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ABSTRACT

The language of feedbacks is ubiquitous in contemporary earth sciences, and the framework of feedback

analysis is a powerful tool for diagnosing the relative strengths of the myriad mutual interactions that occur in

complex dynamical systems. The ice albedo feedback is widely taught as the classic example of a climate

feedback. Moreover, its potential to initiate a collapse to a completely glaciated snowball earth is widely

taught as the classic example of a climate ‘‘tipping point.’’ A feedback analysis of the snowball earth phe-

nomenon in simple, zonal mean energy balance models clearly reveals the physics of the snowball instability

and its dependence on climate parameters. The analysis can also be used to illustrate some fundamental

properties of climate feedbacks: how feedback strength changes as a function of mean climate state; how small

changes in individual feedbacks can cause large changes in the system sensitivity; and last, how the strength

and even the sign of the feedback is dependent on the climate variable in question.

1. Introduction

Early efforts to represent the earth’s climate with en-

ergy balance models (EBMs) uncovered the disconcert-

ing possibility that a relatively small decrease in the solar

output might lead to a catastrophic global glaciation—

the result of a runaway ice albedo feedback (e.g., Budyko

1969; North 1975; Lindzen and Farrell 1977). Although

the issue remains controversial (e.g., Kerr 2000; Fairchild

and Kennedy 2007; Allen and Etienne 2008), assorted

lines of geological evidence appear to indicate that

earth passed through several episodes of complete, or

near-complete, glaciation during the Proterozoic (e.g.,

Kirschvink 1992; Hoffman et al. 1998; Hoffman and Li

2008). Follow-up integrations of more-comprehensive

global climate models have also found climate states with

a global or near-global glaciation, though they typically

require larger reductions in the solar output than the

earlier calculations suggested (e.g., Crowley and Baum

1993; Jenkins and Smith 1999; Crowley et al. 2001; Voigt

and Marotzke 2009).

To our knowledge, the factors controlling snowball

earth have never been presented in terms of a formal

feedback analysis and doing so provides an opportunity

to demonstrate several basic properties of feedbacks.

Applying this analysis to the original zonal mean energy

balance climate models, the physical mechanism of the

runaway glaciation can be clearly and simply demon-

strated. The strength of the feedback is shown to equal

the ratio of competing stabilizing and destabilizing ten-

dencies on the global energy balance or, equivalently,

competing tendencies on the local energy budget at the

advancing ice line. The phenomenon of a snowball earth

is a simple illustration of how climate sensitivity and

feedback strength can change as a function of the mean

climate state, which is an issue of some relevance for

future climate predictions. Moreover, although there

are obvious caveats because of the simplifying assump-

tions of the models, the instability is also an interesting

example of a climate ‘‘tipping point.’’

The analytical solutions for the simple energy balance

models permit feedback strengths to be calculated even

for the unstable equilibrium climates. Doing so gives the

somewhat counterintuitive but explainable result that

the ice albedo can—under some conditions—behave as

a negative feedback on global mean temperature. The

cause is the peculiar physics of the small ice cap
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instability (e.g., North 1975), and that of a previously

unreported counterpart at low latitudes.

2. Analysis

We begin with the classic equation for the annual

mean, zonal mean EBM as a function of latitude (e.g.,

Budyko 1969; North 1975; Lindzen 1990):

Q

4
S(x)[1� a(x)] 5 A 1 BT(x) 1 $ � F, (1)

where Q is the solar constant and x is sine of latitude;

T(x), S(x), and a(x) are the local temperature, the nor-

malized latitudinal distribution of insolation, and the al-

bedo, respectively; A 1 BT(x) is a linearization of the

outgoing longwave radiation (OLR); and F is the pole-

ward heat transport.

Equation (1) can be integrated from equator to pole to

give an expression for the global energy balance,

Q

4
(1� a

p
) 5 A 1 BT, (2)

where the overbar denotes the global mean, and ap is the

global average albedo:

a
p

[

ð1

0

a(x)S(x) dx. (3)

Last, let xs be the latitude of the ice line (i.e., where

T 5 Ts).

To a good approximation, S(x) may be represented as

S(x) 5 1 1 s2P2(x), where s2 5 20.482 and P2 is the

second Legendre polynomial: P2 5 1/2(3x2 � 1) (e.g.,

Chylek and Coakley (1975); Fig. 1a). We adopt param-

eter values from Lindzen and Farrell (1977): A 5

211.1 W m22; B 5 1.55 W m22 8C21. Note that the unit

of T is degrees Celsius. We allow Q to vary in the

vicinity of the modern-day value, which Lindzen and

Farrell took to be Q0 5 1336 W m22.

