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Feedback terminology

In this section we derive the parameters we use in discussing feedbacks. We employ the standard

terminology of feedback analysis from electronics (e.g., S1-S5). It is, however, different from

the terminology found in much of the climate literature, which reverses the definition of a

feedback factor and a gain (e.g., S6).

Consider the net radiation balance at the top of the atmosphere, R, to be the sum of the

outgoing longwave radiation, F , and the net absorbed solar radiation, S (all fluxes are defined

as positive downwards). If the climate is in equilibrium then R = 0, so F = −S, and the global

mean temperature has its equilibrium value. Now let ∆Rf be some specified, constant, radiative

forcing (here, due to anthropogenic emissions of CO2). ∆Rf is assumed small compared with

F and S so that the changes it introduces in system dynamics are all small and linear in the

forcing. In order to attain a new equilibrium state, the radiative balance must change by an

amount ∆R that is equal and opposite to the forcing. That is, ∆R = −∆Rf . In other words, in

the new equilibrium state the longwave and shortwave radiation must adjust: ∆R = ∆F +∆S,

and the temperature reaches a new equilibrium value, displaced from the old by an amount
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∆T . The new equilibrium temperature, ∆T , can be found assuming a first-order Taylor-series

expansion:

∆R ≈ dR

dT
∆T. (S1)

Feedbacks are only meaningfully defined in the context of a specified reference system,

against which the effects of incorporating the feedbacks can be evaluated. A standard reference

case presented in textbooks is a blackbody planet, in which radiative forcing is balanced only

by adjustments in longwave flux via the Stefan-Boltzmann relationship, F = −σT 4 (S5). We

can write ∆Te = λ0∆Rf . From Eq. S1, λ0 = 1/(4σT 3
e ), where Te is the planetary blackbody

temperature of 255 K (S4) giving λ0 = 0.26 K/(W m−2).

When other climate fields are allowed to adjust in response to a change in forcing, their

impacts on the forcing (i.e., feedbacks) must be accounted for. We first consider the linear case,

in which these changes are small and proportional to ∆T . In this case, if αi is the ith climate

field,

∆T = λ0∆Rf +
∑

i

fi∆T. (S2)

where

fi ≡ λ0


(

∂R

∂αi

)
αj,j 6=i

dαi

dT

 . (S3)

fi is the nondimensional feedback factor for the ith feedback process. It can be seen that fi is

proportional to the fraction of the response that is fed back into the forcing. Defining f ≡ ∑
i fi,

gathering up the ∆T s and rewriting:

∆T =
λ0

(1− f)
∆Rf . (S4)

The gain of the system, G, is the proportion by which the system response has changed

relative to the reference case, as a result of including the feedbacks.

G ≡ ∆T

∆T0

=
1

(1− f)
. (S5)
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Thus if f < 0, the net feedbacks are negative, G < 1, and the system response is damped. If

0 < f < 1, the net feedbacks are positive, G > 1, and the system response is amplified. If

f ≥ 1, runaway growth ensues, no new equilibrium can be established via the assumed physics,

and the gain is undefined.

The analogy with a Bayesian framework

In the Bayesian framework a prior assumption about the probability distribution of climate sen-

sitivity is modified by a comparison with data (observations or models), leading to a modified,

posterior, distribution (S7, S8). In these terms, an analysis can be written

hpost(∆T ) =
p(fobs|∆T )

p(f)
hprior(∆T ), (S6)

where hpost(∆T ) is the result of the analysis - the posterior probability distribution for climate

sensitivity. p(fobs|∆T )/p(f) is the normalized probability that a observation yielding fobs is

consistent with a climate sensitivity ∆T . Statistical studies suggest that a Gaussian distribution

in p(fobs|∆T ) is appropriate (S7), similar to our choice for h(f). In general, a prior assumption

can be made about the distribution of any climate variable, z, in which case a conversion is

needed: hprior(z)dz = hprior(∆T )dT . A natural choice is that all feedbacks are equally likely

(z = f , hprior(f) is a constant). Since f = 1 − ∆T0/∆T , hprior(∆T ) ∼ ∆T0/(∆T )2. This,

together with a Gaussian for p(fobs|∆T ), makes Eq. ?? algebraically equivalent to Eq. 3 in

our main text. We note that in our analysis starting from Eq. 1 in the main text, the factor

1/(∆T )2 arises from the mathematical relationship between ∆T and f , rather than from a prior

assumption.

Some studies have also considered a uniform prior distribution on climate sensitivity (S9,

S10). In which case z = ∆T , hprior(∆T ) is a constant, and the factor of 1/(∆T )2 is omitted in

hpost(∆T ). For a given p(fobs|∆T ) this leads to a fatter tail to the distribution.
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Nonlinear feedbacks

In Eq. S5 the feedbacks are independent of the system response, ∆T . Here we briefly consider

the effects of adding plausible nonlinear feedbacks. Taking the Taylor series in Eq. S1 to second

order gives a quadratic relationship between ∆T and ∆R:

∆R ≈ R′∆T +
1

2
R′′∆T 2, (S7)

where we have used the shorthand ()′ ≡ d/dT (). To estimate the new ∆T we approximate

the solution to Eq. S8; in analogy with Eq. S5 we now have

∆T ≈ λ0∆Rf

1− f − 1
2
λ0R′′∆T0

, (S8)

where we have replaced the term in ∆T 2 by ∆T∆T0 to first order, and again used the fact

that ∆R = −∆Rf . The first nonlinearity we consider is that at higher temperatures the T 4

dependence of the Stefan-Boltzmann equation means the climate system is able to more ef-

fectively compensate for radiation perturbations than at lower temperatures. The second non-

linearity is that the water vapor feedback depends on the moisture content of the air, which

via the Clausius-Clapeyron relation (S5) is a nonlinear function of temperature. Physically,

the Stefan-Boltzmann feedback becomes more negative and the water vapor feedback becomes

less positive as the temperature increases. Both effects drive the system towards greater stabil-

ity. Since now we are considering only the effects of the Stefan-Boltzmann and water vapor

feedback irregularities so that R′ = F ′, R′′ = F ′′.

