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Abstract

Glaciers respond to long-term climate changes and also to the year-to-year fluc-

tuations inherent in a constant climate. Differentiating between these factors

is critical for the correct interpretation of past glacier fluctuations, and for

the correct attribution of current changes. Previous work has established that

century-scale, kilometer-scale fluctuations can occur in a constant climate. This

study asks two further questions of practical significance: how likely is an ex-

cursion of a given magnitude in a given amount of time, and how large a trend

in length is statistically significant? A linear model permits analytical answers

wherein the dependencies on glacier geometry and climate setting can be clearly

understood. The expressions are validated with a dynamic glacier model. The

likelihood of glacier excursions is well characterized by extreme-value statistics,

though probabilities are acutely sensitive to some poorly-known glacier proper-

ties. Conventional statistical tests can be used for establishing the significance

of an observed glacier trend. However it is important to determine the in-

dependent information in the observations, which can be effectively estimated

from the glacier geometry. Finally, the retreat of glaciers around Mt. Baker in

Washington State is consistent with, but not independent proof of, the regional

climate warming that is established from the instrumental record.
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1 Statistics and the interpretation of glacier variability1

Climate is defined as the statistics of weather, averaged over some period of interest. The World2

Meteorological Organization takes 30 yr as the time interval over which those statistics should be de-3

termined, though other intervals are equally valid to choose, depending on the purpose. Obviously,4

the statistics of weather includes the average and the standard deviation, as well as higher-order5

statistical moments. By definition then, a constant climate means constant (or stationary) statis-6

tics. And therefore, variability, as manifest in the standard deviation, is inherent to a constant7

climate. What does this mean for how glaciers behave in such a climate? Of particular importance8

are the year-to-year stochastic fluctuations in accumulation and ablation. Glaciers are dynamical9

systems with a finite memory, and a fundamental property of such systems is that they will in-10

tegrate such stochastic fluctuations to produce persistent fluctuations on longer time scales (e.g.,11

Hasselmann, 1976; Roe, 2009).12

Oerlemans (2000) and Reichert et al. (2002) model two well-studied glaciers in Scandinavia and13

the Alps, and conclude that Little Ice Age-scale fluctuations will occur every so often, even in a14

constant climate. Roe and O’Neal (2009) show that, for the setting of Mt. Baker in Washington15

State, glaciers will undergo kilometer-scale, century-scale fluctuations, again, even in a constant16

climate. Sorting out real climate change from the variability intrinsic to a constant climate is17

crucial to correctly interpreting the climatic cause of past glacier variations, and to the detection18

and attribution of modern climate change from the modern glacier record.19

Roe (2009) and Burke and Roe (2010) give a spectral interpretation of this argument, which we20

review briefly here. The true, physical, measure of climatic persistence is whether climate variables21

are autocorrelated. In other words, does one year’s climate bear any relationship to that of previous22
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years? Consider a climate that has year-to-year variability (drawn randomly from the probability23

distribution of that climate), but no memory. The time series of such a climate is characterized by a24

‘white noise’ power spectrum - that is to say, it has equal power at all frequencies. By construction25

then, a climate that has no persistence nonetheless has power at all frequencies. The reason is26

that the phase of individual frequencies in the spectrum is random. On average they destructively27

interfere, leaving no persistence in the time series constructed from that spectrum.28

Now, a glacier can be thought of as acting as a low-pass spectral filter: the glacier’s response to29

this white-noise climate is characterized by a ‘red noise’ power spectrum - analogous to red light,30

higher frequencies are damped compared to lower frequencies. Because of this damping, different31

frequencies will no longer cancel out, and the time series of glacier length variations exhibits long-32

term fluctuations with a timescale related to the spectral filter of the glacier dynamics.33

In the above example, the climate was chosen to be white noise (i.e., with no persistence). Weak34

interannual persistence in sea-surface temperatures does exist because the ocean mixed layer has35

some thermal intertia (e.g., Deser et al., 2003). Such weakly red persistence is captured in the36

30-yr statistics, and so should properly be included in the definition of the climate statistics. The37

reponse time of the mixed layer is about one year or less, except near sites of deep ocean convection,38

of in the vicinity of the sea-ice margin (e.g., Stouffer et al., 2000). In other words, it is much less39

than typical glacier response times, and so the above argument is unaffected: the persistence of the40

glacier fluctuations is due to the memory intrinsic to the glacier and not any persistence intrinsic41

to the climate. Burke and Roe (2010) analyze the persistence of relevant climate fields and mass42

balance records for Europe and, after linearly detrending to account for anthropogenic trends, find43

no evidence in the instrumental or glacier mass-balance record for decadal-scale persistence.44
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Lastly, even where such persistence in climate does exist, it is typically only a small fraction of the45

overall variance. It is always possible to split the time series of climate forcing into the piece that46

is due to persistence (i.e., what can be related to previous years), and a piece that is a residual47

without persistence. Burke and Roe (2010) calculate the relative importance of these two pieces48

in driving the variance of glacier fluctuations in Europe, and conclude that the residual piece is of49

greatest importance.50

The fundamental and important point is that glaciers can undergo large and persistent fluctuations51

in a constant climate that has little or no persistence. This fact is often overlooked in the climatic52

interpretation of past glacier fluctuations. A central goal of paleoglaciology (and paleoclimate in53

general) is to identify glacier fluctuations that are either unusually large or unusually persistent,54

and which are therefore ‘interesting’ to explain. They are interesting because we can then conclude55

some definitive change in the climate dynamics or climate forcing has occured, and try to identify56

the cause. The importance of framing the problem in this way is that the alternative is unsatisfying57

and violates basic tenets of statistical analysis. If climate is defined as the statistics of weather58

averaged over some period of choice, and if it is also established that a particular glacier fluctuation59

is quite likely to occur given those statistics, then it makes no sense to conclude that the glacier60

fluctuation reflects a climate change.61

The interpretation of the climatic cause of glacier fluctuations can therefore be distilled into a classic62

statistical exercise of correctly identifying changes due to a signal (i.e., the glacier response to a63

climate change) versus changes due to noise (i.e., the glacier response to interannual variability).64

What factors control the relative magnitude of this signal and noise? Under the assumption that a65

glacier is a simple dynamical system relaxing back to equilibrium with a single dynamical response66

time (e.g., Jóhannesson et al., 1989a,b), some useful formulae can be derived (e.g., Roe and O’Neal,67
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2009; Huybers and Roe, 2009). This study extends these prior analyses to ask two more questions:68

1. What factors govern the likelihood of seeing a glacier excursion of a given magnitude in a69

given interval of time?70

2. How can the statistical significance of a trend in observed or reconstructed glacier length be71

evaluated?72

In both cases, formulae can be derived from the linear equations, in which the dependencies on73

glacier geometry and climate setting can be clearly understood. The value of these formulae is that74

the parameters involved can be calculated from a glacier’s geometry, and so they give guidance as75

to which glaciers are likely to be best for detecting past climate change. A second and key part76

of the present study is to establish whether the formulae successfully predict the behavior of a77

dynamic glacier model, which obeys a nonlinear rheology.78

We find that maximum glacier excursions are governed by high frequency behavior of the glacier,79

and the linear formulae hold provided the short-term lag correlations are used to calculate the80

response time. The probabilities of a given excursion are very sensitive, however, to the magnitude81

of the natural variability. We also show that glacier trends can be evaluated using a standard82

