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[1] The rheology that governs deformation within a convergent orogen also controls its
topographic form, or in other words, the covaration of its height (or thickness) and its
width. Under conditions pertaining to small orogens and for rheologies ranging from linear
viscous to Coulomb plastic, we show that this topographic form is insensitive to the
distributions of fluxes into and out of the wedge and is thus a fundamental property of
the system. It can therefore be thought of as a “critical” topographic form, directly
analogous to the well‐studied case of a Coulomb plastic rheology, which predicts a
constant critical taper angle, independent of its size. The tendency of the system to evolve
toward a critical topographic form can be regarded as a “tectonic governor” that strongly
damps the response of the orogen to changes in climate or tectonic forcing. Scaling
relationships can be derived for the variation of orogen width, height, and exhumation
rate as a function of accretionary flux and precipitation rate. This study explores how
sensitive these scaling relationships are to the assumed rheology. It is found that the
scaling relationships vary by less than a factor of 2 across the range of typical geological
rheologies, from Coulomb friction, to power law viscous, to linear viscous. These
scaling relationships provide a first‐order representation of the behavior of convergent
wedges and are relatively insensitive to the underlying assumptions.
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1. Introduction

[2] For as long as the Earth Sciences have been studied,
a major goal has been to understand what controls the
fundamental attributes of a mountain range, such as height,
width, and the pattern and magnitude of the internal
deformation. At the broadest level, the challenge reduces
to characterizing the relative importance of tectonic,
erosional, and climatic processes, the combination of which
must ultimately be controlling the orogenic system. While
these questions are important to many individual disciplines,
research has tended to approach the challenge from different
perspectives. For example, many geomorphic studies have
assumed that rock uplift rates are an imposed and fixed
property of the system [e.g., Howard et al., 1994; Whipple
et al., 1999; Roe et al., 2003]. In contrast, many geody-
namical studies have often neglected the role of erosion [e.g.,
England et al., 1985; Ellis et al., 1995]. Relatively few
geodynamic models have considered fully coupled interac-
tions between tectonic deformation and surface erosion [e.g.,
Beaumont et al., 1992, 2000]. Moreover the interpretation of

these numerical studies has been hampered by the absence of
a theoretical framework capable of quantitative predictions.
[3] It is only recently that the burgeoning interest in

tectonic geomorphology has brought these separate ap-
proaches together, combining climate, erosion, and tectonics
into a single picture [Hilley et al., 2004;Whipple and Meade,
2004, 2006; Roe et al., 2006, 2008; Stolar et al., 2006, 2007;
Tomkin and Roe, 2007]. Of particular importance is the
Coulomb wedge model, wherein the crust behaves as a
Coulomb plastic material, and the orogen maintains a wedge‐
shaped, self‐similar critical form during orogenesis [e.g.,
Chapple, 1978; Davis et al., 1983; Dahlen, 1984, 1990]. The
power of this approach is that it provides an essentially
geometric rule for the role of tectonics in orogen evolution.
This geometric rule can be combined with models of fluvial
or glacial erosion to yield scaling relationships for the relative
importance of the accretionary flux or the climate in setting
the scale of the orogen and the rock uplift rates within it.
[4] The lessons learned from these conceptual models have

been applied in a number of settings (e.g., the Olympics in
Washington State [Stolar et al., 2007], the European Alps
[Willett et al., 2006], the Pyrenees [Sinclair et al., 2005],
the Southern Alps of New Zealand [e.g., Tomkin and Roe,
2007], the St Elias range of Alaska, Taiwan [Whipple and
Meade, 2006], Andes [Hilley et al., 2004], and the Himalaya
[Hilley and Strecker, 2004]). The concepts have proven
useful in understanding interactions among climate, erosion
and tectonics in these settings [see, e.g., Whipple, 2009].
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[5] Roe et al. [2008] analyzed and quantified the tectonic
and climatic feedbacks in this dynamical framework. They
show that the self‐similar form acts as a powerful “tectonic
governor,” acting to damp the landscape response to changes
climate and tectonic forcing. Mechanical governors came to
the fore long ago during the development of the first practical
engines that turned thermal energy into work. A governor
(Figure 1) was needed to provide a feedback to regulate the
process.Maxwell [1868] was first to mathematically describe
the control that governor provided to the overall system. In
many dynamical systems it is not only the individual pro-
cesses, but the internal feedbacks that modulate how the
system responds to changes. This recognition is central to
understanding interactions in dynamic systems [Roe, 2009].
[6] Figure 2 depicts the operation of the tectonic governor

in the setting of a small convergent orogen. As an example,
envision a climate change that increases precipitation, which
increases erosion rates and so tends to reduce orogen size.
The tectonic requirement of self‐similar form means the
reduction in total relief (i.e., from toe to divide) is accom-
panied by a narrowing of the orogen. In turn, when a new
equilibrium is attained, the narrower orogen means the same
accretionary flux is focused into a smaller area, which
enhances the local rock uplift rates and so opposes the
original forcing. The system response is therefore damped,
and so the mechanism is a negative feedback (or governor)

Figure 1. An example of a governor in an early steam
engine [Routledge, 1900]. The outward or inward move-
ment of the hinged balls, caused by faster or slower rotation of
the belt‐driven wheel on its axis, is linked mechanically to a
valve on air intake of the steam engine and thus regulating, or
governing, the speed of the engine.

