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Abstract1

The language of feedbacks is ubiquitous in contemporary Earth Sciences, and the2

framework of feedback analysis is a powerful tool for diagnosing the relative strengths3

of the myriad mutual interactions that occur in complex dynamical systems. The ice4

albedo feedback is widely taught as the classic example of a climate feedback. More-5

over, its potential to initiate a collapse to a completely glaciated Snowball Earth is6

widely taught as the classic example of a climate ‘tipping point’. A feedback analy-7

sis of the Snowball Earth phenomenon in simple, zonal-mean energy balance models8

clearly reveals the physics of the snowball instability and its dependence on climate9

parameters. The analysis can also be used to illustrate some fundamental properties10

of climate feedbacks: how feedback strength changes as a function of mean climate11

state; how small changes in individual feedbacks can cause large changes in the system12

sensitivity; and finally, how the strength and even sign of the feedback is dependent13

on the climate variable in question.14
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1 Introduction15

Early efforts to represent Earth’s climate with energy balance models uncovered the disconcerting16

possibility that a relatively small decrease in the solar output might lead to a catastrophic global17

glaciation - the result of a runaway ice-albedo feedback (e.g., Budyko, 1969; North, 1975; Lindzen18

and Farrell, 1977). Although the issue remains controversial (e.g., Fairchild and Kennedy, 2007;19

Allen and Etienne, 2008) assorted lines of geological evidence appear to indicate that Earth passed20

through several episodes of complete, or near-complete, glaciation during the Proterozoic (e.g.,21

Kirschvink, 1992; Hoffman et al., 1998; Hoffman and Li, 2008). Follow-up integrations of more-22

comprehensive global climate models have also found climate states with a global or near-global23

glaciation, though they typically require larger reductions in the solar output than the earlier24

calculations suggested (e.g., Baum and Crowley, 1993; Jenkins and Smith, 1999; Crowley et al.,25

2001).26

To our knowledge, the factors controlling Snowball Earth have never been presented in terms of27

a formal feedback analysis, and doing so provides an opportunity to demonstrate several basic28

properties of feedbacks. Applying this analysis to the original zonal-mean energy balance climate29

models, the physical mechanism of the runaway glaciation can be clearly and simply demonstrated.30

The strength of the feedback is shown to equal the ratio of competing stabilizing and destabilizing31

tendencies on the global energy balance or, equivalently, competing tendencies on the local energy32

budget at the advancing ice-line. The phenomenon of a snowball Earth is a simple illustration of33

how climate sensitivity and feedback strength can change as a function of the mean climate state,34

which is an issue of some relevance for future climate predictions. Moreover, although there are35
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obvious caveats because of the simplifying assumptions of the models, the instability is also an36

interesting example of a climate ‘tipping point’.37

The analytical solutions for the simple energy balance models permit feedback strengths to be38

calculated even for the unstable equilibrium climates. Doing so gives the somewhat counterintuitive39

but explainable result, that the ice-albedo can under some conditions behave as a negative feedback40

on global mean temperature. The cause is the peculiar physics of the small ice-cap instability (e.g.,41

North, 1975), and that of a previously unreported counterpart at low latitudes.42

2 Analysis43

We begin with the classic equation for the annual-mean, zonal-mean energy balance model (EBM)44

as a function of latitude (e.g., Budyko, 1969; North, 1975; Lindzen, 1990):45

Q

4
S(x)(1− α(x)) = A+BT (x) +∇ · ~F . (1)

where Q is the solar constant and x is sine of latitude. T (x), S(x) and α(x) are the local tempera-46

ture, normalized annual-mean insolation and the albedo, respectively. A+BT (x) is a linearization47

of the outgoing longwave radiation (OLR), and ~F is the poleward heat transport.48

Equation (1) can be integrated from equator to pole to give an expression for the global energy49

balance:50
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Q

4
(1− αp) = A+BT, (2)

where αp is the global-average albedo:51

αp ≡
∫ 1

0
α(x)S(x)dx. (3)