If ap 5 constant, then xs and T respond directly (with

no feedbacks) to variations in Q. A feedback can be in-

troduced by allowing albedo to be a function of temper-

ature: an ice-free albedo a1 is assumed for temperatures

greater than Ts (typically 2108C) and an ice-covered al-

bedo a2 is assumed for temperatures less than Ts. Fol-

lowing Lindzen and Farrell (1977), we take a1 5 0.3 and

a2 5 0.6. Therefore, from Eq. (3),

a
p
(T) 5 a

p
[x

s
(T)] 5 a

1

ðx
s

0

S(x) dx 1 a
2

ð1

xs

S(x) dx. (4)

Using the relationship between Legendre polynomials

that (2n 1 1)Pn(x) 5 d/dx[Pn11(x) � Pn�1(x)] (e.g.,

Abramowitz and Stegun 1965), Eq. (4) can be written as

a
p
(x

s
) 5 a

2
1 (a

1
� a

2
) x

s
1

s
2

5
(P

3
(x

s
)� P

1
(x

s
)

h i
. (5)

Figure 1b shows that ap(xs) varies smoothly between the

ice-free and ice-covered limits.

a. Budyko-style energy balance models

Budyko (1969) presented an energy balance model

that is particularly tractable analytically, proposing a

very simple parameterization for the divergence of the

poleward heat flux:

$ � F 5 C(T � T). (6)

Thus, there is a divergence of heat flux if the local

temperature is higher than the global mean and con-

vergence of heat flux if it is lower. The higher the value

of C, the more efficiently heat is redistributed on the

planet. Sellers (1969) also parameterized heat flux in this

way but included extra model complexities that are

unnecessary for present purposes.

1) TRADITIONAL ANALYSIS

An outline of the solution is briefly given here for the

clarity of presentation, but it follows previous studies

(e.g., Lindzen and Farrell 1977).

With this Budyko-style parameterization of the heat

flux, applying Eq. (1) at the ice line (x 5 xs) gives

Q

4
S(x

s
)(1� a

s
)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

absorbed shortwave

� C(T
s
� T)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

flux divergence

5 A 1 BT
s
, (7)

where as is the albedo exactly at the ice line. A simple

choice is to take as 5 1/2(a1 1 a2) (e.g., Lindzen 1990).

From Eq. (7), and by construction of the model, it is

seen that the OLR at the ice line is always a constant.

The combination of the other two terms in the energy

balance—the absorbed shortwave radiation minus the

divergence of the poleward heat flux—must equal this

constant.

Equation (7) can be combined with Eq. (2) to elimi-

nate T:

Q

4
(1� a

s
)S(x

s
) 1

Q

4

C

B
(1� a

p
) 5 constant. (8)

Substituting from (5) into (8) gives an analytical expres-

sion for Q(xs) (e.g., Lindzen 1990) that governs how the

equilibrium ice line varies as a function of Q (Fig. 2a).

Figures similar to Fig. 2a appear in many papers on

snowball earth. Some of these studies argue on physical

grounds and others provide detailed (and sometimes
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involved) mathematical proofs that no stable solution is

possible when the slope of xs versus Q is negative (e.g.,

Held and Suarez 1974; North 1975; Ghil 1976; Su and

Hsieh 1976; Drazin and Griffel 1977; Lindzen and Farrell

1977; Cahalan and North 1979; North 1990; Shen and

North 1999). The term ‘‘slope-stability theorem’’ has

been coined to describe the proposition.

We show in the next section that a formal analysis of

the ice albedo feedback provides a simple poof of the

slope-stability theorem and that it gives physical insight

into the cause of the instability.

2) FEEDBACK ANALYSIS FROM THE ICE-LINE

PERSPECTIVE

The instability results from the variation of albedo

with changing climate state (as represented by x
s
, T).

One way to evaluate the effect of this is to ask, what is

the difference between the sensitivity of the ice line

latitude to variations in the solar constant with and

without albedo variations? Framing the issue in this way

is at the heart of a feedback analysis (e.g., Roe 2009).