Figure 2. Schematic illustration of the tectonic governor. In equilibrium, the size of the orogen is governed
by how big it must be for erosion yield to come into balance with the accretionary flux. To the extent that the
orogen maintains a critical form, the orogen will shrink in both height and width in response to an interval of
a climatically driven increase in erosion. Thus, rock uplift rates will be locally enhanced, creating a tendency
opposing the erosional forcing. If the erosional forcing returns to its previous value and, again, if the orogen
maintains a critical form, then the increase in rock uplift will act to restore the orogen to its previous size and
shape. For a decrease in climatically driven erosion, the complementary argument also applies. The purpose
is illustrative so it has been highly idealized; the general argument does not depend on the orogen root or on
the material trajectories through the orogen.
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on topography. The key points are (1) that the Coulomb
plastic rheology forces the orogen width and height to
covary, and (2) that this covariation produces a negative
feedback. The scaling relationships have been evaluated
and confirmed in numerical models [Stolar et al., 2006,
2007] and has been shown to be useful in understanding
the relative strengths of tectonic and climatic feedbacks
[Roe, 2009; Roe et al., 2008].
[7] The preceding paragraphs summarize what is an almost

total reversal of perspective: earlier geomorphological studies
took the view that tectonics imposes the rock uplift rate,
leaving erosion to set the form of the landscape; more recent
studies would argue that it is tectonics that sets the form of the
landscape (via the geometry it imposes), and that it is erosion
rates that set the rock uplift rates (because they must balance
at steady state).
[8] In this study, we explore how rheology affects the

results arising from this new perspective. Davis et al. [1983]
showed that the front region of many orogens have a taper
consistent with a critical Coulomb wedge, and they also
noted that wedges slopes tended to decrease rearward, as
expected for the onset of thermal‐activated viscous flow
with the wedge interior.
[9] Our analysis is based on several assumptions. The first

assumption is that the wedge is actively accreting, and that it
receives enough precipitation to maintain an integrated
fluvial drainage. Accretion and erosion are required to allow
the wedge remain a steady state form.
[10] The second assumption is that the evolution and

internal deformation of a convergent wedge can be re-
presented as a continuum process. This assumption probably
feels unnatural to anyone that has observed the complex array
of faults and folds at the outcrop scale. Nonetheless, the
continuum assumption has been applied with much success
by many authors, starting with Elliott [1976],Chapple [1978]
and subsequently by Cowan and Silling [1978], Davis et al.
[1983], Dahlen [1990], and many others. Price [1973] pro-

vides a particularly nice articulation of this idea, noting that
faults and folds are active at a local scale, but their con-
tributions to deformation tend to become relatively smooth at
the orogen scale. The same kind of analysis is used for dis-
location glide in crystals. The deformation is discontinuous at
the scale of atoms, but becomes relatively smooth and con-
tinuous at the scale of a mineral grain.
[11] The third assumption is that natural deformation can be

represented with a single idealized rheological equation. The
power law viscosity model has been widely used in geody-
namic analysis because it covers a huge range of rheological
behaviors with a just a few parameters [e.g., Chapple, 1969;
Smith, 1975, 1977; England and McKenzie, 1982; Willett,
1999b]. A nice feature of the power law relationship is that
it allows one to represent linear viscosity, as expected for
pressure solution or diffusion‐creep (where the stress
exponent, a ∼ 1), nonlinear viscosity as expected for dislo-
cation‐glide and climb in crystalline solids (where a ∼ 3), and
plastic behavior as expected for friction where the finite yield
stress is simulated by a large stress exponent (a � 3). (We
have to, somewhat inconveniently, use a for the stress
exponent rather than n, because n is also a conventional
symbol in fluvial erosion laws.) We incorporate a depth
dependence to this rheology, which allows us to consider the
increase in yield stress that occurs with increasing depth for
Coulomb plastics, and the decrease flow stress that occurs
with depth due to the temperature‐sensitive behavior of vis-
cous materials. In summary, a continuum rheology cannot
fully represent geologic structure, and should be interpreted
as an “effective” rheology for the whole orogen.
[12] Our use of a power law rheology here is an efficient

way of representing how tectonic accretion is distributed
between changes in the thickness and width of the orogen.
By varying just two parameters, we can span a large range
of orogen‐scale behaviors, from a highly nonlinear, Coulomb
plastic orogen wherein width changes are proportional to
height changes, through to a linear viscous orogen wherein
the orogen spreads outward much more readily in response to
height changes. Figure 3 illustrates the ability of the stress‐
exponent to represent a range of rheologies, from linear
viscous, where a = 1, to a more plastic behavior rheology,
where a is large and deformation rates start to become
significant only after a stress threshold is reached. Using
simple numerical integrations, we are also able to represent
an orogen with a root that changes from nonlinear to linear
behavior as the orogen changes size.
[13] We solve for the topographic form resulting from

such a rheology. The lower the exponent on the power law
rheology, the less sensitive the orogen height is to variations
in orogen width. A striking result is that the topographic
form is extremely insensitive to distributions of influx
(accretion) or efflux (erosion) from a wedge. By insensitive,
we mean that an orogenic wedge will tend to maintain a
steady form, in the same sense as the critical taper concept,
as originally proposed by Davis et al. [1983]. Our contribu-
tion is to extend this idea for the fully range of geologically
applicable rheologies.

2. General Considerations

[14] We begin by identifying the basic conditions of the
dynamical system that are necessary for specifying the

Figure 3. Illustration of different power law viscous
rheologies from (13) for different values of the exponent a.
t0 is the normalizing stress at which the strain rate _� = A. As
the value of a approaches infinity, the material approaches
plastic behavior. For a Coulomb plastic material, t0 increases
linearly with depth within the material.
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mutual interactions among climate, erosion, and tectonics.
Figure 4a shows a geologic vision of processes affecting an
orogenic wedge. Our view of the wedge is shown in Figure
4b, where the wedge is nothing more than a flux‐balance
problem, where the wedge is a volume that evolves based on
balance between an accretionary influx and an erosion
efflux. The relationship between the wedge volume and the
wedge fluxes is governed by the critical topographic form of
the orogen.
[15] The flux of material, F, incorporated into the wedge

is ultimately driven by plate convergence. Let V be the
volume of the wedge, and let its shape be loosely charac-
terized in terms of its height, H, and width, L. Let Y be the
total erosional yield from the orogen. Conservation of mass
must apply,

dV

dt
¼ F � Y : ð1Þ

In steady state, the accretionary flux equals the erosional
yield [e.g., Brandon et al., 1998; Whipple and Meade, 2006;
Stolar et al., 2006]. Recycling of eroded material is not
considered here but could be incorporated without any loss of
generality. The interactions between the three components of
the system can be expressed in terms of three relationships
(Figure 4b). First, the erosional yield is dependent on the
climate and on the orogen shape, which can be written as