Finally, let xs be the latitude of the ice-line (i.e., where T = Ts).52

To a good approximation S(x) may be represented as S(x) = 1 + s2P2(x), where s2 = −0.48253

and P2 is the second Legendre polynomial: P2 = 1
2(3x2 − 1) (e.g., Chylek and Coakley (1975),54

Figure 1a). We adopt parameter values from Lindzen and Farrell (1977): A = 211.1 W m−2;55

B = 1.55 W m−2 oC−1. Note that the unit of T is oC. We allow Q to vary in the vicinity of the56

modern day value, which Lindzen and Farrell took to be Q0 = 1336 W m−2.57

If αp = constant, xs and T respond directly (with no feedbacks) to variations in Q. A feedback can58

be introduced by allowing albedo to be a function of temperature: an ice-free albedo, α1, is assumed59

for temperatures greater than Ts (typically -10 oC), and an ice-covered albedo, α2, is assumed for60

temperatures less than Ts. Following Lindzen and Farrell (1977) we take α1 = 0.3, α2 = 0.6.61

Therefore, from equation (3)62

αp(T ) = αp(xs(T )) = α1

∫ xs

0
S(x)dx+ α2

∫ 1

xs

S(x)dx. (4)
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Using the relationship between Legendre polynomials that (2n + 1)Pn(x) = d
dx [Pn+1(x) − Pn(x)]63

(e.g., Abramovitz and Stegun,1965), equation (4) can be written as:64

αp(xs) = α2 + (α1 − α2)
[
xs +

s2

5
(P3(xs)− P1(xs)

]
. (5)

Figure 1b shows that αp(xs) varies smoothly between the ice-free and ice-covered limits.65

2.1 Budyko-style energy balance models66

Budyko (1969) presented an energy balance model that is particularly tractable analytically, propos-67

ing a very simple parameterization for the divergence of the poleward heat flux:68

∇ · ~F = C(T − T ), (6)

where the overbar denotes the global mean. Thus there is a divergence of heat flux if the local69

temperature is higher than the global mean, and convergence of heat flux if it is lower. The70

higher the value of C, the more efficiently heat is redistributed on the planet. Sellers (1969) also71

parameterized heat flux in this way, but included extra model complexities that are unnecessary72

for present purposes.73
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2.1.1 Traditional Analysis74

An outline of the solution is briefly given here for clarity of presentation, but follows previous75

studies (e.g., Lindzen and Farrell, 1977).76

With this Budyko-style parameterization of the heat flux, applying equation (1) at the ice-line77

(x = xs) gives78

Q

4
S(xs)(1− αs)︸ ︷︷ ︸

absorbed shortwave

− C(Ts − T )︸ ︷︷ ︸
flux divergence

= A+BTs (7)

where αs is the albedo exactly at the ice-line. A simple choice is to take αs = 1
2(α1 + α2) (e.g.,79

Lindzen, 1990). From equation (7), and by construction of the model, it is seen that the OLR at80

the ice-line is always a constant. The combination of the other two terms in the energy balance –81

the absorbed shortwave radiation minus the divergence of the poleward heat flux – must equal this82

constant.83

Equation (7) can be combined with (2) to eliminate T :84

Q

4
(1− αs)S(xs) +

Q

4
C

B
(1− αp) = constant. (8)

Substituting from (5) into (8) gives an analytical expression for Q(xs) (e.g., Lindzen, 1990) that85

governs how the equilibrium ice-line varies as a function of solar constant, Q (Figure 2a). Figures86

like 2a appear in many papers on Snowball Earth. Some of these studies argue on physical grounds87
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and others provide detailed (and sometimes involved) mathematical proofs that no stable solution88

is possible when the slope of xs vs. Q is negative (e.g., Held and Suarez, 1974; North, 1975; Ghil,89

1976; Su and Hsieh, 1976; Drazin and Griffel, 1977; Lindzen and Farrell, 1977; Cahalan and North,90