A first-order Taylor series expansion of Eq. (8) gives

DQ
(1� a

s
)S(x

s
)

4
1

1

4

C

B
(1� a

p
)

� �

1 Dx
s

Q(1� a
s
)

4
S9(x

s
)

� �
� Dx

s

QC

4B
a9

p
5 0, (9)

where the primes denote derivatives with respect to xs.

First, consider the case in which no albedo variations are

permitted. In this instance, a9p 5 0 and the sensitivity of

the ice line to insolation can be written as

Dx
s
5 l

x
DQ, (10)

where

l
x

5�
(1� a

s
)S(x

s
) 1

C

B
(1� a

p
)

Q(1� a
s
)S9(x

s
)

. (11)

Here S9 is negative and so lx is positive; lx can be

straightforwardly calculated from previous expressions.

FIG. 1. (a) Normalized insolation distribution S(x) as a function of latitude. The normali-

zation is such that
Ð 1

0 S(x) dx 5 1. (b) Planetary albedo ap(xs) as a function of the latitude of the

ice line. Note that the x axes in the two panels refer to different things.

FIG. 2. Properties relating to the ice line instability in the Budyko model. (a) Equilibrium ice

line as a function of insolation relative to modern. Following Lindzen and Farrell (1977), Q0 5

1336 W m22: regions with positive slope are stable equilibria, negative slopes are unstable

equilibria; (b) albedo feedback factors fx and fT. Only regions with f , 1 are stable equilibria.
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Second, consider the case in which albedo variations

are permitted. Now a9p 6¼ 0 in Eq. (9), and variations in xs

can be written as

Dx
s
5

l
x

1� f
x

DQ, (12)

where

f
x

5
Ca9

p

BS9(1� a
s
)

. (13)

Here fx is the feedback factor in this problem (e.g., Roe

2009). Both a9p and S9 are negative; therefore, as ex-

pected, fx is a positive feedback.

Catastrophe occurs in the limit f / 1. Equation (13)

demonstrates that, provided there is some poleward

heat transport (i.e., C 6¼ 0), this instability must be

present for all parameter values: since S9 tends to 0 as xs

nears the equator (Fig. 1a), at some latitude f must ex-

ceed 1. The slope stability theorem also follows directly

from Eq. (12): for fx , 1 (i.e., stable equilibria), Dxs/

DQ . 0; for fx . 1 (i.e., unstable equilibria), Dxs/DQ , 0.

This behavior is shown in Fig. 2b.

3) WHAT IS THE PHYSICAL EXPLANATION OF THE

INSTABILITY?

The mechanism of the instability can be understood

physically as follows. Suppose, beginning from some

equilibrium climate state, the ice line advances while Q

is held constant. The higher local insolation at lower

latitudes produces warming at the perturbed ice line

position. Acting alone, this warming would tend to re-

store the ice line to its previous equilibrium position.

However, the local divergence of heat flux increases at

lower latitudes, and this produces cooling at the new ice

line position. If the cooling is larger than the warming,

then the ice line will continue to advance; therefore, the

situation is unstable. We can see this from the following:

the relative magnitude of these two tendencies can be

found by differentiating the terms in Eq. (7) with respect

to xs and holding Q constant. Let R be the magnitude of

the ratio of the cooling tendency (i.e., the increase of

local heat flux divergence) to the warming tendency (i.e.,

the increase in local insolation); R can then be written as

R 5

C
dT

dx
s

j
Q

Q(1� a
s
)

4

dS

dx
s

���������

���������
. (14)

From Eq. (2), dT/dxsjQ 5 �Q/4B(da/dxs), and so R

becomes

R 5
Ca9

p

B(1� a
s
)S9

[ f
x
. (15)

Therefore, for an incremental advance of the ice line,

the cooling term exceeds the warming term at the same

latitude that fx exceeds 1. Thus, we also see that the local

and global perspectives on the feedback are equivalent.

The snowball instability is inevitable in this climate

model simply because of the geometry of a sphere. The

rate at which the local insolation increases (or in other

words, the restoring warming tendency described ear-

lier) diminishes as the ice line latitude moves equator-

ward (i.e., Fig. 1a) while the destabilizing effect of the

local divergence of heat flux increases. As the equilib-

rium ice line descends to lower and lower latitudes, it

becomes easier and easier for a perturbed ice line to

advance. Thus, the strengthening of this positive albedo

feedback as the ice line advances reflects a robust

property of the climate system; therefore, it is likely to

hold in more sophisticated models. We note that Lindzen

and Farrell (1977, 1980), Poulsen et al. (2001), and others

have explored how including dynamical circulation re-

gimes such as the Hadley cell or additional heat transport

processes, such as ocean circulation, can modify this

picture and we broach this further in the discussion.