Student’s t-test, provided that the right degrees of freedom are used. These degrees of freedom can83

be accurately calculated from the linear model equations. Finally, we conclude that the current84

retreat of glaciers around Mt. Baker in Washington State is consistent with, but not by itself85

independent proof of, regional warming.86
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2 Linear and dynamic models87

2.1 Linear model88

Roe and O’Neal (2009) derived a simple linear model for describing variations in glacier length in89

response to variations in melt-season temperature and annual accumulation. It is similar in spirit90

to other earlier models (e.g., Jóhannesson, 1989a,b; Harrison et al., 2001), all of which boil down91

to essentially the same first-order ordinary differential equation:92

dL′(t)
dt

+
L′(t)
τ

= α̃T ′(t) + β̃P ′(t) (1)

Equation (1) represents a dynamical system in which glacier length, L′(t), responds to fluctuations93

in annual accumulation, P ′(t), and melt-season temperature, T ′(t). Primes denote departures94

from the long-term climatological mean. τ is the e-folding timescale on which the glacier relaxes95

back to equilibrium, or equivalently it is the length of time over which the glaciers remembers its96

previous states. α̃ and β̃ are coefficients relating climate forcing to the tendency on glacier length.97

Equation (1) is continuous in time. Its discrete form is98

L′t+∆t = γL′t + αT ′t + βP ′t , (2)

where ∆t = 1 yr, and γ = 1 − ∆t/τ , and is the lag-1 correlation coefficient. This form of the99

equation is convenient for deriving expressions for the statistics of glacier length fluctuations. As100

derived in Roe and O’Neal (2009), τ , α, and β are functions of the glacier geometry and some mass101

balance parameters:102
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τ = wH
µΓtanφAabl

,

α = −µAT>0∆t
wH ,

β = Atot∆t
wH .

(3)

A schematic illustration of the model is given in Figure 1. The geometric parameters for the glacier103

are: width, w; depth, H; total area, Atot; ablation area, Aabl; melt area, AT>0; and basal slope,104

tanφ. µ is the melt factor, relating melting rates to melt-season temperature, with units of [m105

yr−1 oC−1]; Γ is the atmospheric lapse rate, 6.5 oC km−1.106

2.2 Dynamic model107

A dynamic flowline model is also used in this study. We follow standard equations for the shallow108

ice approximation incorporating glacier sliding (e.g., Oerlemans, 2001):109

dH(x)
dt + dF (x)

dx = ḃ(x),

F (x) = ρ3g3(fdH2 + fs)H3
(
dzs
dx

)3
.

(4)

H(x) is glacier thickness at position x, F (x) is the vertically integrated flux of ice, and dzs/dx is110

the surface slope. fd and fs are the coefficients governing deformation and sliding, respectively.111

Following Budd (1979) and Oerlemans (2001), we take fd = 1.9 × 10−24 Pa3 s−1 and fs = 5.7 ×112

10−20 Pa3 m2 s−1. ḃ(x) is the local mass balance. For simplicity we assume a uniform accumulation113

pattern, and melt-season temperature is calculated as a function of x using the standard lapse rate.114

Equations 4 were solved using standard numerical techniques on a 50 m grid, though results with115

20 m and 100 m grid spacing proved very similar.116
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2.3 Preliminary comparision of linear and dynamic models117

In order to evaluate and compare the linear and dynamic models, we use the well-documented118

setting of Mt. Baker, a stratovolcano in Washington State flanked by five typical midlatitude119

glaciers. We use the same climate as Roe and O’Neal (2009), based on a combination of local120

station measurements, weather model output, and mass balance measurements. The annual mean121

accumulation is 5 m yr−1 with an interannual standard deviation of 1 m yr−1. The interannual122

standard deviation in melt-season temperature is 0.8 oC.123

Roe and O’Neal (2009) specified parameters and geometry representative of the Mt. Baker glaciers,124

and showed that the linear model was able to simulate historical glacier length variations fairly125

well. In the current study, rather than the extensive fiddling with the dynamic model that would126

be necessary to get this exact geometry and parameter set, we use a more efficient procedure for127

the comparison of the linear and dynamic models, which is our main purpose. We specify the128

accumulation and the basal slope, and adjust the mean melt-season temperature until the dynamic129

model is approximately right in terms of total area. We then diagnose from the model output130

the other geometric factors needed for the linear model (H, Aabl, AT>0). This allows a more131

exacting comparison between the two models, which is the point here. Values for this geometry132

and standard parameters are given in Table 1. In particular the linear timescale calculated from133

the model geometry (≡ τlin) is about 7 yr.134

In the remainder of this section we perform two preliminary comparisons of the two models. We135

first calculate the change in length due to step-function changes in mean climate forcing, for which136

the linear model has analytical solutions (Roe and O’Neal, 2009). The dynamic model must be inte-137

grated until the new equilibrium is reached. In general there is extremely good agreement between138
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the dynamic and linear models, shown in Figure 2, with length changes differing by less than 5%139

for climate changes spanning ±6 oC in melt-season temperature and ±2 m yr−1 in accumulation.140

There is a suggestion in Figure 2 that the response to precipitation is slightly more linear than the141

response to temperature. On the whole though, for this range of climate forcing and for this glacier142

geometry and setting, Figure 2 strongly supports the validity of the assumptions made in deriving143

the linear model (Roe and ONeal, 2009).144

The second comparison is of the models’ response to a linear trend in climate forcing. We pick a145

warming trend comparable to that experienced in the Pacific Northwest during the 20th century146

(+0.1 oC decade−1, e.g., Mote, 2003), and an increasing accumulation trend (0.1 m yr−1 decade−1,147

though the significance of observed accumulation trends is unclear in this region, Mote, 2003).148

Analytical solutions are again available for the linear model, and do a good job of predicting149

both the rate and magnitude of the response of the dynamic model, as shown in Figure 3. For150

both trends, the dynamic model lags slightly the predicted linear response and, in the case of a151

temperature trend, the rate of retreat in the dynamic model appears slightly greater than predicted152

from the linear model, consistent with the results in Figure 2.153

3 The response to climate variability154

In what follows we characterize the nature of the glacier response to interannual climate variability155

in more detail. Equation (2) can be developed further to derive some useful properties of glacier156

variability, whose dependence on glacier geometry and climate parameters can be clearly under-157

stood. As noted in the introduction, a focus of this present study is to evaluate the degree to which158

these expressions also govern the behavior of the dynamic model.159
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Roe and O’Neal (2009) demonstrate that, after linearly detrending, the observed interannual vari-160

ability in the Pacific Northwest in both the annual-mean accumulation and the melt-season tem-161

perature is consistent with random fluctuations that are Gaussian (i.e., normally-distributed), and162

white (i.e., uncorrelated in time). In other words, after accounting for the anthropogenic trends in163

climate, the remaining natural variability has no interannual persistence. The analysis in Roe and164