1979; North, 1990; Shen and North, 1999). The term ‘slope-stability theorem’ has been coined to91

describe the proposition.92

We show in the next section that a formal analysis of the ice-albedo feedback provides a simple93

poof of the slope-stability theorem, and gives physical insight into the cause of the instability.94

2.1.2 Feedback analysis from the ice-line perspective95

The instability results from the variation of albedo with changing climate state (as represented96

by xs, T ). One way to evaluate the effect of this is to ask: what is the difference between the97

sensitivity of the ice-line latitude to variations in the solar constant with and without albedo98

variations? Framing the issue in this way is at the heart of a feedback analysis (e.g., Roe, 2009).99

A first-order Taylor series expansion of (8) gives:100

∆Q
{

(1− αs)S(xs)
4

+
1
4
C

B
(1− αp)

}
+ ∆xs

{
Q(1− αs)

4
S′(xs)

}
−∆xs

QC

4B
α′p = 0, (9)

where the primes denote derivatives with respect to xs. First, consider the case in which no albedo101

variations are permitted. In this instance α′p = 0 and the sensitivity of the ice-line to insolation102

can be written as:103
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∆xs = λx∆Q, (10)

where104

λx = −
(1− αs)S(xs) + C

B (1− αp)
Q(1− αs)S′(xs)

. (11)

S′ is negative and so λx is positive. λx can be straightforwardly calculated from previous expres-105

sions.106

Secondly, consider the case in which albedo variations are permitted. Now α′p 6= 0 in equation (9),107

and variations in xs can be written as108

∆xs =
λx

1− fx
∆Q, (12)

where109

fx =
Cα′p

BS′(1− αs)
. (13)

fx is the feedback factor in this problem (e.g., Roe, 2009). Both α′p and S′ are negative so, as110

expected, fx is a positive feedback.111

Catastrophe occurs in the limit f → 1. Equation (13) demonstrates that, provided there is some112
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poleward heat transport (i.e., C 6= 0), this instability must be present for all parameter values: since113

S′ tends to zero as xs nears the equator (Fig. 1a), at some latitude f must exceed one. The slope114

stability theorem also follows directly from (12): for fx < 1 (i.e., stable equilibria), ∆xs/∆Q > 0;115

for fx > 1 (i.e., unstable equilibria), ∆xs/∆Q < 0. This behavior is shown in Figure 2b.116

2.1.3 What is the physical explanation of the instability?117

The mechanism of the instability can be understood physically as follows. Suppose, beginning from118

some equilibrium climate state, the ice-line advances while Q is held constant. The higher local119

insolation at lower latitudes produces warming at the perturbed ice-line position. Acting alone, this120

warming would tend to restore the ice-line to its previous equilibrium position. However, the local121

divergence of heat flux increases at lower latitudes, and this produces cooling at the new ice-line122

position. If the cooling is larger than the warming, the ice-line will continue to advance, and hence123

the situation is unstable. We can see this from the following: the relative magnitude of these two124

tendencies can be found by differentiating the terms in equation (7) with respect to xs and holding125

Q constant. The ratio R of the cooling tendency (i.e., the increase of local heat flux divergence) to126

the warming tendency (i.e., the increase in local insolation) can then be written as:127

R =
C dT

dxs

∣∣∣
Q

Q(1−αs)
4

dS
dxs

. (14)

From equation (2), dT/dxs|Q = − Q
4B (dα/dxs), and so R becomes128
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R =
−Cα′p

B(1− αs)S′
≡ fx. (15)

Therefore, for an incremental advance of the ice-line, the cooling term exceeds the warming term129

at the same latitude that fx exceeds 1. Thus we also see that the local and global perspectives on130

the feedback are equivalent.131

The snowball instability is inevitable in this climate model simply because of the geometry of a132

sphere. The rate at which the local insolation increases (or in other words, the restoring warming133

tendency described above) diminishes as the ice-line latitude moves equatorwards (i.e., Figure 1a),134

while the destabilizing effect of the local divergence of heat flux increases. As the equilibrium ice-135

line descends to lower and lower latitudes it becomes easier and easier for a perturbed ice-line to136

advance. Thus the strengthening of this positive albedo feedback as the ice line advances reflects137

a robust property of the climate system, and so is likely to hold in more sophisticated models.138