4) WHAT IS THE DEPENDENCY OF THE

INSTABILITY ON PHYSICAL PARAMETERS?

Differentiating Eq. (5) with respect to xs and substitut-

ing it into Eq. (13) gives

f
x

5
Ca9

p

B(1� a
s
)S9

5
C(a

1
� a

2
)S(x

s
)

B(1� a
s
)S9

. (16)

The strength of the feedback, therefore, depends linearly

on the albedo contrast between ice-covered and ice-free

areas, as is perhaps intuitive. Here fx is also proportional

to C—that is, the more efficiently heat is redistributed,

the stronger the feedback. In effect, this reflects that

heat can be ‘‘pulled out’’ of the tropics more effectively;

thereby creating a greater cooling tendency and per-

mitting the ice line to advance more easily (see also Held

and Suarez 1974). This has a strong physical basis;

therefore, it is likely to also be true of models that have

a more sophisticated representation of heat transport.

Last, fx is inversely proportional to B, since as noted

earlier, a higher value of B means a lower sensitivity of

climate to perturbations. We note that all of the model

parameters enter into f at the same order, implying they

have equal importance.

Setting fx 5 1 in Eq. (16) produces a quadratic equa-

tion for the sine of the latitude, x*, at which the in-

stability occurs:
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x*2 �
2B(1� a

s
)

C(a
1
� a

2
)

x* 1
2� s

2

3s
2

5 0. (17)

The quadratic nature of the equation and the presence of

s2 (the coefficient in the series expansion of the insolation

distribution) reflect the spherical geometry. Note the

model parameters appear as the coefficient for the linear

term in Eq. (17) and in the same nondimensional com-

bination as in Eq. (16), though inverted. A decrease in

this linear coefficient causes an increase in x* (i.e., the

instability occurs at a higher latitude), reflecting a less

stable system. Following the arguments of the previous

section, the latitude of the instability is also the latitude of

the ice line at which the net incoming energy fluxes are

independent of xs: equatorward of this latitude, an ad-

vance of the ice line leads to a net cooling at the ice line;

poleward of this latitude, an advance of the ice line leads

to a net warming at the ice line.

5) FEEDBACK ANALYSIS FROM THE GLOBAL

TEMPERATURE PERSPECTIVE

The magnitude of a feedback within a system can

depend on the variable or field of interest (e.g., Roe

2009). This can be illustrated by recasting the EBM

system to solve for global mean temperature instead of

ice line latitude. This makes the problem closer to the

normal definition of the climate sensitivity to a radiative

perturbation (e.g., Charney et al. 1979; Knutti and Hegerl

2008; Roe 2009).

Now we solve for changes in T due to changes in Q.

First, suppose again that there is no albedo feedback

(i.e., a9p 5 0). In this case, from Eq. (2), first-order per-

turbations in temperature and solar constant are re-

lated by

DT 5 l
T

DQ, (18)

where

l
T

5
(1� a

p
)

4B
. (19)

This is the equivalent of the standard climate sensitiv-

ity parameter for this problem (e.g., Roe 2009); how-

ever, in this case it is the sensitivity to changes in solar

constant, not to imposed independent forcing due to

CO2. Here lT
21 measures the basic stabilizing tendency

in the energy balance of the planet, whereby the out-

going longwave radiation acts to restore temperatures

to equilibrium after a perturbation. For a given change in

insolation, a higher value of lT
21 means a smaller tem-

perature change and therefore reflects a stronger damping

tendency. Defined in this way, climate sensitivity decreases

in a colder climate because as the planetary albedo in-

creases, a given increment in insolation produces less

radiative forcing in terms of what is actually absorbed.

