smaller (ρ1 − ρ2)g. We can thus have wav es on the interface that differ from
surface wav es primarily in having a lower frequency for a given wav elength. In fact, if
there is only one internal interface and the layers above and below the interface are thick

compared to
λ
2

, the interface wav e solution is identical to that for deep water surface

waves, aside from the reduced effect of gravity.

Interface wav es are commonly seen in fjords or estuaries where fresh water over-
lies salt water and they cause a phenomenon called dead water. A moving ship will gener-
ate interface as well as surface wav es. The energy required to generate the interface
waves can be substantial and the ship will have difficulty progressing with no reason
apparent at the surface. Once the ship’s speed exceeds the phase velocity of the fastest
interface wav es (which will be much slower than the surface wav es), it leaves them
behind and the extra drag suddenly disappears.

Things are more complicated if either of the layer thickness is comparable to the
wavelength, but the mathematics of finding the appropriate solution is very similar to that
for surface wav es on a fluid of finite depth. However, if there are two interfaces, there is
the possibility of different modes: one in which both interfaces oscillate up and down
together and one in which the upper interface is going down at places where the lower
interface is going up. We will not consider the details of such solutions, but instead, study
the more interesting case of internal wav es in density which varies continuously with
depth.

7.4.2. Brunt-Vaisala frequency

Suppose that a parcel of fluid of densityρ0 is displaced upwards by a distance
ξ = z − z0 in a fluid whose densityρ = ρ(z) (see Figure 47(a)). The restoring force (per
unit volume) on the parcel will be− ∆ρgξ ẑ, where∆ρ is the density difference between
the displaced particle and the new environment in which it finds itself. As long as we
cross no interface whereρ is discontinuous, we can expandρ in a Taylor series about
z = z0 and write
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ρ(ξ ) = ρ0 +




d ρ
dz



 0

ξ + higher order terms

where the subscript means evaluated atz = z0. If ξ is small, we have

∆ρ = ρ0





d ρ
dz



 0

ξ

Equating the density times the vertical acceleration on the displaced parcel to the restor-
ing force, we finally have

ρ
d2ξ
dt2

= − g
d ρ
dz

ξ

where I have dropped the subscript 0. You should recognize this as the equation for sim-
ple harmonic motion with solutionξ = AeiNt , where

N = ±√ − g

ρ
d ρ
dz

is called the Brunt-Vaisala frequency. Note that if
d ρ
dz

> 0  (density increasing upwards),

N is imaginary and the solution is no longer oscillatory, but instead is growing or decay-
ing exponentials.

7.4.3. Internal waves

In the more general case where the displacement is at an angleθ with respect to the
horizontal, the vertical displacement is isξ sin(θ) and the component of the restoring

force along the direction of displacement isξ sin2(θ)
d ρ
dz

(see Figure 47(b)). Thus

d2ξ
dt2

= N2 sin2(θ)ξ

We immediately see that the dispersion relation for these internal wav es must be

η = ± N | sin(θ)|

The absolute value symbol aroundsin(θ) simply recognizes that it does not matter
whether the plane of displacement is tilted up or down with respect to the horizontal. We
can conclude immediately that the frequency of an internal wav e can vary from zero
(pure horizontal motion) to the Brunt-Vaisala frequency (pure vertical motion). The
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dispersion relation can be interpreted in two ways. If you excite the fluid at a certain fre-
quency between 0 and N, the motion of the fluid in the wav e will have a specific angle
with respect to the horizontal. On the other hand, if you have or want motion at a specific
angle, you must excite it at a specific frequency.

Because internal wav es inv olve motion tilted with respect to the horizontal, the
wave oscillation will be in the vertical as well as horizontal direction, and we need to use
the two-dimensional generalization of the wav e number to a wav e vector. For motion in
the x-z plane,k = kx̂ + mẑ. The fluid velocity components for a plane wav e with crests
perpendicular tok are

w = Re[A ei(kx + mz − iη t)]

u = Re[B ei(kx + mz − iη t)]

Substituting these into the mass conservation equation

∂u

∂x
+

∂w

∂z
= 0 → iku + imw = 0 → k ⋅ u = 0

Thus the wav e vector must be perpendicular to the fluid velocity (see Figure 48(a)).
Using the dispersion relation and the first section of this chapter, one can easily conclude
that

cp = ±
N | sin(θ)|

k
k̂ = ±

N | sin(θ)|

|k|2
k

Thus the phase velocity will also be perpendicular to the fluid velocity.