We note that Lindzen and Farrell (1977, 1980), Poulsen et al. (2001) and others have explored139

how including dynamical circulation regimes such as the Hadley Cell or additional heat-transport140

processes, such as ocean circulation, can modify this picture and we broach this further in the141

discussion.142

2.1.4 What is the dependency of the instability on physical parameters?143

Differentiating equation (5) with respect to xs, and substituting into equation (13) gives144
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fx = −
Cα′p

B(1− αs)S′
= −C(α1 − α2)S(xs)

B(1− αs)S′
. (16)

The strength of the feedback therefore depends linearly on the albedo contrast between ice-covered145

and ice-free areas, as is perhaps intuitive. fx is also proportional to C – the more efficiently heat is146

redistributed, the stronger the feedback. In effect, this reflects that heat can be ‘pulled out’ of the147

tropics more effectively, thereby creating a greater cooling tendency and permitting the ice-line to148

advance more easily (see also Held and Suarez, 1974). This has a strong physical basis, and so it149

is likely to also be true of models that have a more sophisticated representation of heat transport.150

Finally, fx is inversely proportional to B, since as noted above, a higher value of B means a lower151

sensitivity of climate to perturbations. We note that all of the model parameters enter into f at152

the same order, implying they have equal importance.153

Setting fx = 1 in equation (16) produces a quadratic equation for the sine of the latitude, x∗, at154

which the instability occurs:155

3s2

2
x∗2 + 2s2

C(α1 − α2)
B(1− αs)

x∗ + (1 +
s2

2
) = 0. (17)

The quadratic nature of the equation and the presence of s2 (the coefficient in the series expansion156

of the insolation distribution) reflect the spherical geometry. Note the model parameters appear157

only as a factor in the linear term in equation 17, and in the same nondimensional combination158

as in equation (16). An increase in this linear factor causes an increase in x∗ (i.e., the instability159

occurs at a higher latitude), reflecting a less stable system. Following the arguments of the previous160
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section, the latitude of the instability is also the latitude of the ice line at which the net incoming161

energy fluxes are independent of xs: equatorwards of this latitude, an advance of the ice line leads162

to a net cooling at the ice-line; polewards of this latitude, an advance of the ice line leads to a net163

warming at the ice-line.164

Does this work to sate Reviewer C?165

2.1.5 Feedback analysis from the global temperature perspective166

The magnitude of a feedback within a system can depend on the variable or field of interest167

(e.g., Roe, 2009). This can be illustrated by recasting the EBM system to solve for global-mean168

temperature instead of ice-line latitude. This makes the problem closer to the normal definition of169

the climate sensitivity to a radiative perturbation (e.g., Charney et al., 1979; Knutti and Hegerl,170

2008; Roe, 2009).171

Now we solve for changes in T due to changes in Q. First, suppose again that there is no albedo172

feedback (i.e., α′p = 0). In this case, from (2), first-order perturbations in temperature and solar173

constant are related by174

∆T = λT∆Q, (18)

where175
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λT =
(1− αp)

4B
. (19)

This is the equivalent of the standard climate sensitivity parameter for this problem (e.g., Roe,176

2009), though in this case it is the sensitivity to changes in solar constant, not to imposed inde-177

pendent forcing due to CO2. λ−1
T measures the basic stabilizing tendency in the energy balance of178

the planet, whereby the outgoing longwave radiation acts to restore temperatures back to equilib-179

rium after a perturbation. For a given change in insolation, a higher value of λ−1
T means a smaller180

temperature change, and so reflects a stronger damping tendency. Defined in this way, climate sen-181

sitivity decreases in a colder climate because as the planetary albedo increases, a given increment182

in insolation produces less radiative forcing in terms of what is actually absorbed.183