Y ¼ Y P;H ; Lð Þ: ð2Þ

Second, the shape of the orogen can be expressed as

H ¼ H Lð Þ; ð3Þ

where the functional relationship is dependent mainly on
rheology, and also on dip of the subducting plate. For an
actively accreting Coulomb wedge, the wedge taper will
always approach a critical taper angle dependent on the dip of
the basal fault [Davis et al., 1983]. The overall size of the
wedge may change as the erosion changes, but the taper angle
remains constant, so long as the basal dip remains constant.
We show this concept of a critical topographic form also
applies for all actively accreting wedges, regardless of their
rheology, whether Coulomb plastic, linear viscous, or power
law viscous.
[16] A relationship between climate and tectonics enters

because of orographic precipitation [Roe et al., 2008],

P ¼ P H ; Lð Þ: ð4Þ

Equations (1), (2), (3), and (4) are a complete set (i.e., both
necessary and sufficient conditions) defining interactions
among climate, erosion, and tectonics. In the broadest terms,
orogen dynamics can be conceptualized as a classic flux‐
balance problem (Figure 4b), with a source, F, a sink, Y, and a
reservoir, V. However in contrast to a simple “bucket‐style”
flux reservoir, an orogenic wedge has a more complex
dependence on the interactions with accretionary fluxes,
orographic precipitation, and rheology. Our focus here is on
how rheology affects equilibrium scaling relationships for an
actively accreting wedge. The steady state case provides the
essential basis for understanding the timescale for transient
behavior [Whipple and Meade, 2006; Stolar et al., 2006;
Roe et al., 2008].

3. Orogen‐Width Scaling Relationship

[17] We consider a system dominated by fluvial erosion,
and follow essentially the same procedure as Whipple and
Meade [2004] and Roe et al. [2006], using the notation of
the latter. We focus here on a one‐sided wedge, because
Whipple and Meade [2004] and Roe et al. [2008] show that
a two‐sided wedge obeys the same scaling relationship. The
fluvial‐erosion rate follows a standard formulation [e.g.,
Howard, 1980; Whipple, 2004],

_e ¼ KQm dz

dx

� �n

; ð5Þ

where Q is the discharge and dz/dx is the along‐channel
slope of the river. Precipitation, P, is assumed uniform.
Stolar et al. [2007] have shown that, for realistic precipita-
tion rates, orogen size and deformation pattern are relatively
insensitive to the pattern of precipitation. Using Hack’s law
for the relationship between channel length and drainage area
[Hack, 1957], we can write

Q ¼ Pkax
h: ð6Þ

K, ka, h, m, and n are constants reflecting the rock erodibilty,
the drainage network structure, and the dominant physical
process governing fluvial erosion.

Figure 4. (a) Typical schematic illustration of various pro-
cesses operating in orogenesis (note that the vertical is not
to scale). (b) The same orogen dynamics distilled into a
flux‐balance problem. The flux balance dynamics are the
basis of the scaling relationships derived in this study.
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[18] In steady state, the local rock uplift rate, U, balances
the local erosion rate. Hence, we can write

U ¼ Kkma P
mxhm

dz

dx

� �n

: ð7Þ

Assuming uniform rock uplift, (7) can be integrated from the
toe of the orogen to a point near the divide, (xc, zc), where
the discharge is so low that fluvial erosion no longer applies
and hillslope processes (i.e., landslides, soil creep, etc.) take
over as the dominant mechanism of erosion. The difference
in elevation from the toe of the wedge to the highest point of
fluvial erosion is called the fluvial relief,

zc ¼ 1

1� hm=nð Þ
U

Kkma P
m

� �1
n

L1�
hm
n � x

1�hm
n

c

h i
: ð8Þ

There is a special case, where hm/n = 1 [e.g., Whipple et al.,
1999; Roe et al., 2006], but the scaling relationship derived
below applies to this case as well. It must, since the scaling
relationship has to vary smoothly with small changes in
model parameters, and the limiting case of hm/n → 1 can be
approached from either side.
[19] We refer readers to earlier papers [e.g., Hilley et al.,

2004; Whipple and Meade, 2004; Roe et al., 2006] for
details of the derivation, but a sketch of the solution is pro-
vided here. First, in fluvially eroding orogens, the fluvial
relief comprises the greater part of the total relief, H, defined
as the maximum elevation of the drainage divide above the
foreland. Hence zc ≈ H. Second, the distance from channel
head to the drainage divide is also typically small compared to
the channel length, and so xc � L. Finally, if rock upift is
uniform, it is related to the accretionary flux, F, by: U = F/L.
Substituting these three conditions into (8) and rearranging
gives the following proportionality,

Hn / F

LPm

� �
Ln�hm: ð9Þ

For an fluvially eroded orogen, this expression governs the
relationship between H, L, P, and F in steady state.
[20] Several results derived by Roe et al. [2006] show

this relationship is largely independent on the underlying
assumptions. The exponents in the scaling relationship are
insensitive to how the channel is connected to the drainage
divide. Furthermore, the rock uplift can depart significantly
from uniform, provided that it scales in an approximately
self‐similar manner with orogen size. These conclusions are
supported by the numerical modeling and theoretical results
of Stolar et al. [2006, 2007].
[21] The final step in deriving the orogen‐width scaling

relationship is to include how the deformation within the
orogen controls the topographic form, or in other words,
how it controls the relationship between H and L. In the next
section, it is shown that a power law viscous rheology
produces a relationship of the form,

H / Ly : ð10Þ

Substituting this into (9), gives

F / PmL1þhmLn y�1ð Þ: ð11Þ

This equation is a general expression for the balance
between F, L, and P. It holds provided that the height of the
orogen can be expressed as a power law function of L.
[22] A critical Coulomb wedge with a constant basal dip

has a constant taper angle, and so H / L and y = 1.
Therefore,

L / F
1

1þhmP
�m
1þhm: ð12Þ

This is the relationship derived by Roe et al. [2006] and is
essentially the same as in the works of Hilley et al. [2004]
and Whipple and Meade [2004]. We set h = 2 [e.g., Hack,
1957; Montgomery and Dietrich, 1992], and consider
three different combinations of (m, n): (1/3, 2/3), (1/2, 1),
and (1, 2). The exponents on F and P in (12) are (3/5, –1/5),
(1/2, –1/4), and (1/3, –1/3), respectively [Roe et al., 2006].
The low values of these exponents imply that the orogen
width is insensitive to changes in precipitation rate and
accretionary flux.