The generalization of group velocity is

cg = ∇ kη

Sinceη depends only onθ it is convenient to write the gradient in k-space in polar coor-
dinates

∇ k = k̂
∂

∂|k|
+

θ̂
|k|

∂
∂θ

wherek̂ = x̂ sin(θ) + ẑ cos(θ) is the unit vector parallel tok andθ̂ = x̂ cos(θ) − ẑ sin(θ) is
the unit vector perpendicular tok The first term in the k-space gradient will be zero and
we immediately have

cg = ±
N

|k|
| cos(θ)| θ̂
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which is perpendicular tok and thus parallel tou. This rather surprising result means that
a group of these wav es has the peculiar behavior that phase fronts (crests and troughs)
propagate sideways across a patch of wav e energy moving along as a group (see Figures
48(a), 49(a)). We also see that cos(θ) goes to zero as the motion becomes purely vertical
and the frequency approaches the Brunt-Vaisala frequency. Thus purely vertical motion
does not result in the propagation of energy. Figure 49(b) demonstrates that no wav e is
generated whenη > N .

Internal wav es can be seen in the atmosphere when they are made visible by the
condensation in rising air (wav e or lenticular (shaped like lenses) clouds). They are often
generated by obstacles such as mountains (the one behind Mt. Rainier typically is shaped
like a boomerang) and they are then referred to as lee wav es, but they can also be gener-
ated by air flowing over cumulus clouds or weather fronts and by instabilities associated
with vertical shear of the wind (Kelvin-Helmholtz instability). Internal wav es also occur
in the ocean. Like surface wav es, the internal wav e solution is barely affected by viscos-
ity, so that internal wav es can propagate over long distances. For this reason and because
it is difficult to look into the ocean and actually observe internal wav es, little is known
about the precise mechanisms for generating most of the internal wav e energy in the
ocean.

7.4.4. Boussinesq approximation

A more rigorous derivation of the results just obtained comes from substituting the
two-dimensional plane wav e into the full system of equations for a stratified fluid. In
doing this, we resort to a very important simplification called the Boussinesq approxima-
tion. In this approximation, the fluid is assumed to have constant densityexcept where the
density perturbation is multiplied by the large acceleration of gravity. This approximation
can be rigorously justified in a wide variety of geophysically important situations by
means of a perturbation expansion.

We need to modify the perturbation expansion of Chapter 6 to allow for variable
density. In our discussion of non-dimensionalization in Chapter 5, we have already con-
sidered what happens to the momentum equation when there is a small perturbationρ1 to
the basic densityρ0. We shall also assume thatu1 is a small perturbation from the state of
rest (i.e.u0 = 0) and thusp1 is the deviation from hydrostatic pressure. We shall addition-
ally ignore the effects of rotation and viscosity (i.e. assume that the internal wav e period
is small compared to a day or to the diffusion time for disturbances whose scale is the
wavelength). These last two assumptions are not a necessary part of the Boussinesq
approximation. The first order Navier-Stokes equation becomes

∂u1

∂t
+

1

ρ0
∇ p1 = σ1ẑ

(see section 5.1), where I have used the buoyancy perturbation defined by

σ1 ≡
ρ1

ρ0
g
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Clearly we can recoverρ1 onceσ1 is known, so we do not have to specifically
worry aboutρ0 in the buoyancy term. Thus theρ0(z) multiplying the pressure gradient is
the only remaining barrier to ignoring the variation of density except in the buoyancy
term. Note, however, that sinceu0 = 0, we must haveρ0 = ρ0(z) and therefore

∇
p1

ρ0
=

1

ρ0
∇ p1 + p1∇ (

1

ρ0
) =

1

ρ0
∇ p1 −

p1

ρ0
2

d ρ0

dz
ẑ

Thus, if the vertical amplitude A of the motion is small relative to the scale height H for
significant variation in the basic density profile,

∂p1

∂z
≈

p1

A
>>

p1

H
≈

p1

ρ0

d ρ0

dz

and hence we can ignore the last term on the right side above incomparison to thêz com-
ponent of the first term on the right. Thus

1

ρ0
∇ p1 = ∇

p1

ρ0

Consequently, for motions with small vertical amplitudes, we can takeρ0 inside the gra-
dient operator in the pressure term of the momentum equation just as if it were a constant.

Once this is done, we can treat
p1

ρ0
as a new variable from whichp1 can be recovered

after we have solved for
p1

ρ0
.

The density of ocean water differs from that of fresh water by only about 2%. Thus
the maximum density change over the full depth will be less than this even in an estuary.
Thus H is always much larger than the water depth and the necessary condition that
A << H will always be satisfied. The main vertical density variations in the atmosphere
are due to compressibility. Since the scale height is about 10 km (see section 3.2) and
internal wav e amplitudes are typically less than 1 km, the approximation should also be
reasonably good under most circumstances in the atmosphere.