Now if instead the albedo is allowed to vary with temperature, the right-hand side of the equation184

must include the additional radiative perturbation that occurs in response to the change in albedo:185

∆T = λT∆Q− Q

4B
dαp

dT
∆T (20)

= λT∆Q− Q

4B
α′p

∆xs
∆T

∆T . (21)

This last term on the right hand side is the albedo feedback. Solving for ∆T explicitly gives186

∆T =
λT

1− fT
∆Q, (22)
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where fT is the albedo feedback factor (e.g., Roe, 2009), and is given by187

fT = − Q

4B
α′p

∆xs
∆T

= −
Q
4 α
′
p

B ∆T
∆xs

, (23)

where the ∆ notation means that the derivative is calculated along the curve xs = xs(Q,α′p))188

calculated from eq (12) .189

As with any positive feedback, (23) reflects competing tendencies on a conservation equation (e.g.,190

Roe, 2009). In this case, the numerator on the right hand side reflects the destabilizing process191

of the albedo increasing as the ice-line advances equatorwards, and the denominator reflects the192

stabilizing process of changes in the longwave radiation to space. Equation (23) is quite general and193

could readily be diagnosed from perturbation experiments using global climate models, for example.194

The relationship between the ice-line feedback and the global temperature feedback comes from195

the following:196

∆T
∆Q

=
∂T

∂αp
α′p

∆xs
∆Q

+
∂T

∂Q

∣∣∣∣
αp=const

. (24)

which can be rewritten as:197

λT
1− fT

= −
Qα′p
4B

(
λx

1− fx

)
+ λT . (25)

From this equation it is straightforward to demonstrate that fx and fT both cross 1 at the same198
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ice-line latitude, shown in Figure 2b.199

2.2 Diffusive energy balance models200

North (1975) suggested an alternative, and arguably somewhat more physical, parameterization for201

the poleward heat flux, proposing that it be parameterized as proportional to the local meridional202

temperature gradient. In this case ∇ · ~F in (1) is given by203

∇ · ~F = −D d

dx
(1− x2)

dT

dx
. (26)

2.2.1 Traditional Analysis204

North (1975) demonstrated that an accurate analytical approximation to equations (1) and (26)205

could be obtained using hypergeometrical functions and matching boundary conditions at the ice-206

line. North (1975), Cahalan and North (1979), and Shen and North (1999) and others have studied207

the stability properties of these solutions, analyzing the time-dependent behavior of perturbations208

away from the derived equilibrium solutions.209

Figure 3a reproduces the original analytical solutions derived by North (1975) using his chosen210

parameter set (which are slightly different from those used up to this point in this paper). From211

the slope of xs vs. Q it is clear that stable climates do not exist equatorwards of xs ≈ 0.6. In212

addition, there is also a striking phenomenon polewards of xs ≈ 0.95, the so-called ‘small ice cap213
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instability’ (e.g., North 1984): beyond some latitude, the slope of xs vs. Q turns negative, implying214

that the polar ice-cap can only be stable if it extends past some finite latitude. The reasons for215

this behavior has been analyzed in detail in simple systems (e.g., Lindzen and Farrell, 1977; North216

1984), though its presence in more complete climate models is still discussed (e.g., Crowley et al.,217

1994; Lee and North, 1995; Langen and Alexeev, 2004; Rose and Marshall, 2009; Enderton and218