We write F = −σ(T − Θ(T ))4, where Θ(T ) reflects the effect of water vapor, and T

represents the surface temperature. At equilibrium in the unperturbed case, T0 = 288 K, and

T0 −Θ(T0) = 255 K, the planetary blackbody temperature. Now,

F ′ = −4σ(T −Θ)3(1−Θ′) ≡ − 1

λ0

(1−Θ′), (S9)
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so that

F ′|T0 = λ−1
0 (fwv(T0)− 1), (S10)

where fwv(T ) = Θ′(T ) is the water vapor feedback. At the unperturbed equilibrium tempera-

ture; fwv(T0) ≈ 0.4 as estimated from climate models (S11, S12).

We suppose that the effect of water vapor is dependent on the logarithm of the saturated

atmospheric moisture content, reflecting the fact that as temperature, moisture, and infrared

opacity of the atmosphere increase, the water vapor feedback becomes progressively less effec-

tive. So let Θ ∝ ln[esat(T )], where esat(T ) is the saturation water vapor given by the Clausius-

Clapeyron equation (S5). In that case

fwv(T ) = Θ′ ∝ d

dT
ln(esat(T )) ∝ 1

T 2
. (S11)

Hence f ′
wv(T ) = −2fwv(T )/T .

Differentiating Eq. S10 gives:

F ′′ = (
1

λ2
0

)λ′
0(1− fwv) +

1

λ0

f ′
wv. (S12)

Since both λ′
0 and f ′

wv are negative, we see that F ′′ < 0.

Evaluating Eq. S12 at T = T0 yields

F ′′|T0 =
3(fwv(T0)− 1) + f ′

wv(T0)(T0 −Θ(T0))

λ0(T0 −Θ(T0))
. (S13)

Then ∆T can be found from Eq. S8.

The effect of including the quadratic terms is to incorporate an extra negative feedback

factor. For characteristic values of fwv(T0) = 0.4 (S11, S12) and T0 − Θ(T0) = 255 K, the

effective extra negative feedback factor is about 3 × 10−3 per degree of climate change. For

∆T ∼ 3 oC, f changes by ∼ 0.01. In other words, for the physics analyzed here the effect of

these extra terms is quite small.
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Is it possible to remove the skewness? One can address the question of whether the skew-

ness in the climate sensitivity curve towards larger climate changes (i.e., Figures 3 and 4) is

unavoidable, or whether, if the feedbacks were sufficiently nonlinear, the tail might be elimi-

nated.

Solving the full quadratic Eq. S8, we find that to second order in the general case, for total

feedback f ,

∆T =
∆T0

1− f

(
1− 1

2

(
∆T0

1− f

)
f ′
)

, (S14)

where ∆T0 ≡ λ0∆Rf , f ≡ λ0R
′ + 1, and f ′ ≡ λ0R

′′.

The condition for removing the skewness of the climate sensitivity curve is that there be

no curvature in ∆T as f varies. This requires f ′ = 2f(1 − f)/∆T0. Therefore, for a typical

estimated total feedback of f ∼ 0.65, and ∆T0 ∼ 3 oC, removing the skewness would require

that f diminish by about 0.15 per degree of climate change, or in other words, significantly

more than we found to be reasonable in the above section.

Constraining ∆Tmax

To some extent, the high ∆T tail in the distribution hT (∆T ) reflects the fact that we have

assumed a Gaussian distribution for the underlying feedbacks, leading to a finite probability

of values of f close to one. To investigate the effect of this, we have recomputed hT (∆T )

assuming hf (f) is the Gaussian multiplied by a Heaviside function to eliminate such values of

f producing values of ∆T greater than some assumed maximum ∆Tmax. This cutoff has little

impact on the resulting hT (∆T ). An example for ∆Tmax = 8 oC is shown in Figure S1. The

cumulative probabilities for the ∆T ≥ 5oC then are essentially independent of σf . Therefore

attempts to constrain σf become even less important for constraining the probabilities of large

∆T .
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b) 

c) d) 

Figure 1: Panels (a) and (b): Probability distributions hT (∆T ) for a range of values of f̄ and σf

in the case where the underlying probability distribution for the feedbacks, h(f), is a truncated
Gaussian, set to zero for all values of f that would produce ∆T > ∆Tmax = 8oC and then
renormalized. Panels (c) and (d): the corresponding cumulative distributions pcum(∆T ), cor-
responding to the truncated Gaussian. The effect of the cutoff is to force pcum(∆T ) to vanish
for ∆T > ∆Tmax for all σf and to become almost independent of σf for ∆T ≥≈ 5oC That
is: in eliminating the tail of the distribution we remove the dependence of moderately large
sensitivities on σf .
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