4. Topographic Form and Power Law Rheologies

4.1. Defining a Power Law Rheology

[23] Tectonic deformation can be envisioned to be driven
by far‐field tectonic stresses, operating subparallel to the
horizontal, and to body forces related to the topography. The
rheology of the crust relates the stresses and strain associ-
ated with these loadings. As used here a linear viscous
rheology and a nonlinear “power law” rheology indicate
different sensitivities of strain rate to stress (Figure 3). A
linear or Newtonian viscosity exhibits a simple proportion-
ality between stress and strain rate. A power law rheology
has a greater “sensitivity” to increasing stress, given that the
strain rate is proportional to the deviatoric stress raised to a
exponent greater than 1. Dislocation glide‐and‐climb is the
typical viscous mechanism in the crust, and it has a stress
exponent ≈3. Viscous materials will flow at any deviatoric
stress, although the strain rates may be quite small. In
contrast, plastic materials have a finite yield strength, so
strain rates will remain at zero until the yield stress is ex-
ceeded. Frictional materials have this property, in that
deformation does not occur until reaching a critical yield
stress. Frictional materials are distinguished from other
plastic materials in that the yield stress for frictional mate-
rials is a function of pressure, a feature that is indicated by
the term Coulomb plastic. Coulomb plastic materials
become stronger with depth, given that mean stress or
pressure increases with depth (ignoring pore fluid pressures
for the moment). Viscous rheologies generally become
weaker with depth because these rheologies are sensitive to
temperature. In this sense, both rheologies have a depth
sensitivity, but they are distinguished by opposing sensi-
tivities. It is possible to write a general expression for the
rheology that encompass all of these possibilities in terms of
two free parameters. First, let

_� ¼ A �=�0ð Þ�; ð13Þ

where _� is the strain rate and t is the deviatoric stress, which
follows Norton’s law for steady state creep in engineering
[Norton, 1929] and Glen’s law in glaciology [Glen, 1955].
A is a flow factor which we initially assume constant. In
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general, A might also contain some temperature dependence
reflecting that the hotter the crust is, the more easily it tends
to deform [e.g., England, 1983; Stüwe, 2002]. We explore
the effect of such a dependence in section 7. a determines the
nonlinearity of the stress ‐ strain rate relationship: ifa = 1, the
fluid is linear; if a = ∞ the fluid is plastic (see Figure 3).
[24] Second, we define t0 as a normalizing stress, given

by

�0 ¼ �*
zs � z

D0

� ��

; ð14Þ

t* and D0 are constants, (zs ‐ z) is the depth below the
surface, zs, and b is the exponent governing the depth
dependence of t0. The power law depth variation of t0 is
used here for mathematical convenience, and is not intended
to represent any real process. Consider the case of a = ∞: if
b = 0, the threshold stress is constant and the material is
perfect plastic; if b = 1, the material is Coulomb plastic.
Note that we ignore the cohesion term for Coulomb friction
given that this term becomes insignificant for wedges that
are thicker than about 5 km [Dahlen, 1990]. Thermal‐
activated viscosity could be represented by b < 0.
[25] The power law rheology in (13) and (14) is a gen-

eralized representation that is able to mimic a wide range of
orogen behaviors. By selecting different values of a and b,
this behavior runs the gamut from a “stiff,” Coulomb plastic
material, in which height and width changes are propor-
tional to each other, through to a more fluid viscous material
in which the wedge spreads out far in response to small
changes in size. These rheologies represent continuum‐scale
approximations and are appropriate for studying the overall
evolution of the wedge. They should not be taken as rep-
resentative of discontinuous and heterogenous processes,
such faults, folds, and other structures, which are the most
visible aspect of orogenic deformation at the subcontinuum
scale. Physical models like sandbox experiments that do
have localized deformation and discrete faults do also show
that the large‐scale behavior of the full pile of sand can be
interpreted in terms of wedge dynamics, and characterized

by the relationship between its height and its width [e.g.,
Davis et al., 1983; Hoth et al., 2006].

4.2. Topographic Form

[26] Our generalized power law rheology in (13) and (14)
can be used to solve for the topographic form of an orogen
governed by such a rheology. In section 5, this topographic
form will be combined with (11) to obtain a scaling rela-
tionship between accretionary flux, precipitation rate, and
orogen width. We follow the scale analyses and approx-
imations of Emerman and Turcotte [1983], who invoked the
equations of lubrication theory to derive their results. We
extend their analyses to include the depth dependency of
typical geologic rheologies. The method of solution also
ends up being similar to that for glaciers and ice sheets using
the shallow‐ice approximation [e.g., Hutter, 1983; Paterson,
1994]. The solution provides an efficient way of sampling a
wide range of height‐width relationships for wedges.
[27] The main assumption that simplifies the solution is

that the characteristic horizontal length scales are much
larger than characteristic depth scales, or in other words, the
aspect ratio of the orogen is large. Emerman and Turcotte
[1983] show this implies that horizontal gradients in shear
stress are negligible compared to those in the vertical. This
is a different physical model from the thin sheet approxi-
mation appropriate for plateaux or systems with weak
detachment [e.g., England and McKenzie, 1982], where the
strain rates are vertically averaged and the force balance is
between the pressure gradient due to the topography, the
longitudinal stresses and, possibly, some stipulated basal
traction [e.g., Ellis et al., 1995]. Batchelor [2000] and
Pollard and Fletcher [2005] review how this “lubrication
theory” assumption applies to typical geodynamic problems.
[28] A schematic illustration of the forces acting on a

element within the orogen is shown in Figure 5. The as-
sumptions of a large aspect ratio and of zero stress on the
upper surface mean the fundamental force balance reduces
to the shear stress on the lower face of the element, txz, and
the integral of the pressure gradient acting on the vertical
sides of the element. Let x, z and u, w be the horizontal and