Marshall, 2009).219

2.2.2 Feedback Analysis220

A simple alternative to these time-dependent analyses is to calculate the feedback strengths by221

direct substitution of the analytical solutions provided in North (1975) into equations (18), (23),222

and (25). Figure 3d shows both fx and fT . fx behaves as expected - it lies between zero and one223

in the stable ice-line regime, and exceeds one for unstable ice-line regimes. The behavior of fT is224

more interesting. It goes through two singularities, and actually becomes negative near the equator225

and near the pole.226

The cause of this peculiar behavior is related to the small ice cap instability and, as it turns out,227

there is a directly analogous counterpart near the equator. The explanation closely follows argu-228

ments in Lindzen and Farrell (1977) for the small ice-cap instability, and is illustrated schematically229

in Figure 3. Three curves are shown for equilibrium climate states using the Budyko-style approxi-230

mation for∇· ~F , but using different values for the ice-line albedo ((i) αs = α1; (ii) αs = 0.5∗(α1+α2)231

as has been used up to now; (iii) and αs = α2).232
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The small ice-cap instability can be understood by considering the intersection of these curves with233

xs = 1. Recall that these curves give pairs of (xs, Q) that are equilibrium solutions of the model234

equations, and that the stability of these equilibrium states can be judged from whether dxs/dQ > 0235

(stable) or dxs/dQ < 0 (unstable). Imagine starting with an ice-free Earth and high Q (point A1236

in Figure 4). If Q is now gradually lowered, the system moves toward point A2. As soon as any237

ice forms on the planet, though, the solution trajectory must jump from A2 to A3, because of the238

discontinuity in albedo. The introduction of any ice at all means, somewhat counterintuitively,239

that the solar constant must be increased to maintain the ice at that latitude in equilibrium. As240

pointed out by Lindzen and Farrell (1977), in the Budyko-style EBM the non-local nature of the241

heat transport means the discontinuity is confined to xs = 1. For North-style diffusion however, the242

influence of the albedo discontinuity leads to a boundary layer that extends into the domain with a243

characteristic length scale equal to
√
D/B (see also North, 1984). This is illustrated schematically244

by the thick curve. Along this trajectory of equilibrium, albeit unstable, climates from A2 to A3, Q245

and T are both increasing (Figure 2b), even though the ice line is descending equatorwards. Thus246

the gradient ∆T/∆xs is negative (Figure 2c) and so from (23), fT is also negative.247

There is a directly analogous discontinuity at the equator. Start with an ice-covered Earth and low248

Q (point B1). If Q is now gradually increased then the system moves along the path B1 to B2 .249

But again, as soon as any ice-fee areas emerge the solution trajectory must jump to B3. Following250

the same reasoning as before, ∆T/∆xs reverses (Figure 3c), and so fT is negative. The thick green251

line in Figure 3c also indicates schematically the penetration of the impact of this discontinuity252

into the domain for North-style diffusive transport. The equatorial discontinuity is not readily253

apparent in the xs vs. Q curves because the slope of the curve from B2 to B3 has the same sense254
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as the slope of dxs/dQ at slightly higher latitudes. Taken together, the polar and the near-equator255

instabilities produce the thick green curve in Figure 4, which is similar to the curve of xs vs. Q256

curve in Figure 3a.257

In summary, imagine a global temperature increase from an unspecified cause. For most values of258

xs, this causes a retreat of the ice-line amplifying the original warming (Figure 3c and Equation 20).259

However, in the vicinity of the equator and pole, the discontinuity in albedo exerts a stronger control260

on the system dynamics, and the warming is in fact associated with an advance of the ice line. This261

damps the original warming and so the feedback is negative. Although this only occurs here in262

equilibrium climate states that are unstable, it is an exotic illustration of the point that if the263

dominant physical processes change as a function of mean climate state, the magnitude and even264

the sign of the feedback can vary (e.g., Roe, 2009).265

3 Discussion266

In essence, the analysis presented here recasts existing solutions for simple energy balance models267

into the language of feedback analysis. In doing so, the physical cause of the Snowball Earth268

instability can be clearly and simply laid out. From the perspective of the global energy balance,269

the strength of the feedback is determined by the competition between the stabilizing tendency of270

the outgoing longwave radiation, and the destabilizing tendency of less radiation being absorbed271

as the planet brightens. From the perspective of the ice-line, the feedback is the ratio of changes272