O’Neal is sufficient to prove that, even if some interannual persistence in climate does in fact exist165

for the region, it accounts for a statistically-insignificant fraction of the climate variability over the166

period of the instrumental record.167

Two 10,000 year-long realizations of white noise were generated to simulate interannual variability168

in P ′ and T ′, characteristic of the Pacific Northwest (with standard deviations of 1 m yr−1 and169

0.8 oC, respectively). This is long enough to acquire good statistics on the glacier response. The170

two climate time series are assumed to be uncorrelated, also consistent with observations for the171

region (Roe and O’Neal, 2009). Both the dynamic and the linear models are then integrated172

forward in time, using the same realizations of this simulated climate variability. Figure 4 shows173

a 500 year segment of the climate and the glacier response. Both the linear and dynamic models174

undergo kilometer-scale, centennial-scale fluctuations in response to a climate that we reiterate has175

no persistence. The standard deviation of the linear model can be derived from model parameters176

(Roe and O’Neal, 2009), and is 360 m. The standard deviation of the dynamic model must be177

calculated from the numerical integration, and is 324 m, a difference of 10%, which is about what178

Roe and O’Neal (2009) found for a similar calculation. The smaller standard deviation of the179

dynamic model is evident in Figure 4, as is the fact the dynamic model is noticeably smoother.180

Finally, it is also clear that the response of the dynamic model lags behind the response of the181

linear model.182
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For comparison, Oerlemans (2001) estimates a 1σ of 660 m for typical glacier parameters, and183

Reichert et al (2002) model values of 550 m and 290 m for Nigardsbreen and Rhone glaciers,184

respectively. Of course the exact values do, and should, vary with geometry and setting.185

A linear model like that of Equation (2) must have a normally-distributed response to normally-186

distributed forcing. For the dynamic model, one test of its linearity is to calculate the probability187

density function (PDF) from the histogram of its fluctuations. The PDFs for both models are shown188

in Figure 5. The smaller standard deviation of the dynamic model relative to the linear model is189

clear in its narrower clustering around zero. Visually, it appears there is a hint of skewness to central190

and negative values, though the skewness is in fact very slightly positive (0.06). The dynamic model191

PDF is not quite normally-distributed, however: a standard Kolomogorov-Smirnov test (e.g., Von192

Storch and Zwiers, 1999) rejects the normal distribution at greater than 95% confidence. The193

probable reason is that kurtosis of the dynamic model is 3.2, implying it is slightly more outlier-194

prone than a normal distribution, for which the kurtosis is 3.0.195

Despite some small differences, the response of the linear and dynamic models to equilibrium climate196

changes, climate trends, and climate variability have differed by only a few percent. This generally197

solid agreement between the dynamic and linear models in these preliminary tests is a firm basis for198

proceeding to explore the response to climate variability, using the analytical power of the linear199

model to understand the reasons for the glacier behavior.200

3.1 The autocorrelation and the spectral response of a glacier201

The autocorrelation function and the power spectrum of a time series are powerful tools for revealing202

the time dependence of a dynamical system. There are of course closely related to each other since203

12



the periodogram spectral estimate is just the fourier transform of the autocovariance function (e.g.,204

Von Storch and Zwiers, 1999). Both were calculated from the 10,000-yr integrations, a sample of205

which is shown in Figure 4.206

At low frequencies, with periods longer than a few decades, the spectra of the linear and dynamic207

models are identical. These timescales are much longer than the adjustment time of the glacier,208

and so both linear and dynamic models are in near-equilibrium with the forcing: dynamics don’t209

matter and the glacier is simply acting as a reservoir of ice with nearly balanced input and output210

fluxes. The linear model physics captures exactly this. At higher frequencies the two spectra differ211

considerably. Consistent with the time series shown in Figure 4, high frequencies in the dynamic212

model are considerably damped compared to the linear model. In the linear model any mass213

imbalance is instantly converted into a tendency on the length (Equation (1)). However, in the214

dynamic model, and in a real glacier, there is some intertia to terminus movement: it takes time215

for mass to travel to the terminus, and the terminus slope has steepen to the point it drives a flux216

of ice forward.217

The autocorrelation curve shows essentially the same information, but in a different light. For a218

linear model described by a single timescale the autocorrelation curve decays exponentially with219

a e-folding timescale of τ . Figure 6b shows that for lags longer than about 15 years (≈ 2 ×220

τlin), the autocorrelations of the linear and dynamic models are identical, and closely approximate221

the exponential behavior. For lags shorter than 15 years, the dynamic model has much higher222

autocorrelations than the linear model. This reflects the more smoothly varying behavior of the223

dynamic model, evident in Figure 4. For this setting and geometry, ∼15 years is the true measure224

of the timescale that separates when dynamics does and does not matter. The power spectrum can225

be deceptive in this regard. The visual appearance from Figure 6a is that it is only at much longer226
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periods that the behavior of the dynamic and linear models’ converge. This appearance is because227

a factor of 2π enters when the exponential decay time is projected onto the sinusoidal components228

of the power spectrum (e.g., Roe, 2009).229

There are various way of characterizing the glacier response time, and there has been substantial230

discussion in the literature (e.g., Nye, 1965; Jóhanneson et al., 1989a,b; Van de Wal and Oerlemans,231

1995; Bahr et al., 1998; Jóhannesson, 1997; Raper et al., 2000; Oerlemans, 2001; Pelto and Hedlund,232

2001; Harrison et al., 2001, 2003; Lesinger Vieli, and Gudmundsson, 2004; Schwitter and Raymond,233

2003; Oerlemans, 2007; Raper and Braithwaite, 2009). Figure 6b shows that the autocorrelation234

function of the dynamic model cannot be represented by a single timescale. Using the ARFIT235

algorithm of Schneider and Neumeier (2001), we find that an 8th-order autoregressive process is236

needed to match it, suggesting that ice dynamics introduces a complicated structure of persistence237

to the glacier length record.238

From Figure 6 it seems that best ‘effective response time’ depends on the timescale and question239

of interest. However several studies have assumed explicitly or implicitly a single response time in240

characterizing past, and predicting future glacier variations (e.g., Harper, 1992; Pelto and Hedlund,241

2001; Oerlemans 2005, 2007). We find a single best-fit timescale, τbf , for the dynamic model by242

fitting an AR(1) process using the ARFIT algorithm. This is equivalent to doing a regression243

analysis of the dynamic model to Equation (2), using a least-squares minimization. The high244

autocorrelations at short lags are weighted heavily in the fitting, and the resulting timescale, τbf =245

73 yr, is much longer than predicted from the linear model (τlin = 7 yr). For comparison, Figure 4246

shows the output from a linear model driven by the same climate forcing, but with τbf = 73 yr. The247

longer timescale correctly captures much of the low frequency variability of the dynamic model,248

but cannot capture some of the decadal fluctuations.249
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4 The likelihood of a glacier excursion250