Figure 5. Illustration of the horizontal forces acting on an element within the wedge, shown by the
dashed line. The pressure gradient force integrated along the vertical sides of the element is balance
by the shear stress along the bottom face of the element. Within this model framework, the longitudinal
deviatoric stress components are negligible because the depth scales are assumed to be much smaller than
horizontal scales within the wedge [e.g., Emerman and Turcotte, 1983].
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vertical coordinates and rock velocities, respectively. The
force balance can be expressed as

�xz ¼ �cg zs � zð Þ dzs
dx

; ð15Þ

where rc is the density of the crust, g is the gravitational
constant, and zs is the surface elevation. The large aspect ratio
also means that the total strain rate is dominated by the ver-
tical gradient in the horizontal velocity. Substituting into (13),

du

dz
¼ A

�xz
�0

� ��

: ð16Þ

The boundary conditions are that the rock velocity is speci-
fied (ub, wb) at the base of the orogen, z = zb, and that the
erosion rate at the surface of the orogen is _e. Although it is not
necessary for the functional form of the topographic profile,
we can also consider a local isostatic balance, which relates zs,
zb and the total thickness of the orogen, hT,

zs ¼ 1� �c
�m

� �
hT

zb ¼ � �c
�m

� �
hT ;

ð17Þ

where rm is the density of the underlying mantle. Isostasy is
important in deriving the time‐dependent behavior of the
system, since it affects the amount of material needed to build
an orogen of a given size [Whipple and Meade, 2006; Stolar
et al., 2006].
[29] In this two dimensional framework, the horizontal

flux of rock, F, past any given point is given by the integral
of the horizontal velocity,

F xð Þ ¼
Z zs

zb

u x; zð Þdz; ð18Þ

Using equations (14), (15), and (17), (16) can be integrated
twice in the vertical, subject to the boundary conditions, to give

F xð Þ ¼ ubhT � A �cgð Þ�D��
0 1� �c=�mð Þ�
�*a

( )

� h� 1��ð Þþ2
T

dhT
dx

� ��

: ð19Þ

The horizontal flux of material within the orogen can thus be
thought of as having two components: a translational com-
ponent due to drag in the lower part of wedge by the sub-
ducting plate, represented by the first RH term in (19), and a
deformation component in the opposite direction, due to the
viscous rheology and given by the second RH term in (19).
[30] Another constraint is conservation of mass, which

requires at each point,

@hT
@t

¼ wb � _e� @F

@x
; ð20Þ

where wb − _e (i.e., underplating minus erosion) can be
thought of as the net mass balance at a given point. In steady
state, ∂hT /∂t = 0, and so

F xð Þ ¼
Z x

0
wb � _eð Þdx: ð21Þ

For a one‐sided wedge, the mass balance integrated from
any given point to the orogen divide is balanced by the flow,
or deformation, of rock within the orogen at that point. From
(17) and (19), F can be expressed in terms of hT and its first
derivative, and so as recognized by Emerman and Turcotte
[1983], (21) is essentially a nonlinear diffusion equation that
can be solved for the profile hT(x).
[31] A second important assumption made by Emerman

and Turcotte [1983] is that the thickness of the crustal layer
being accreted into the wedge, d, is much less than the total
thickness of the wedge, h (i.e., including the crustal root).
Crucially, Emerman and Turcotte demonstrated that the
integral on the right‐hand side of (21) can be neglected when
solving for the profile of the wedge. The integral scales as
wbL, which is the rock uplift integrated over the width of the
orogen. Conservation of mass means that this quantity must
equal the accretionary flux, or ubd. Since d� h, the integral is
much less than the first term on the right‐hand side of (19).
Therefore, the steady state solution for the wedge profile (20)
boils down to solving F = 0. Using (17) and (19), we get

ubhT � A0 � h� 1��ð Þþ2
T

dhT
dx

� ��

; ð22Þ

where all of the constants have been subsumed into A′.
[32] It seems counterintuitive to solve for F = 0 when the

orogen depends on a mass flux for its existence, and we
emphasize that this approximation is only valid in calcu-
lating the shape of the wedge profile, and cannot be used in
calculating the size of the orogen [Emerman and Turcotte,
1983]. The solution to (22) can be regarded as a “critical”
topographic form, the profile that the orogen will attain for
the particular rheology governing its deformation.
[33] Using (17), (22) can be rearranged and expressed as a

first‐order differential equation for hT. Integrating from x = 0
to L, assuming hT = 0 at x = L, gives

hT xð Þ ¼ A0 0 L� xð Þ �
� 2��ð Þþ1; ð23Þ

where A″ is a constant. (For specified patterns of ub,
velocities within the wedge can be found by integrating
(16). Emerman and Turcotte [1983] solve for the return flow
at the surface of the wedge, assuming no frontal accretion or
erosion. For the rheology used here, this velocity is given by
u = ub/(a(1 − b) + 1), predicting some surface extension,
even as the limit of a Coulomb plastic rheology is approached
[e.g., Buck and Sokoutis, 1994; Willett, 1999b].)
[34] H is themaximum height of the orogen (i.e.,H = zs(0)),

and so in isostatic equilibrium it scales in the same way as
hT(0) (see (17)). Hence from (23),

H / L
�

� 2��ð Þþ1: ð24Þ

For a linear viscous rheology with no temperature depen-
dence a = 1 and b = 0, giving H / L

1
3, as found by Emerman

and Turcotte [1983]. For a typical nonlinear viscosity with no
temperature dependence, a ∼ 3 and b = 0, giving H / L3/7.
For viscous rheologies, the decrease in viscosity with tem-
perature and depth means that these estimates are upper
bounds. In the case of a Coulomb plastic rheology, a =∞ and

ROE AND BRANDON: TECTONIC GOVERNOR B02101B02101

7 of 17



b = 1, and soH/ L. Thus, the analysis reproduces the critical
taper angle of a Coulomb critical wedge.