in local insolation and in the divergence of the poleward heat flux as xs changes.273
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Our analysis enables derivation of simple expressions for the strength of the albedo feedback as274

a function of mean climate state and choice of climate parameters. One principal control is of275

course the spherical geometry of the Earth which, at least within the strictures of these simple276

models, makes the instability inevitable at some latitude. In the case of the Budyko-style model277

the latitude of the ice-line instability also depends on a simple non-dimensional combination of278

model parameters.279

We have investigated the apparently strange result that, for diffusive parameterizations of heat280

flux, the ice albedo can even act as a negative feedback (i.e., have a stabilizing effect) on global281

temperature variations. It happens here only for climate states that are unstable, because of the282

very tight coupling assumed between the ice-line and temperature in the energy balance model.283

However the result that global mean temperature might have a minimum at a nonzero ice-line284

latitude because of the albedo discontinuity is quite physical. It remains to be explored whether285

this negative ice-albedo feedback is just a curiosity of these particular models, or if it can help286

explain the occurrence of equilibrium ‘slush-ball’ states (i.e., an ice-free equatorial band) found in287

some climate models (e.g., Hyde et al., 2000; Crowley et al., 2001), and which has been argued to288

be more consistent with geological evidence (Allen and Etienne, 2008). Another useful diagnostic289

is suggested by the results in Sections 2.1.4 and 2.1.3. When the overall climate is stable it is290

because an equatorward advance of the ice-line causes a net warming at the ice-line. This is likely291

a very general result. Studying the energy budget response to an ice-line perturbation in models292

that exhibit slush-ball states would elucidate which terms are responsible for that warming, and293

perhaps therefore explain the differences from models that do not exhibit slush-ball states.294
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The very concept of a feedback implicitly partitions the system into a reference state, and a set295

of physical ‘feedback’ processes (e.g., Roe, 2009). In this context, having an ice-albedo feedback296

means introducing a process that allows the albedo to vary with climate state. A straightforward297

lesson that also applies to more complex systems is that the impact of adding this process depends298

on which part of the system is of interest. In this simple case studied here, the feedback strength299

is different for the global-mean temperature and for the ice-line.300

Our representations of the feedbacks by ratios of derivatives illustrates the general feature of feed-301

backs; whereas in the simplified physical system considered in this paper the derivatives were taken302

with respect to the spatial variable xs, the primes could more generally indicate derivatives taken303

with respect to other climate variables such as circulation pattern, atmospheric composition, etc.304

The zonal-mean EBMs presented here are obviously highly idealized representations of the real305

world. Severe approximations have been made in their derivation, not the least of which are the306

absence of clouds and a seasonal cycle, and these approximations render the albedo feedback as307

being substantially larger than is inferred from GCMs for the modern climate (e.g., Soden and308

Held, 2006). It would be of interest to diagnose ice-albedo feedbacks within GCMs as the solar309

constant is reduced (following, for example, the methods of Soden and Held, 2006), and to evaluate310

if the feedback strength varies in ways that are consistent with the predictions from (16). It may311

well be that the reason the solar constant must be lowered in GCMs by significantly more than312

would be suggested by the EBMs (e.g., Poulsen and Jacob, 2004; Voigt and Marotzke, 2009) is due313

to the weaker ice-albedo feedback in the GCMs. The consequence of a weaker albedo feedback are314

predicted in Equations (16) and (17).315
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Some studies have suggested that there might be a ‘stability ledge’ due to the effects of the Hadley316

cell (Lindzen and Farrell, 1977; some climate model results suggests that ocean transports (Poulsen317

et al., 2001) or latent heat fluxes (Poulsen, 2003) can act to inhibit a complete glaciation. Poulsen318

and Jacob (2004) analyze such effects in some detail. These processes could in principal be cast as319

additional feedbacks in the energy budget. To first order, the net effect on the climate is given by320

the sum of the individual feedback factors and so isolating just the ice-albedo feedback provides a321

guide for how strong those negative feedbacks have to be to create a stable equilibrium (i.e., the322

sum must be less than one).323

Recent advances in feedback analysis permit the full spatial structure of climate feedbacks to be324

calculated (e.g., Soden et al., 2008), and can even include ocean heat uptake (Gregory and Forster,325