One way of characterizing the expected natural variability of a glacier in a constant climate is251

to answer questions like: What is the expected return time, on average, of a particular glacier252

advance? How long, on average, does the glacier persist above or below its equilibrium length?253

How likely is an excursion of a given size in a given period of time?254

For linear models of the form of Equation (2), answers can be derived using standard formulas for255

threshold crossings of stochastic processes, first laid out by Rice (1948). VanMarcke (1983) and256

Leadbetter et al. (1983) contain good summaries. In the Appendix it is shown that, as long as257

τ >> ∆t, the average interval between up-crossings of a particular threshold, L0, is given by258

R(L0) = 2π

√
τ∆t

2
e

1
2

“
L0
σL

”2

. (5)

R(L0) is also the average return time of a glacier advance of size L0. σL is the standard deviation259

of natural fluctuations. Roe and O’Neal (2009) show that Equation (2) yields260

σL =
√

τ

2∆t
·
√
α2σ2

T + β2σ2
P , (6)

provided that P ′ and T ′ are neither autocorrelated or correlated with each other, consistent with261

climate in the Pacific Northwest. A general expression for σL without these restrictions is also262

possible (Huybers and Roe, 2009).263

From Equation (6), the exponent in Equation (5) contains τ , and therefore the return time of a264

given advance is a very sensitive function of the response time. A larger value of τ means that the265
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glacier is slower to return to equilibrium, and has a weaker restoring tendency. All else being equal,266

it will tend to have larger excursions for a given return time, as shown in Figure 7. Secondly, the267

L2
0 in the exponent in Equation (5) means the average return time lengthens extremely rapidly as268

the size of the advance increases. For τ = 12 yr, for example, an advance of 1 km will happen on269

average every 250 yr, while for an advance of 1.5 km, the average return time balloons to 7500 yr270

(Figure 7).271

4.1 Return time of zero-crossings272

How often does a glacier return to its equilibrium length? For up-crossings across zero, L0 = 0 in273

Equation (5), and the average return time is given by274

R(0) = 2π
√
τδt/2. (7)

For the linear model, with a τ = τlin = 7 yr, Equation (7) gives an average up-crossing interval of275

12 yr, which is in excellent agreement with the linear model output in Figure 4 - it must be since276

it is an exact solution of the linear equations. Using the best-fit response time for the dynamic277

model, τbf = 73 yr, Equation (7) gives a prediction for average up-crossing interval of 38 yr. The278

actual average interval from the dynamic model output is 41 yr, and thus compares well with the279

prediction.280

It can be shown (e.g., VanMarcke, 1983) that the rate of zero-crossing depends only of the first and281

second statistical moments of the spectrum. Although it is hard to see from Figure 6a because of282

the log-log axes, the centroid of the spectrum and its other moments are dominated by the high283
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frequency part of the spectrum, and so is consistent with using τbf .284

4.2 Likelihood of maximum glacier excursions285

Equation (5) presents the average return time of a particular advance or retreat. It is also possible286

to calculate the probability distribution of such return times. This is governed by the statistics of287

a Poisson distribution (e.g., Von Storch and Zwiers, 1999), wherein discrete stochastic events occur288

at a known rate, λ. A requirement of the process is that a time interval, (tf − ti), can be identified289

in which the likelihood of one event occurring is proportional to (tf − ti), and that the likelihood290

of two events occurring in that interval is negligible.291

So assuming a Poisson process, the probability of observing zero advances (or retreats) of magnitude292

L0 in an interval (tf − ti) is given by293

p(N(tf − ti) = 0) = exp[−λ(L0)(tf − ti)], (8)

where λ(L0) is the reciprocal of the up-crossing interval, R(L0), in Equation (7). The probability294

of at least one occurrence of an L0 advance (or retreat) is given by the complement of Equation (8):295

p(N(tf − ti) ≥ 1) = 1− exp[−(tf − ti)λ(L0)] = 1− exp

[
−

(tf − ti)
2π

·
(

2
τ∆t

) 1
2

· e−
1
2

“
L0
σL

”2
]
. (9)

Equation (9) reveals the dependencies clearly. The probability of seeing an advance or retreat is296

more sensitive to (tf − ti) than to τ . The probability is also remarkably and acutely sensititve to297

the ratio of L0 and σL: the exponent itself has an exponential dependence on the square of this298
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ratio.299

The advances or retreats considered so far have been relative to the equilibrium glacier position.300

In any given glacial valley, it is hard to know what the long-term average position of a glacier has301

been, especially in the face of a changing climate. A measure of more practical relevance is the302

total excursion of the glacier accounting for length changes of both signs (i.e., maximum advance303

minus maximum retreat). The probability of a total excursion of at least a size of ∆L occurring304

in a given period of time is given by the probability density of a maximum advance between L1305

and L1 + dL, f(L1), multiplied by the probability the maximum retreat exceeding L2 ≡ L1 −∆L,306

integrated over all possible maximum advances (see Figure 8).307

The probability density of a maximum advance between L1 and L1 + dL, f(L1) is:308

f(L1) =
d

dL1
(N(tf − ti) = 0) =

λ(L1)∆L
σ2
L

e−(tf−ti)λ(L1). (10)

Hence the total probability of a maximum excursion exceeding ∆L in309

p(Lmax − Lmin > ∆L) =
∫ ∞

0

λ(L1)∆L
σ2
L

e−(tf−ti)λ(L1)
(

1− e−Tλ(L1−∆L)
)
dL1. (11)

Figure 9 shows the probability distribution of maximum excursions in any 1000 yr period calculated310

from the dynamic model output, and also calculated from Equation (11) using τbf = 73 yr. There311

is good agreement, demonstrating that the model is closely behaving as a Poisson process with312

the best-fit timescale. In any 1000 yr period, it is very likely (> 95%) to undergo an excursion of313

at least 1.4 km, driven just by interannual variability in a constant climate. On the other hand,314

it is very unlikely (< 5%) to undergo an excursion exceeding 2.2 km. Also shown is the curve315
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for τ = 7 yr, which would predict longer excursions. This is because the greater power at higher316

frequencies and the shorter response time for the linear model (Figure 6a) makes it more likely to317

have a short, spikey fluctuation that takes the linear glacier across a given threshold. For the more318

smoothly varying dynamic model, these events are rarer.319

Reichert et al. (2002) made some similar calculations for the Alps and for Scandinavia, but used320

a different definition of a glacier excursion and diagnosed λ from the output of a numerical model.321