5. Orogen Scaling‐Relationships for a General
Rheology

[35] Having obtained the solution for the topographic
form for a general rheology, it can now be used to calculate
how the orogen‐width scaling relationship is influenced by
rheology. From (24), the expression for y in (11) is given by

y ¼ �

� 2� �ð Þ þ 1
: ð25Þ

Equation (11) can be rearranged to express L as a function
of F and P,

L / F�1P�2 : ð26Þ

where g1 and g1 are functions of h, m, n, and y. Table 1
presents these exponents for Coulomb plastic and linear
viscous rheologies, and for the three different sets of com-
monly assumed fluvial erosional parameters. In agreement
with previous studies, g1 is greater than or equal to g2,
meaning that for most parameter combinations, the orogen
width is more sensitive to changes in tectonic forcing than to
changes in climate. Further, g1 and g2 are both less than one,
reflecting the strong negative feedback of the tectonic
governor, as explained in more detail in sections 5.2 and 5.3.
The values of g1 and g2 are larger for the linear viscous
rheology than for the Coulomb plastic rheology. This re-
flects the fact that a linear viscous orogen spreads out more
for a given change in volume than a Coulomb plastic orogen.
[36] A striking result is that, even though the two end‐

member rheologies are very different, the rheology has little
influence on the exponents in the orogen‐width scaling
relationship. In other words, the impact of precipitation and
tectonic forcing on the width of an orogen is quite insensitive
to the specific rheology governing the deformation. The
reason can be seen by comparing the two exponents on L on
the right‐hand side of (11). The first exponent, 1 + hm,
reflects two factors: (1) the hm comes from the dependence
of fluvial erosion on discharge and also the fact that
upstream drainage area accumulates with downstream dis-
tance; and (2) the 1 comes from the fact that the local
erosion rates must be integrated over the whole orogen

width to balance the total incoming accretionary flux. The
effect of rheology on the topographic form is folded into the
second exponent, n(y − 1). For the range of rheologies
considered here 1/3 ≤ y ≤ 1. The effect of rheology is thus
biggest for smaller values of y. For a linear viscous rhe-
ology with y = 1/3 and the three different combinations of
erosion parameters, the relative sizes of the first and second
exponents on L in (11) are 15:4, 3:1, and 9:4. Thus, orogen
width is much more sensitive to discharge and drainage area
than to rheology.

5.1. Other Orogen Attributes

[37] In addition to its width, the model orogen can be
characterized by two other attributes: height and rock uplift.
These attributes are related to the orogen width via the rhe-
ology, which gives the topographic form H/ Ly, and via the
conservation of mass, which requires U = F/L. Therefore, the
dependence of H and U on the forcing variables F and P can
also be expressed in terms of scaling relationships.
[38] Table 2 gives the exponents on these scaling

relationships for the case of (h,m,n) = (2,1/2,1), and illustrates
the behavior of these attributes for different rheologies. For
completeness, we also include the cases of a fixed‐width
orogen and a plateau (which can be emulated by settingy =∞
and y = 0, respectively, in (10)). As y decreases, the orogen
width becomes more sensitive to changes in F and P. At the
same time, the height becomes less sensitive to these forcings
since it becomes harder to build high topography. Also, as the
width becomes more sensitive to accretionary forcing, the
rock uplift rate becomes less sensitive: a large increase in
width means the accretionary flux is distributed over a larger
area, damping the change in the rock uplift rates.

5.2. Why Does an Orogen Change so Little in Response
to Changes in Forcing?

[39] For all of the rheologies considered, the orogen response
to changes in climate and tectonic forcing is small. All of
the exponents in Table 2 are less than or equal to one. These
exponents can also be interpreted as the factor multiplying the
fractional response of that orogen attribute to a fractional
change in the forcing. For example, from Table 2, the fractional
change in rock uplift rate for a linear viscous wedge is given by

DU

U
¼ 1

4

DF

F
þ 3

8

DP

P
: ð27Þ

Thus, to bring about dramatic changes in orogen attributes
(an order ofmagnitude, say), extremely large fractional changes

Table 1. Exponents on the Orogen‐Width Scaling Relationship:
L / Fg1 Pg2 a

m n h

Coulomb
Plastic
(y = 1)

Linear Viscous
(y = 1

3)

Fg1 Pg2 Fg1 Pg2

1
3

2
3 2 3

5 � 1
5

9
11 � 3

11
1
2 1 2 1

2 � 1
4

3
4 � 3

8

1 2 2 1
3 � 1

3
3
5 � 1

3

aTable 1 shows a comparison for two different rheologies (Coulomb
plastic and linear viscous) and for three different commonly assumed
erosion processes. The exponents are a measure of the sensitivity of the
orogen width to changes in F and P. A linear viscous rheology makes
orogen width more sensitive to change in F and P, but not dramatically
so. See text for more details.

Table 2. Exponents on Scaling Relationships for Different Orogen
Attributes: Width, Height, and Rock Uplifta

Width, L Height, H
Rock

Uplift, U

Fg1 Pg2 Fg1 Pg2 Fg1 Pg2

Fixed width (y = ∞) 0 0 1 −12 1 0

Coulomb plastic (y = 1) 1
2 −14

1
2 −14

1
2

1
4

Linear viscous (y = 1
3)

3
4 −38

1
4

1
8

1
4

3
8

Plateau (y = 0) 1 −12 0 0 0 1
2

aHere (h,m,n) = (2,1/2,1) was assumed for the values shown. The case of
a plateau is included for completeness, but as noted in the text, the results
derived for this case should be interpreted cautiously.
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in the forcing factors are required. This reflects the strong
damping tendency of the tectonic governor. Recalling from (1)
that, in equilibrium F = Y, equation (11) shows that erosional
yield is a sensitive function of orogen width. Fundamentally
this is a consequence ofHack’s law. For example, an increase in
the orogen width increases the drainage area of the river net-
work. The erosional yield (and thus the sink of mass from the
system) increases dramatically, and so provides a powerful
opposing tendency to the increasing width.
[40] Although changes in forcing are obviously hard to

estimate over geologic time, some factors like average
precipitation rates can be partly constrained on physical
grounds. For example, all else being equal, the moisture‐
carrying capacity of the atmosphere limits the precipitation
rate. A useful rule of thumb is that an increase of 10°C
doubles the moisture content of the air, and an increase of
30°C, increases moisture content by an order of magnitude
[e.g., Roe, 2005]. Both correspond to enormous climate
changes that might have independent observable evidence.
So in evaluating scenarios put forward to explain particular
orogen histories, the exponents in Table 2 might be used to
assess their physical plausibility.