Now if instead the albedo is allowed to vary with

temperature, the right-hand side of the equation must

include the additional radiative perturbation that occurs

in response to the change in albedo:

DT 5 l
T

DQ� Q

4B

da
p

dT
DT and (20)

5 l
T

DQ� Q

4B
a9

p

Dx
s

DT
DT. (21)

This last term on the right-hand side is the albedo feed-

back. Solving for DT explicitly gives

DT 5
l

T

1� f
T

DQ, (22)

where fT is the albedo feedback factor (e.g., Roe 2009)

and is given by

f
T

5�Q

4B
a9

p

Dx
s

DT
5�

Q

4
a9

p

B
DT

Dx
s

, (23)

where the D notation means that the derivative is cal-

culated along the curve xs 5 xs(Q, a9p) calculated from

Eq. (12).

As with any positive feedback, Eq. (23) reflects com-

peting tendencies on a conservation equation (e.g., Roe

2009). In this case, the numerator on the right-hand side

reflects the destabilizing process of the albedo increasing

as the ice line advances equatorward, and the denomi-

nator reflects the stabilizing process of changes in the

longwave radiation to space. Equation (23) is quite gen-

eral and could readily be diagnosed from perturbation

experiments using global climate models, for example. The

relationship between the ice line feedback and the global

temperature feedback comes from the following equation:

DT

DQ
5

›T

›a
p

a9
p

Dx
s

DQ
1

›T

›Q

�����
a

p
5const

, (24)

which can be rewritten as

l
T

1� f
T

5�
Qa9

p

4B

l
x

1� f
x

� �
1 l

T
. (25)

From this equation, it is straightforward to demonstrate

that fx and fT both cross 1 at the same ice line latitude,

shown in Fig. 2b.
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b. Diffusive energy balance models

North (1975) suggested an alternative, and arguably

somewhat more physical, parameterization for the pole-

ward heat flux, proposing that it be parameterized as

proportional to the local meridional temperature gradi-

ent. In this case $ � F in Eq. (1) is given by

$ � F 5�D
d

dx
(1� x2)

dT

dx
. (26)

1) TRADITIONAL ANALYSIS

North (1975) demonstrated that an accurate analytical

approximation to Eqs. (1) and (26) could be obtained

using hypergeometrical functions and matching bound-

ary conditions at the ice line. North (1975), Cahalan and

North (1979), Shen and North (1999), and others have

studied the stability properties of these solutions, ana-

lyzing the time-dependent behavior of perturbations

away from the derived equilibrium solutions.

Figure 3a reproduces the original analytical solutions

derived by North (1975), using his chosen parameter set

(which are slightly different from those used up to this

point in this paper). From the slope of xs versus Q, it is

clear that stable climates do not exist equatorward of

xs ’ 0.6. In addition, there is also a striking phenomenon

poleward of xs ’ 0.95, the so-called small ice cap in-

stability (e.g., North 1984): beyond some latitude, the

slope of xs versus Q turns negative, implying that the

polar ice cap can only be stable if it extends past some

finite latitude. The reasons for this behavior has been

analyzed in detail in simple systems (e.g., Lindzen and

Farrell 1977; North 1984), though its presence in more

complete climate models is still discussed (e.g., Crowley

et al. 1994; Lee and North 1995; Langen and Alexeev

2004; Rose and Marshall 2009; Enderton and Marshall

2009).

2) FEEDBACK ANALYSIS

A simple alternative to the time-dependent analyses

cited earlier is to calculate the feedback strengths by

direct substitution of the analytical solutions provided in

North (1975) into Eqs. (18), (23), and (25). Figure 3d

shows both fx and fT; fx behaves as expected—it lies

between 0 and 1 in the stable ice line regime and exceeds

1 for unstable ice line regimes. The behavior of fT is

more interesting. It goes through two singularities and

actually becomes negative near the equator and near the

pole.

The cause of this peculiar behavior is related to the

small ice cap instability and, as it turns out, there is

a directly analogous counterpart near the equator. The

explanation closely follows arguments in Lindzen and

Farrell (1977) for the small ice cap instability and is il-

lustrated schematically in Fig. 3. Three curves are shown

for equilibrium climate states using the Budyko-style

approximation for $ � F, but using different values for

the ice line albedo [(i) as 5 a1; (ii) as 5 0.5 3 (a1 1 a2)

as has been used up to now; and (iii) as 5 a2]. Recall that

these curves give pairs of (xs, Q) that are equilibrium

solutions of the model equations, and that the stability

of these equilibrium states can be judged from whether

dxs/dQ . 0 (stable) or dxs/dQ , 0 (unstable).

The small ice cap instability can be understood by

considering the intersection of these curves with xs 5 1.