These results reenforces their conclusions however, and also those of Roe and O’Neal (2009), for322

the Cascades: kilometer-scale, centennial-scale variations in glacier length will occur in a constant323

climate. An advantage of Equation (11) is that the dependency of the excursion probabilities on324

the underlying glacier properties can be clearly seen. Figure 7 makes clear that it is important to325

identify the correct timescale.326

How robust are these excursion probabilities to different assumptions and model parameters? Fig-327

ure 10a shows how the probabilities change for different time intervals. The change in the curves328

in going from a 500 yr to a 1000 yr interval is about the same as in going from a 2000 yr to 5000 yr329

interval. In other words for longer intervals, the probabilities of seeing large excursions begins to330

saturate. However the super-exponential dependency on σL in Equation (9) makes the excursion331

probabilities acutely sensitive to glacier properties. Figure 10b shows how the curves change for332

small changes in σL. It is clear that even ±20% variations have a very large impact. An error333

in estimating σL of even this small amount might well reverse the interpretation about whether334

an excursion could be caused by interannual climate variability or an actual climate change. It335

is doubtful that the σL of real glaciers can be known that accurately. It is probably appropriate336

therefore, to be cautious about studies that use such curves to conclude that modern retreats ex-337

ceed natural variability (e.g., Reichert et al., 2002). It’s certainly possible, but an exhaustive error338
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analysis is needed to be confident.339

5 Trend detection for glaciers340

How big of a trend in glacier length is statististically significant? When does the trend exceed341

that expected from natural variability? We show here that two factors are of primary importance:342

1) the magnitude of the trend relative to the the amplitude of the natural variability, and 2) the343

amount of independent information in the observations. This last factor depends on the degrees of344

freedom, which in turn depends on the length of observations and the glacier memory.345

Let ρ be the correlation of the observations of glacier length and time at lag ∆t, and let ν be the346

degrees of freedom in the dependent time series (i.e., glacier length in this case). A t̃ statistic can347

be calculated from the following combination of ρ and ν:348

t̃ =
ρ
√
ν − 2

(1− ρ2)
. (12)

The tilde is used to distinguish this variable from the one we’ve used for time. Basic text books349

on statistics (e.g., Zwiers and vonStorch, 1999) show that, in the absence of a real trend, the350

probability of finding a given value of t̃ will follow a Students t̃ distribution, and standard tables351

can be used to calculate how often t̃ would occur simply by chance. In general, the larger the352

absolute value of t̃ the greater the confidence that the observed trend is significant.353

Equation (12) can also be written as:354
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t̃ =
bσt
√
ν − 2

σres
, (13)

where b is the regression coefficient between time and glacier length, and σt and σres are, respec-355

tively, the standard deviations of time and of the residuals of glacier length after the time-correlated356

trend has been subtracted.357

σt is the standard deviation of the independent variables (in this case time) over a given interval358

of time, (tf − ti), and is given by359

σt =

{
1

(tf − ti)

∫ (tf−ti)/2

−(tf−ti)/2
t2dt

} 1
2

=
(tf − ti)

2
√

3
. (14)

Therefore (15) becomes360

t̃ =
∆L
σL
·
√
ν − 2

12
. (15)

∆L ≡ b(tf − ti), and is the change in glacier length that is attributable to the linear trend.361

Equation (15) shows some basic and readily understood dependencies. The first factor on the right362

hand side of can be regarded as the signal-to-noise ratio: the greater the trend relative to the363

natural variability, the more significant the trend will be. Glaciers that exist in maritime climates364

are subject to a high degree of precipitation variability (e.g., Huybers and Roe, 2008), and have a365

muted sensitivity to temperature. As such, a warming trend in melt-season temperature may be366

obscured by the natural variability. A continental glacier with less precipitation variability and a367

higher sensitivity to temperature, may more directly reflect warming trends.368

The second factor on the right-hand side of Equation (15) shows that the degrees of freedom (i.e., the369
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number of independent pieces of information in the glacier record) is critical to assigning statistical370

confidence to an observed trend. If the glacier position were recorded annually, ∆t = 1 yr, and there371

would be N = (tf − ti)/∆t observations. However a glacier has a dynamical response time, and372

so it has memory of its previous positions. It is therefore autocorrelated and there are fewer than373

N degrees of freedom. Standard theory (e.g., VonStorch and Zwiers, 1999) gives the appropriate374

formula for the effective degrees of freedom as:375

ν = N
1− γ
1 + γ

, (16)

where, as noted above, γ is the autocorrelation coefficient at a lag time of ∆t. Using the approxi-376

mation that δt << τ , then using (3) and taking only first order terms:377

ν ≈
(tf − ti)

∆t
∆t/2τ

(1− 2∆t/τ)
≈
tf − fi

2τ
. (17)

So for a 100 yr glacier record and for a τlin = 7 yr, there are about seven effective degrees of378

freedom.379

An important assessment of whether the t̃ test can be used in practice is to establish whether random380

realizations of a dynamic glacier that is forced by a climate without a trend does, in fact, follow381

a Student’s t̃ distribution. In other words, is glacier variability consistent with the assumptions of382

the t̃ test? To do this, the right number of degrees of freedom needs to be established.383

Figure 11 shows the probability distribution of the t̃-statistic (Equation (12)), using 1000 randomly384

selected 100-yr intervals from the dynamic model output, and assuming that ν = 100 yr/(2τlin).385

Also shown are the theoretical Student’s t̃ distributions calculating ν using both τ = τlin = 7 yr,386
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and τ = τbf = 73 yr. It is clear that the output of the dynamic model is well characterized by a387

Student’s t̃ distribution with ν calculated from τlin and not, as might be expected, from τbf . In388

other words, for a 100 yr period of length variations at Mt Baker, Figure 11 shows that are about389

7 effective degrees of freedom, and the significance of a trend can be evaluated using a standard390

t̃-test.391

The t̃ statistic was also calculated for 50, 200, and 1000 yr trends, and again using τlin for the392

degrees of freedom. For 50 yr trends (just 3.2 effective degrees of freedom), the agreement with393

the theoretical distribution was slightly worse than that shown in Figure 11, but at no point does394

the error exceed 5%. For 200 yr and 1000 yr trends, the t̃ statistic approximated the theoretical395

distribution even more closely than that in Figure 11. We also note that annual observations of396

glacier length are not required to estimate trends: provided observations are frequent enough to397

sample the effective degrees of freedom, there can still be a correct assessment of significance.398

The analysis highlights the importance of knowing the right effective degrees of freedom for evalu-399

ating glacier trends in practice. If degrees of freedom were calculated using τbf = 73 yr, it would400

formally mean less than one degree of freedom in a 100 yr record, and Figure 11 shows that sig-401

nificant trends with high t̃-statistics would go unrecognized. The results also show that, for our402

chosen setting, the statistical significance of glacier trends can only be established on multi-decadal403

or longer timescales.404

It is interesting that for evaluating trends τlin is the right timescale to use, whereas for the likelihood405

of large excursions, τbf works well. The reason seems to be that a trend, like an equilibrium step-406

change, is a low-frequency behavior of the glacier. It is thus well-described by the linear model,407

as seen in Section 2.3. In contrast, maximum excursions depend on relatively abrupt changes that408
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cause a threshold to be crossed, and for that reason depend on the high-frequency behavior of the409

glacier, which is best characterized by τbf .410

5.1 Is the observed trend significant?411

Equation (15) provides a way of calculating how large a change in glacier length needs to be observed412

before the trend can be declared statistically significant:413

∆L = t̃p=0.95,ν · σL
√

12
ν − 2

. (18)