Turning now to the conservation of mass equation. We first note that spatially vari-
able density is completely consistent with an assumption of incompressibility. Thus we
can still use

∇ ⋅ u = 0

if the fluid is incompressible.

Of course real fluids are never incompressible. Using the definition of compress-
ibility β (section 3.2) and referring to the discussion on sound wav es in section 6.2.5,

Dp

Dt
= c2 Dρ

Dt
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where c is the speed of sound. If we non-dimensionalize usingp = ρ0U
2 p′, t = τ t′ and

ρ = ρ0ρ′, this equation becomes

U2

c2

D p′
Dt′

=
Dρ′
Dt′

→ 0 when (
U

c
)2 → 0

Thus density fluctuations caused by the dynamic pressure (i.e. the kinetic energy) of the
flow will be negligible if the (Mach number)2 is small. The Mach number is always
small in the ocean (except near an explosion) and only rises to 0.1 in the atmosphere in
some Hurricanes and in the Jet Stream. Even then, dynamic compressibility effects are
small because the Mach number enters as its square and it never exceeds 0.3. The only
time that we need to worry about the dynamic effects of compressibility in natural atmo-
spheric phenomena is during volcanic eruptions.

The two components of the momentum equation plus the continuity equation give

us three equations for thefour unknowns, u, w,
p1

ρ0
, andσ1. The fourth can be derived by

noting that incompressibility also implies that

Dρ
Dt

=
D

Dt
(ρ0 + ρ1) =

Dρ0

Dt
+

Dρ1

Dt
= w1

d ρ0

dz
+

∂ρ1

∂t
= 0

wherew1 is the first order vertical velocity. In writing this equation, I have discarded sec-

ond order terms and used the fact thatρ0 = ρ0(z) and hence
∂ρ0

∂t
= 0. Explicit in this per-

turbation expansion is the assumption thatρ1 << ρ0, which again requires the vertical
amplitude of the motion to be small compared to the scale height for significant variations
of the basic density profile. (Actually it requires that the scale height forpotential density
variations be large compared to the vertical amplitude.)

Multiplying the last equation by
g

ρ0
gives

∂σ1

∂t
+ N2w1 = 0

Where N is the Brunt-Vaisala frequency for the the zeroth order densityρ0(z).

To re-capitulate: the conditions required for the Boussinesq approximation are

(1) The fluid velocity is small compared to the speed of sound.

(2) The vertical amplitude of the motion is small compared to the scale height of the
variations of the unperturbed density.

Dropping the subscript 1, the complete set of of first order equations under the Boussi-
nesq approximation in a non-rotating, inviscid fluid are

∂u

∂t
+

∂
∂x




p

ρ0




= 0
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∂w

∂t
+

∂
∂z




p

ρ0




− σ = 0

∂u

∂x
+

∂w

∂z
= 0

∂σ
∂t

+ N2w = 0

7.4.5. More internal waves

At this point there are two ways to proceed. We can cross-differentiate the horizon-
tal and vertical components of the momentum equation and subtract (equivalent to taking

the curl of the vector momentum equation) to eliminate
p

ρ0
. The result is an equation for

the component of the vorticity perpendicular to the x-z plane

(
∂u

∂z
−

∂w

∂x
) +

∂σ
∂x

= 0

Note that vorticity can be generated in a density variable fluid by the horizontal gradient
of the buoyancy as well as by viscosity. This is physically obvious because a gravity field
acting on horizontally adjacent parcels of fluid with different density imparts a twisting
torque to the fluid (see Figure 50). We can take the time derivative of this vorticity equa-
tion and use the fourth equation above toeliminateσ . Finally, if we assume that N is con-
stant, we can use appropriate x and z derivatives and the continuity equation to eliminate
u giving

∂2

∂t2
(

∂2

∂x2
+

∂2

∂z2
)w + N2 ∂2w

∂z2
= 0

We can then substitute a plane wav ew = W cos (kx + mz − η t) into this equation to find

η2(k2 + m2) = N2k2

and thus the dispersion relation

η = ±
Nk

√ (k2 + m2
= ± N

k

|k|
= ± N | sin(θ)|

(see Figure 48(b)), which is the same result derived earlier. Calculation ofcp andcg can
proceed as before, although one can also, at the cost of tedious algebra, do the k-space
derivatives in the rectangular (k,m) coordinates.
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An alternate way to get to the same results is to substitute a plane wav e into the
system of equations prior to reducing them to a single equation. When you do this,

∂
∂x

→ ik
∂
∂z

→ im
∂
∂t

→ − iη

and you are left with as system of algebraic equations that can be solved forη .