5.3. Feedback Analysis

[41] An alternative way to characterize the strength of
interactions in a system is through a feedback analysis.
Roe et al. [2008] used a model of orographic precipitation to
analyze of the strength of precipitation feedback for a critical
Coulomb plastic wedge. We use the same procedure to
characterize how changing the governing rheology affects the
sensitivity of the orogen properties to the magnitude of the
accretionary flux and the precipitation rate.
[42] A formal feedback analysis includes defining gains

and feedback factors, which are essential in comparing
the strength of different interactions in a system [e.g., Roe,
2009]. Roe et al. [2008] only considered a Coulomb plastic
critical wedge, and used a fixed‐width wedge as a reference,
no feedback, case. To consider the role of rheology in this
feedback analysis, we define the Coulomb critical wedge as
the reference case. Thus the feedback factors and gains dis-
cussed here provide quantitative predictions about how the
wedge will change relative to a Coulomb critical wedge.
Secondly, this reference case also allows for a direct com-
parison with the detailed analysis of the precipitation feed-
back in Roe et al. [2008], which also took the Coulomb
critical wedge as the reference case.

[43] Let DL0 be the change in orogen width for an
increment in accretionary forcing DF0 in the reference case.
Now let DL be the width change to that same increment in
accretionary forcing, but with a different rheology (i.e., non‐
Coulomb plastic). The feedback factor, fL, and gain, GL,
relate these two length changes,

DL ¼ GLDL0 ¼ DL0
1� fL

: ð28Þ

One might wonder why it is necessary to define both gains
and feedback factors given that GL = (1 − fL)

−1. The gains
provide the most direct representation of the feedback, but
the feedback factors have the advantage in that they are
linearly additive, so one can easily compare different
feedback mechanisms or combine these feedback factors to
see how they might active together. As a consequence,
both variables are important to understanding feedbacks in
a dynamic system [e.g., Roe, 2009].
[44] In Appendix A, expressions for the feedbacks factors

are derived for the orogen width, fL, the orogen height, fH,
and the rock uplift rate, fU. They are

fL ¼ n 1�yð Þ
1þhm ;

fH ¼ y�1ð Þ 1þhm�nð Þ
y 1þhmð Þ ;

fU ¼ n y�1ð Þ
1þhmð Þ hm�n 1�yð Þ½ � :

ð29Þ

The calculations for (h,m,n) = (2,1/2,1) are presented in
Table 3. Because of the choice of hm/n = 1, fH = fU, although
this is not always true and in general the feedback factors
can be quite different from each other. Consider the change
in feedbacks as one replaces the reference case, with a
Coulomb plastic rheology represented by y = 1, to a more
viscous rheology as defined by decreasing values of y. A
lower y value causes an increased sensitivity of orogen
width to changes in accretionary forcing. In contrast, the
sensitivity of orogen height and rock uplift rates decreases
with decreasing y values. In the limiting case of a plateau,
there is no change in orogen height and only outward growth
of the wedge.
[45] Roe et al. [2008] found that large precipitation

feedbacks were possible if only the leeward (i.e., rain
shadow) flank of the orogen were considered. However,
these feedbacks were strongly muted when both flanks of
the orogen were coupled together. For two‐sided wedges,
Roe et al. [2008] found that, under typical choices of model
parameters, the width feedback factor, fL, for a precipitation
feedback varies from between approximately −0.4 and
+0.2. Feedback factors are directly comparable, and so from
Table 3, it can be seen that changing the rheology from
Coulomb plastic to linear viscous has about the same effect as
adding orographic precipitation.

6. Effect of Mass Balance Patterns

[46] In deriving the solution for the topographic form in
section 4.2, scaling arguments are used to argue that the mass
balance, wb − _e (i.e., the underplating minus the erosion rate),
could be neglected. In this section, we explore the validity of
this approximation using a numerical solution of (21).

Table 3. Feedback Factors and Corresponding Gains for Width,
Height, and Rock Uplift Rates for Different Rheologiesa

fL fH, fU GL (%) GH, GU (%)

Fixed width (y = ∞) −∞ 1
2 0 200

Coulomb plastic (y = 1) 0 0 100 100
Linear viscous (y = 1

3)
1
3 −1 150 50

Plateau (y = 0) 1
2 −∞ 200 0

aThe Coulomb plastic rheology is taken as the reference case, and the
expressions for the feedback factors are derived in Appendix A. (h,m,n) =
(2,1/2,1) was assumed for the values shown. Because hm/n = 1, fH = fU, but
this is not generally true. The gains are given as percentages and are related to
the fractional feedback factors by G = 1/(1 − f). When multiple feedbacks
are present, feedback factors add linearly, whereas gains do not. The case
of a plateau is included for completeness; the results should be interpreted
cautiously.
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[47] As noted in section 4.2, the typical magnitude of the
mass balance can be constrained from mass continuity: wb

and _e scale as ubd/L. However, the pattern of the local mass
balance is, as yet only loosely constrained from observations
or theory [e.g., Willett, 1999b, 2001; Stolar et al., 2007].
Despite these uncertainties, we can approximate how dif-
ferent distributions of erosion rates might affect the feed-
back sensitivities of the wedge. To do this, we define two
simple end‐member cases for the distribution of the local
mass balance,

wb � _e ¼ � ub�

L

x

L
� 1

2

� �
: ð30Þ

The erosion rate varies linearly across the wedge, with the
fastest erosion at the rear of the wedge for the positive sign,
and at the front of the wedge for the negative sign. This
functional form ensures a flux balance, and therefore a
steady state solution for a given L. Note that locally wb − _e
is not zero, and so at steady state, it must be balanced by
the divergence or convergence of the vertically integrated
horizontal flux within the orogen.
[48] We consider an orogen with the following scales L =

40 km, d = 5 km, ub = 16 mm yr−1, giving an average uplift
rate of 2 mm yr−1. Crustal and mantle densities are assumed
to be 2.8 × 103 and 3.3 × 103 kg m−3, respectively. Since we
only consider values of 0 or 1 for b, the value of D0 in (19)
is arbitrary except for how it influences the other para-
meters, but we take it to be 30 km. The ratio of A/t* is then
chosen to give a realistic H = 3 km for the standard case.