Consider a 100 yr observing period (for which ν = 7.3), a 95% significance level (for which t̃ = 1.88),414

and let σL = 324 m, which was what we obtained from the dynamic model for typical Mt. Baker415

glaciers. From Equation (18), a change of 900 m would be necessary over that 100-yr period in order416

to declare a significant trend. The actual observed trend over the last eighty years is equivalent to417

150 m per 100 yr (calculated from linearly detrending the compilation of results in O’Neal (2005)418

for Easton, Deming, Boulder, Rainbow, and Coleman glaciers). If a shorter period, the last 30419

yr, is considered, the observed trend is larger (400 m per 30 yr), consistent with an anthropogenic420

climate signal emerging only since that time. However the degrees of freedoms in the observations421

are reduced to just 2.2, and so very much larger glacier changes of several kilometers would be422

required for statistical significance. Thus we conclude that the observed changes in Mt. Baker423

glaciers, by themselves, cannot be said to reflect a statistically significant trend.424

It is important to be clear about the logic here. These results represent the difference between425

saying that the glaciers by themselves provide independent evidence of climate change, versus saying426

that they are merely consistent with the observed regional warming that is already established to427

be statistically significant from the instrumental record (e.g., Mote, 2003). There is obviously428
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an important distinction between these two statements. The multi-year response time of glaciers429

means there is much less independent information in their history than in the instrumental record.430

Moreover these are maritime glaciers that experience large, and largely unrelated, interannual431

accumulation variability (e.g., Bitz and Battisti, 1999; Huybers and Roe, 2009), and so it should432

not be surprising that this variability obscures the effect of warming on the glaciers, and that the433

glacier record is therefore a less decisive demonstration of regional warming than is provided by434

thermometers.435

5.2 How wrong could σL be?436

The results above depend on estimating σL and ν from the dynamic model. In general, without437

long enough records of unforced natural variability, a model must be used. For example, general438

circulation models are used for estimating the natural variability of global mean climate. It is439

reasonable to ask whether a model adequately represents this natural variability, and in the case440

of global climate, this has been debated extensively.441

Alternatively, one can turn the question around, and ask what would the value of σL have to be,442

in order for the observed trends, ∆Lobs, to be significant at the 95% level? That is, solve for443

σL =
∆Lobs
t̃p=0.95,ν

√
ν − 2

12
. (19)

For the 100 yr and 30 yr trends given above, the answer is σL = 52 m and 20 m, respectively. It444

seems unlikely that natural variability is as low as this, or that the dynamic model is wrong by445

an order of magnitude. Larger values of σL could only come about if there were more degrees of446
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freedom coming from a shorter effective response time. The agreement between the t̃-distributions447

in Figure 11 and the fact the response time would have to be less than 7 yr makes this, too, seem448

unlikely. The linear timescale is actually a lower bound on the timescale, since it assumes that449

glacier dynamics are instantaneous (all mass imbalances instantly transferred to the toe). It is450

hard to imagine, therefore, that there could be more degrees of freedom in the observations. Thus451

the conclusion – that the retreat of Mt. Baker glaciers is consistent with regional warming, but not452

independent proof of it – is very strong.453

5.3 More than one glacier, more than one location454

Most glaciers are reported to be retreating around the world. Does this constitute independent455

evidence of climate change? The t̃-test is a simple and powerful statistical measure that works well,456

even when the underlying process departs significantly from the test assumptions (e.g., Boneau,457

1960). Rather than detailed modeling of individual glaciers, one could use global data sets of ob-458

served glacier length variations (e.g., from the World Glacier Monitoring Service, Haeberli, 1998),459

and use Equation (19) to solve for the combination of σL and ν required for the observed trend to460

be significant at the 95% level. Those values could be compared to existing estimates of a glacier’s461

response time (e.g., Oerlemans, 2005), and historical or reconstructed estimates of its natural vari-462

abilty. This might be path to more rigorous estimates of statistical significance than obtained by463

varying model parameters (e.g., Oerlemans, 2005). It would also identify which glaciers are more464

decisive indicators of climate change than others. The fact that many glaciers within a single region465

are observed to be retreating or advancing does not necessarily provide much independent infor-466

mation, since they are experiencing essentially the same climate. The independence of individual467

glaciers can be estimated from the spatial coherence of patterns of natural climate variability (e.g.,468
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Bretherton et al., 1999) of the fields that are most relevant for glaciers (e.g., Huybers and Roe,469

2009; Burke and Roe, 2010).470

6 Summary and Discussion471

Stochastic fluctuations are inherent to a constant climate. Distinguishing between climate records472

that just reflect these fluctuations and those that reflect a true climate change is a central challenge473

in climate science. For the case of global mean temperature, for example, there is widespread474

agreement that the instrumental record shows a significant warming trend that exceeds the natural475

variability of the last 30 yr. An identical issue arises in interpreting the climatic cause of past476

glacier fluctuations, which are almost always attributed to climate change. This study expands on477

earlier work and confirms that interannual variability alone can cause century-scale, kilometer-scale478

fluctuations in glacier length.479

We presented results for the geometry and setting of the glaciers on Mt. Baker in the Pacific480

Northwest. These are relatively small and steep, and so to evaluate the impact of glacier geometry481

we also repeated the analyses for a glacier with double the total area and half the basal slope,482

and also for a glacier with quadruple the total area and one quarter the basal slope (and double483

the width). For these cases, we obtained comparable agreement between the linear and dynamic484

models to that presented here.485

We focussed on glacier length because that is typically the clearest signature of past fluctuations.486

All of the metrics and formulae discussed in this study could instead be applied to glacier volume.487

The linear model under-predicts the response of glacier volume to climate variability because it does488

not account for thickness changes. For the spectrum of ice volume fluctuations (i.e., the equivalent489
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of Figure 6a), the linear and dynamic models shows very good agreement at high frequencies, but490

the linear model under-predicts at low frequencies (by ∼30% for the parameters presented here).491

At high frequencies mass balance fluctuations are simply added to the existing volume, and the492

dynamics has no time to respond. At low frequencies the linear model does not allow for the493

thickness changes that amplify the volume fluctuations in the dynamic model. The autocorrelation494

timescale for volume fluctuations in the dynamics model is much shorter than that for length495

fluctuations (15 yr vs. 73 yr), and so is closer to the predictions of the linear model. Understanding496

volume fluctuations might find relevance in settings where glacier history is recorded in sediments497

of proglacial lakes or in trimlines on valley sidewalls, or when the impact on sea-level is of interest498

(e.g., Raper and Braithwaite, 2009).499

The important principle in this study is that stochastic interannual climate variability can cause500

large and persistent glacier fluctuations that should not be misinterpreted as being driven by a501

climate change. This principle is fundamental and does not depend in any way upon the details of502

the models used. These models are sufficient to gauge the magnitude of the effects, and sensitivity503

to different conditions has been reported herein. Glaciers are, of course, complicated beasts, and504

no model can capture all their facets. We note that our linear model does not incorporate the505

mass-balance (e.g., Harrison et al., 2001) or thickness feedbacks (e.g., Bahr et al., 1997) that506

are sometimes included in linear glacier models, though such a modification is easily possible.507