2008). A full feedback diagnosis of the simulations from more complicated models such as Voigt326

and Marotzke (2009) would permit the relative importance of individual processes in these models327

(and the uncertainties in them) to be propagated through the system dynamics. One important328

and robust expectation is that uncertainties in physical process (and in model parameterizations329

of them) lead to large uncertainties in the system response in the vicinity of f = 1, because of the330

strong amplification that is occurring (e.g., Roe, 2009). It is perhaps not surprising then, that331

GCMs exhibit such a diversity of behavior (e.g., Voigt and Marotzke, 2009).332

The Snowball Earth phenomenon illustrates how localized physical processes can have a global333

impact. Here, strong model assumptions control how something happening at one particular lati-334

tude (the albedo changing because of an ice-line advance) acts to affect the global-mean climate.335

In nature other important feedbacks are also localized, such as the strong negative feedback of336
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subtropical stratus decks (e.g., Sanderson et al., 2008), or the high-latitude deep ocean heat up-337

take (e.g., Gregory and Forster, 2008; Winton et al., 2009; Baker and Roe, 2009). Perhaps one338

important way forward for improving both global and regional climate predictions will be to better339

understand how these regional processes combine to give the full, global, system response.340
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List of Figures435

Figure 1 a) Normalized insolation distribution S(x) as a function of latitude. The normalization436

is such that
∫ 1

0 S(x)dx = 1; b) planetary albedo, αp(xs) as a function of the latitude of the ice-line.437

Note that the x-axes in the two panels refer to different things.438
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Figure 2 Properties relating to the ice-line instability in the Budyko model. a) Equilibrium ice-439

line as a function of insolation relative to modern. Following Lindzen and Farrell (1977), Q0 =440

1336 W m−2: regions with positive slope are stable equilibria, negative slopes are unstable equilibria;441

b) albedo feedback factors fx, fT . Only regions with f < 1 are stable equilibria.442

Figure 3 Properties of solutions to the North diffusive EBM. a) the ice-line as a function of Q/Q0,443

using North (1975) analytical solutions and parameters. The thin lines show turning points; b)444

global mean temperature vs. solar constant for the same solution; c) global mean temperature vs.445

ice-line for the same solution; d) fx and fT . The thin lines confirm that the feedbacks exceed 1 at446

the latitude of the turning points in panel a). Note that fT becomes negative near the equator and447

the pole. See text for the explanation.448

Figure 4 Schematic explanation of small ice-cap instability, and the regions of negative fT feedback,449

extending the arguments of Lindzen and Farrell (1977). See text for details.450
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Figure 1: a) Normalized insolation distribution S(x) as a function of latitude. The normal-

ization is such that
∫ 1

0 S(x)dx = 1; b) planetary albedo, αp(xs) as a function of the latitude

of the ice-line. Note that the x-axes in the two panels refer to different things.
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Figure 2: Properties relating to the ice-line instability in the Budyko model. a) Equilibrium

ice-line as a function of insolation relative to modern. Following Lindzen and Farrell (1977),

Q0 = 1336 W m−2: regions with positive slope are stable equilibria, negative slopes are

unstable equilibria; b) albedo feedback factors fx, fT . Only regions with f < 1 are stable

equilibria.
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Figure 3: Properties of solutions to the North diffusive EBM. a) the ice-line as a function of

Q/Q0, using North (1975) analytical solutions and parameters. The thin lines show turning

points; b) global mean temperature vs. solar constant for the same solution; c) global mean

temperature vs. ice-line for the same solution; d) fx and fT . The thin lines confirm that the

feedbacks exceed 1 at the latitude of the turning points in panel a). Note that fT becomes

negative near the equator and the pole. See text for the explanation.
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