Imagine starting with an ice-free earth and high Q (point

A1 in Fig. 4). If Q is now gradually lowered, then the

system moves toward point A2. As soon as any ice forms

on the planet though, the solution trajectory must jump

from A2 to A3 because of the discontinuity in albedo

(i.e., a 5 as at this point). In other words, the in-

troduction of any ice at all means somewhat counterin-

tuitively, that the solar constant is no longer large enough

to maintain the ice at that latitude in equilibrium.

As pointed out by Lindzen and Farrell (1977), in the

Budyko-style EBM the nonlocal nature of the heat

transport means the discontinuity is confined to xs 5 1.

For North-style diffusion however, the influence of the

albedo discontinuity leads to a boundary layer that ex-

tends into the domain with a characteristic length scale

equal to
ffiffiffiffiffiffiffiffiffi
D/B
p

(see also North 1984). The thick curve

shows the trajectory of equilibrium (though unstable)

states from A2 to A3. These are achieved by increasing

Q and T (Fig. 2b), even though the ice line is descend-

ing equatorward. Thus, the gradient DT/Dxs is negative

(Fig. 3c) and so from Eq. (23), fT is also negative.

There is a directly analogous discontinuity at the

equator. Start with an ice-covered earth and low Q

(point B1). If Q is now gradually increased, then the

system moves along the path from B1 to B2. But again, as

soon as any ice-fee areas emerge, the solution trajectory

must jump to B3. Following the same reasoning as be-

fore, DT/Dxs reverses (Fig. 3c) and so fT is negative. The

thick green line in Fig. 3c also indicates schematically

the penetration of the effect of this discontinuity into the

domain for North-style diffusive transport. The equa-

torial discontinuity is not readily apparent in the xs

versus Q curves because the slope of the curve from B2

to B3 has the same sense as the slope of dxs/dQ at slightly

higher latitudes. Taken together, the polar and the near-

equator instabilities produce the thick green curve in

Fig. 4, which is similar to the curve of xs versus Q curve in

Fig. 3a.

In summary, imagine a global temperature increase

from an unspecified cause. For most values of xs, this

causes a retreat of the ice line, amplifying the original
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warming [Fig. 3c and Eq. (20)]. However, in the vicinity

of the equator and pole, the discontinuity in albedo ex-

erts a stronger control on the system dynamics, and the

warming is in fact associated with an advance of the ice

line. This damps the original warming and so the feedback

is negative. Although this only occurs here in equilibrium

climate states that are unstable, it is an exotic illustra-

tion of the point that if the dominant physical processes

change as a function of mean climate state, then the

magnitude and even the sign of the feedback can vary

(e.g., Roe 2009).

3. Discussion

In essence, the analysis presented here recasts existing

solutions for simple energy balance models into the

language of feedback analysis. In doing so, the physical

cause of the snowball earth instability can be clearly and

simply laid out. From the perspective of the global en-

ergy balance, the strength of the feedback is determined

by the competition between the stabilizing tendency of

the outgoing longwave radiation and the destabilizing

tendency of less radiation being absorbed as the planet

brightens. From the perspective of the ice line, the feed-

back is the ratio of changes in local insolation and in the

divergence of the poleward heat flux as xs changes.

Our analysis enables derivation of simple expressions

for the strength of the albedo feedback as a function of

mean climate state and choice of climate parameters.

One principal control is, of course, the spherical geom-

etry of the earth, which, at least within the strictures of

these simple models, makes the instability inevitable at

some latitude. In the case of the Budyko-style model, the

latitude of the ice line instability also depends on a simple

nondimensional combination of model parameters.

We have investigated the apparently strange result

that, for diffusive parameterizations of heat flux, the ice

albedo can even act as a negative feedback (i.e., have

a stabilizing effect) on global temperature variations.

It happens here only for climate states that are unsta-

ble because of the very tight coupling assumed between

the ice line and temperature in the energy balance

model. However, the result that global mean tempera-

ture might have a minimum at a nonzero ice-line latitudes

because of the albedo discontinuity is quite physical. It

remains to be explored whether this negative ice albedo

FIG. 3. Properties of solutions to the North diffusive EBM. (a) The ice line as a function of

Q/Q0, using North (1975) analytical solutions and parameters. The thin lines show turning

points. (b) Global mean temperature vs solar constant for the same solution. (c) Global mean

temperature vs ice line for the same solution. (d) Albedo feedback factors fx and fT. The thin

lines confirm that the feedbacks exceed 1 at the latitude of the turning points in (a). Note that fT

becomes negative near the equator and the pole. Refer to text for an explanation.