Other approaches to glacier response time have used volume-area scaling ratios that represent508

some nonlinearities and asymmetries (e.g., Bahr et al., 1998; Raper and Braithwaite, 2009). For509

our geometry and setting, and also for the sensitivity experiments, we did not find it necessary510

to introduce these additional factors in order to successfully emulate a dynamic glacier model for511

our purposes. Further work to establish when such factors or others, such as more complicated512
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geometric setting, cause a breakdown of the relationships derived here, would be useful. In general,513

such complications will always be hard to model, and it may be best to identify settings where514

those complications are minimized.515

The success of the linear model at emulating the dynamic model at low frequencies means that,516

when climate change happen on time scales longer than a couple of glacier response times (meaning517

longer than about 15 years for Mt. Baker), the glacier’s response to climate variability (such as the518

excursion probabilities) can be combined linearly with, and superposed directly on, the glacier’s519

response to the climate change.520

Extreme events and zero-crossings depend on short, rapid advances and retreats, and so are gov-521

erned by the high frequency characteristics of the glacier. The dynamic model is highly autocorre-522

lated on short timescales (Figure 6b), and hence the longer decorrelation timescale must be used523

in the formulae. We also note the extreme sensitivity of threshold crossing statistics to σL. It524

may be very hard to determine the value of σL for a real glacier to within the accuracy needed to525

formally establish whether a given glacier advance exceeds that expected from natural variability526

(c.f., Oerlemans, 2000; Reichert et al., 2002).527

On the other hand, trends, t̃-tests, and equilibrium changes depend on the low frequency charac-528

teristics of the glacier, for which it is acting as an essentially passive reservoir of ice. Therefore529

the shorter timescale of the linear model provides excellent agreement, and moreover it can be530

efficiently estimated from the glacier geometry. Furthermore, the analyses are far less sensitive to531

parameter uncertainties. Lastly, although not formally as rigorous, by solving for the σL required532

for the observed trend to have a nominal confidence level of 95%, the expression for a t̃-statistic533

can be used to roughly gauge the significance of a trend, and so circumvent the need for a compre-534
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hensive simulation of the natural variability. Non-parameteric tests, that do not rely on the glacier535

adhering to a particular theoretical pdf might be applied for trend detection (Morell and Fried,536

2008; Cotter, 2009). Such tests are more flexible, though typically less powerful, than parametric537

tests, and care is needed in accounting for serial correlations.538

Various methods have been used to estimate the glacier response time from observations (e.g.,539

Harper et al., 1992; Oerlemans, 2001; Pelto and Hedlund, 2001; Harrison et al., 2003; Klok and540

Oerlemans, 2004; Oerlemans, 2007). A useful exercise would be to repeat those various methods541

on the output from the dynamic model, and see which best captures the correct effective degrees542

of freedom. A concern is that the results here suggest that short-term lag correlations, which are543

the most easily estimated from observations, may underestimate the actual degrees of freedom.544

Finally, this study evaluated the observed retreat of glaciers around Mt. Baker. We conclude there545

are about seven effective degrees of freedom in a 100 yr long record, and that the retreat would have546

to much larger than is observed to be considered independent evidence of regional warming. It can547

certainly be said that the retreat is consistent with the observed warming that is already established548

to be significant from the instrumental record. It should be made clear that the detection of a trend549

in glacier length is different exercise from the detection of a trend in glacier mass balance, which550

is in many ways more closely related to the instrumental record of climate. Where available, local551

instrumental and local mass-balance records have more statistical power to resolve climate change552

than glacier-length records. In the case of mass balance records, changes in glacier area must be553

factored in (e.g., Oerlemans, 2001).554

Glaciers are consequential and captivating elements of the earth system. Correctly understanding555

their dynamics and interpreting their history and is a worthwhile challenge. Provided that care556
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is taken is to identify the correct timescale, the linear model and the formulae derived from its557

equations do an excellent job of characterizing some important properties of a glacier’s behavior.558

Such formulae can be used to give guidance as to which glaciers and settings are most sensitive559

indicators of warming trends or precipitation trends, and which paleo-reconstructions are likely to560

be most indicative of past climate changes. Identifying such conditions is an important prerequisite561

for realizing the fullest potential of glacier records.562
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Appendix A: Threshold crossing rates566

Let L̇ refer to the rate of change of the glacier. Rice (1948) (also Vanmarcke, 1983) showed that, for567

a general random process the expected rate, 〈λ(L0)〉, at which it crosses up over a given threshold,568

L0, is given by569

〈λ(L0)〉 =
1
2

∫ ∞
−∞

sgn(L̇)p(L̇, L0)dL̇. (A-1)

The term inside the integrand is the joint probability density of the glacier having a length between570

L0 and L0 + dL and, simultaneously, a rate of change which would cause it to cross L0. The total571

probability is the integral over all possible rates of change. The primes have been dropped from572
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the Ls for the sake of convenience. If L̇ and L can be considered independent of each other, Rice573

further showed that the expected rate of up-crossings past L0 is574

〈λ(L0)〉 =
1

2π
σL̇
σL
e
− 1

2

“
L0
σL

”2

. (A-2)

where σL and σL̇ are the standard deviations of the glacier length and its rate-of-change, respec-575

tively. We next derive an expression for σL̇, and show that the correlation between L̇ and L can576

indeed be considered small.577

From (1)578

〈L̇2〉 = 〈L2〉+
α2σ2

T

∆t2
+
β2σ2

P

∆t2
, (A-3)

which, using (6), becomes579

σ2
L̇

= σ2
L

(
1
τ2

+
1− γ2

∆t2

)
. (A-4)

Since we are dealing with typical conditions where τ >> δt this simplifies to580

σL̇ = σL

(
2
τ∆t

) 1
2

. (A-5)

Next, we determine correlation coefficient between L̇ and L, which is given by581
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rL̇,L =
〈L̇ · L〉
σL̇σL

. (A-6)

From (1) it follows directly that 〈L̇ ·L〉 = 〈L2〉/τ . Therefore, using (A-5) the correlation coefficient582

becomes583

rL̇,L =
(

∆t
2τ

) 1
2

. (A-7)

For the typical Mt. Baker parameters, τ ≈ 12 yr giving rL̇,L ≈ 0.2. Using a Monte Carlo test584

(Figure 7), we show that this correlation is indeed small enough to be neglected, and that therefore585

(A-2) provides an accurate description of threshold crossings.586

Substituting (A-5) into (A-2) gives587

〈λ(L0)〉 =
1

2π

(
2
τδt

) 1
2

e
− 1

2

“
L0
σL

”2

. (A-8)

R(L0), the average interval between up-crossings across L0 is the reciprocal of the rate, λ(L0).588
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List of Figures675