4700 J O U R N A L O F C L I M A T E VOLUME 23



feedback is just a curiosity of these particular models,

or if it can help explain the occurrence of equilibrium

‘‘slush ball’’ states (i.e., an ice-free equatorial band)

found in some climate models (e.g., Hyde et al. 2000;

Crowley et al. 2001) and that have been argued to be

more consistent with geological evidence (Allen and

Etienne 2008). Another useful diagnostic is suggested by

the results in sections 2a(4) and 2a(3). When the overall

climate is stable, it is because an equatorward advance of

the ice line causes a net warming at the ice line. This is

likely a very general result. Studying the energy budget

response to an ice line perturbation in models that ex-

hibit slush-ball states would elucidate which terms are

responsible for that warming, and perhaps therefore

explain the differences from models that do not exhibit

slush-ball states.

The very concept of a feedback implicitly partitions

the system into a reference state and a set of physical

‘‘feedback’’ processes (e.g., Roe 2009). In this context,

having an ice albedo feedback means introducing a pro-

cess that allows the albedo to vary with a climate state. A

straightforward lesson that also applies to more complex

systems is that the effect of adding this process depends

on which part of the system is of interest. In this simple

case studied here, the feedback strength is different for

the global mean temperature and for the ice line.

Our representations of the feedbacks by ratios of de-

rivatives illustrate the general feature of feedbacks;

whereas in the simplified physical system considered in

this paper, the derivatives were taken with respect to the

spatial variable xs, the primes could more generally in-

dicate derivatives taken with respect to other climate

variables, such as circulation pattern, atmospheric com-

position, among others.

The zonal mean, annual mean EBMs presented here

are obviously highly idealized representations of the real

world. Severe approximations have been made in their

derivation, not the least of which are the absence of

clouds and a seasonal cycle, and these approximations

render the albedo feedback as being substantially larger

than is inferred from GCMs for the modern climate (e.g.,

Soden and Held 2006). It would be of interest to diagnose

ice albedo feedbacks within GCMs as the solar constant is

reduced (following, e.g., the methods of Soden and Held

2006), and to evaluate if the feedback strength varies in

ways that are consistent with the predictions from (16).

Some studies have suggested that there might be

a ‘‘stability ledge’’ because of the effects of the Hadley

cell (Lindzen and Farrell 1977); some climate model

results suggests that ocean transports (Poulsen et al.

2001) or latent heat fluxes (Poulsen 2003) can act to

inhibit a complete glaciation. These processes could, in

FIG. 4. Schematic explanation of small ice cap instability, and the regions of negative fT

feedback, extending the arguments of Lindzen and Farrell (1977). Refer to text for details.
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principal, be cast as additional feedbacks in the energy

budget. To first order, the net effect on the climate is

given by the sum of the individual feedback factors and

so isolating just the ice albedo feedback provides a guide

for how strong those negative feedbacks have to be to

create a stable equilibrium (i.e., the sum must be less

than one).

Recent advances in feedback analysis permit the full

spatial structure of climate feedbacks to be calculated

(e.g., Soden et al. 2008), and it can even include ocean

heat uptake (Gregory and Forster 2008). A full feedback

diagnosis of the simulations from more complicated

models such as Voigt and Marotzke (2009) would permit

the relative importance of individual processes in these

models (and the uncertainties in them) to be propagated

through the system dynamics. One important and robust

expectation is that uncertainties in physical process (and

in model parameterizations of them) lead to large un-

certainties in the system response in the vicinity of f 5 1

because of the strong amplification that is occurring

(e.g., Roe 2009).

The snowball earth phenomenon illustrates how lo-

calized physical processes can have a global effect. Here,

strong model assumptions control how something hap-

pening at one particular latitude—the albedo changing

because of an ice line advance—acts to affect the global

mean climate. In nature other important feedbacks are

also localized, such as the strong negative feedback of

subtropical stratus decks (e.g., Sanderson et al. 2008), or

the high-latitude deep-ocean heat uptake (e.g., Gregory

and Forster 2008; Winton et al. 2010; Baker and Roe

2009). Perhaps one important way forward for improv-

ing both global and regional climate predictions will be

to better understand how these regional processes com-

bine to give the full, global system response.
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