Figure 1: Idealized geometry of the linear glacier model, based on Johanneson et. al. (1989). Pre-676

cipitation falls over the entire surface of the glacier, Atot, while melt occurs only on the melt-zone677

area, AT>0. The ablation zone, Aabl, is the region below the ELA. Melt is linearly proportional678

to the temperature, which, in turn, decreases linearly as the tongue of the glacier recedes up the679

linear slope, tanφ, and increases as the glacier advances down slope. The height H of the glacier,680

and the width of the ablation area, w, remain constant. From Roe and O’Neal (2009).681

Figure 2: Response of glacier length to step function changes in accumulation and melt-season682

temperature. Solid lines show analytic solutions from the linear model, and the symbols show683

results from the dynamic model.684

Figure 3: Response of glacier length to increasing trends in (a) accumulation (+0.1 oC decade−1),685

and (b) melt-season temperature (+0.1 m yr−1 decade−1), imposed beginning in model year 20.686

There is good agreement between the linear and dynamic models.687

Figure 4: A 500 year segment of a 10,000 yr simulation of the glacier response to interannual688

climate variability. The lower panels are white-noise realizations of interannual fluctuations in ac-689

cumulation and melt-season temperature, and for which a 30-yr running mean is also shown. The690

upper panel shows the response of the two glacier models. Kilometer-scale, century-scale glacier691

fluctuations occur in this simulated climate that by construction has no persistence. Also shown692

in the thin black line is a linear fit to the dynamic model, using the best-fit τbf of 73 yr.693

Figure 5: The probability density functions (PDFs) of the linear and dynamic models. The linear694

model follows a normal distribution, the dynamic model has a slightly non-normal distribution.695

Figure 6: a) Power spectral estimate for linear and dynamic models, calculated using a windowed696

periodogram (a 20-kyr Hanning window). b) Autocorrelation function for linear and dynamic mod-697

39



els. Both panels show that the dynamic model is damped at high frequencies compared to the linear698

model.699

Figure 7: The average return time of a glacier advance (i.e., the interval between up-crossings of700

glacier length beyond a given threshold), calculated from (5). The three curves are for the range701

of parameters appropriate for a typical glacier on Mt. Baker, Cascades, WA. Note the logarithmic702

scale on the y-axis, and the acute sensitivity of the average return time to changes in glacier prop-703

erties.704

Figure 8: Schematic illustration for the calculation of the likelihood of exceeding a given total705

excursion.706

Figure 9: The probability of exceeding a given maximum total excursion (i.e., maximum advance707

minus maximum retreat), in any 1000 yr period. Crosses shows calculations from the dynamic708

model output. The curves are calculated from Equation (11) for two different response times.709

Figure 10: Probability of maximum excursions for different assumptions. a) probability of exceed-710

ing a given excursion, for different periods of time. Note the uneven time increments; b) probability711

of exceeding a given excursion, for different values of σL in Equation (11). All curves use the stan-712

dard parameters for the dynamic model (except where σL is varied).713

Figure 11: The t̃ statistic calculated from 1000 randomly selected 100 yr-long from the dynamic714

model output. Also shown are the theoretical t-distributions for degrees of freedom calculated from715

τlin and τbf . It is clear that τlin best characterizes the degrees of freedom.716

717
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Table 1: Parameters and geometry of standard case glacier. The first set of parameters are imposed,

the second set are calculated from the dynamic model and used for the linear model formulae. Also

included is the linear model timescale. The simplified, pseudo one-dimensional geometry means that

not every aspect of the typical Mt. Baker glacier can be matched at the same time. In particular,

the standard glacier has a nominal length of 8 km, and the accumulation area ratio is one half,

rather than two thirds. See text for more details, and compare with values given in Roe and O’Neal

(2009) for Mt. Baker glaciers.

parameter value

µ 0.65 m yr−1 oC−1

Γ 6.5 oC km−1

tanφ 0.4

w 500 m

Atot 4.0 km2

Aabl 2.0 km2

AT>0 3.4 km2

H 44 m

τlin 7 yr
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Figure 1: Idealized geometry of the linear glacier model, based on Johanneson et. al.

(1989). Precipitation falls over the entire surface of the glacier, Atot, while melt occurs only

on the melt-zone area, AT>0. The ablation zone, Aabl, is the region below the ELA. Melt

is linearly proportional to the temperature, which, in turn, decreases linearly as the tongue

of the glacier recedes up the linear slope, tanφ, and increases as the glacier advances down

slope. The height H of the glacier, and the width of the ablation area, w, remain constant.

From Roe and O’Neal (2009).
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Figure 2: Response of glacier length to step function changes in accumulation and melt-

season temperature. Solid lines show analytic solutions from the linear model, and the

symbols show results from the dynamic model.
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Figure 3: Response of glacier length to increasing trends in (a) accumulation

(+0.1 oC decade−1), and (b) melt-season temperature (+0.1 m yr−1 decade−1), imposed

beginning in model year 20. There is good agreement between the linear and dynamic

models.
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Figure 4: A 500 year segment of a 10,000 yr simulation of the glacier response to interannual

climate variability. The lower panels are white-noise realizations of interannual fluctuations

in accumulation and melt-season temperature, and for which a 30-yr running mean is also

shown. The upper panel shows the response of the two glacier models. Kilometer-scale,

century-scale glacier fluctuations occur in this simulated climate that by construction has

no persistence. Also shown in the thin black line is a linear fit to the dynamic model, using

the best-fit τbf of 73 yr.
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Figure 5: The probability density functions (PDFs) of the linear and dynamic models. The

linear model follows a normal distribution, the dynamic model has a slightly non-normal

distribution.
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Figure 6: a) Power spectral estimate for linear and dynamic models, calculated using a win-

dowed periodogram (a 20-kyr Hanning window). b) Autocorrelation function for linear and

dynamic models. Both panels show that the dynamic model is damped at high frequencies

compared to the linear model.
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Figure 7: The average return time of a glacier advance (i.e., the interval between up-

crossings of glacier length beyond a given threshold), calculated from (5). The three curves

are for the range of parameters appropriate for a typical glacier on Mt. Baker, Cascades,

WA. Note the logarithmic scale on the y-axis, and the acute sensitivity of the average return

time to changes in glacier properties.
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Figure 8: Schematic illustration for the calculation of the likelihood of exceeding a given

total excursion.
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Figure 9: The probability of exceeding a given maximum total excursion (i.e., maximum

advance minus maximum retreat), in any 1000 yr period. Crosses shows calculations from

the dynamic model output. The curves are calculated from Equation (11) for two different

response times.
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Figure 10: Probability of maximum excursions for different assumptions. a) probability of

exceeding a given excursion, for different periods of time. Note the uneven time increments;

b) probability of exceeding a given excursion, for different values of σL in Equation (11).

All curves use the standard parameters for the dynamic model (except where σL is varied).
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Figure 11: The t̃ statistic calculated from 1000 randomly selected 100 yr-long from the

dynamic model output. Also shown are the theoretical t-distributions for degrees of freedom

calculated from τlin and τbf . It is clear that τlin best characterizes the degrees of freedom.
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