[49] At the toe of the wedge, ubh is finite and the thickness
is zero. From (19), if a is finite then dzs/dx must go infinity
there, and this causes difficulty in achieving numerical
convergence. Appendix B gives a horizontal coordinate
transformation that was used to ensure that, in the new
coordinate frame, the slope at the toe remains finite. A
standard numerical ODE‐solver was then used to solve the
transformed (19). After converting back to the original
x coordinate, the result is the topographic form for a given
rheology and mass balance pattern.
[50] We consider three different combinations of the

rheology parameters a and b: a linear viscous case, (a, b) =
(1,0); an intermediate viscous case, (a, b) = (3, 0); and a
case approaching that of Coulomb plastic, (a, b) = (30, 1).
Figure 6a shows the topographic forms using the mass
balance and taking the positive sign in (30). From the
analytical solutions for these rheologies (25), the exponents
characterizing the topographic profiles are 1/3, 3/7, and 30/
31, respectively. The validity of neglecting the mass balance
pattern in deriving these exponents is confirmed by the
profiles, which are almost indistinguishable from the ana-
lytical forms. This is confirmed by comparing profiles with
opposite mass balance patterns (i.e., using different signs
in (30)), as shown in Figure 6b. The two profiles differ by
less than 20 m, with differences largest near the divide and
when the linear viscous rheology is used.
[51] To further illustrate the insensitivity of the topo-

graphic form to the mass balance, Figure 7 shows orogen
profiles calculated with an imposed a 2 km‐wide top‐hat
“spike” in the mass balance in the middle the orogen. The

Figure 6. For different rheologies, (a) critical form profiles for the mass balance pattern in (30) using the
positive sign and (b) the change in profile elevation when the sign of mass balance pattern is reversed.
Note the change of y axis scale between Figures 6a and 6b. Figure 6 shows that the critical form of the
orogen is extremely insensitive to the assumed pattern of the mass balance, with rheologies that are near
Coulomb plastic being the least sensitive.
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amplitude of this imposed spike is 20 cm yr−1, or in other
words, one hundred times the average rock uplift rates. The
spike has its biggest effect on the profile at the point where it
is imposed, but even for a linear viscous rheology, the
maximum difference between the profiles is less than 200 m.
For the case of a, b = (30, 1), the maximum difference is
30 m.
[52] Figures 6b and 7 demonstrate a profound insensitivity

of the topographic form to the mass balance, an insensitivity
that increases with increasing y. The reasons are twofold.
Firstly, as argued by Emerman and Turcotte [1983] and in
section 4.2, the flux of material through the orogen is
dominated by two terms, the translational flux and the
deformation flux, which are both much larger in magnitude
than typical values of the local mass balance. Secondly,
even if spatial variations in mass balance are enough to
significantly affect F(x), (19) is a nonlinear diffusion
equation. Therefore, large changes in F(x) can be balanced
by only a small change in the shape of the orogen profile
(i.e., either hh or dzs/dx), because each of these two terms
is raised to a large power in (19).
[53] In the context of orogen development, the insensi-

tivity of the orogen profile to precipitation patterns is
demonstrated by the numerical modeling of Stolar et al.
[2007]. There is a parallel with glaciology because ice is
also a power law viscous fluid. The rheology of ice is typ-
ically given by a = 3 and b = 0 in (13). Boudreaux and
Raymond [1997] and Roe [2002] showed that the profiles

of glaciers and ice sheets are extremely insensitive to the
pattern of the mass balance. Roe [2002] derived the solution
for the response of an ice sheet profile to a d function spike
in the accumulation pattern. This solution can be adapted to
the wedge problem considered here by incorporating the
basal traction term. One result from the earlier study is that
an ice sheet profile is most sensitive when the d‐function is
close to the center of the ice sheet, where the surface slope is
small. The reason can also be seen from (19): the smaller the
surface slope, the greater the adjustment in the thickness to
balance a perturbation in the flux.
[54] Lastly, we note that because high exponents in the

power law rheology allow h and dzs/dx to effectively adjust
to perturbations, the orogen will also be insensitive the
specific values used for the model parameters that appear in
(19) at the same order as the mass balance. Large changes in
the flow factor A or in the normalizing stress t* would be
required to cause significant changes in the topographic
form.
[55] So far we have considered the basal velocity, ub, to be

uniform. However, in reality it will depend on the details of
how material is incorporated into the orogenic wedge
whether by frontal accretion or underplating [e.g., Willett,
2001]. For example, if underplating into the wedge is uni-
form, the depth of the layer of crustal material scraped off
the subducting plate and subsumed into the wedge must
vary across the orogen [e.g., Willett, 2001, Figure 4], which

Figure 7. For different rheologies, the response of the critical form to adding a large (20 cm yr−1) spike
in rock uplift rates in a 2 km wide swath centered at 20 km. The black shows the critical form for the
control case; the gray line shows the critical form including the spike in mass balance. Curves are offset
on the y axis for clarity. Even with this large perturbation to the mass balance there is relatively little
change in the critical form. As in Figure 6, near Coulomb plastic rheologies are the least sensitive.
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will affect how the traction stresses from the subducting slab
are transferred to the base of the wedge.
[56] The numerical solution of (19) allows for ub to be

specified as a function of position. To illustrate the effect of
spatial variations in ub, we consider a simple linear decrease
across the wedge: ub(x) = ub*(1 − x/L), where ub* is a
constant. From (19), if ub goes to zero at the divide, the
surface slope must go to zero there. Figure 8 shows this
clearly happening in the linear viscous case. However, as the
exponent in the power law rheology increases, the spatial
pattern in ub has decreasing influence on the topographic
form. Substituting ub(x) into (22), it can be rearranged to
show that dzs/dx / (1 − x/L)1/a which, for higher powers of
a, and except in the vicinity of x ∼ L, is nearly constant.

7. Approach to a Plateau

[57] At depth, higher temperatures means deformation
occurs more readily. For larger orogens and plateaux,
thermal weakening of the crustal root becomes an impor-
tant factor in their development [e.g., Stüwe, 2002]. The
power law rheology in (13) can be adapted to qualitatively
explore how this affects the topographic form.
[58] Our goal here is only illustrative, and so there is

some flexibility in how to represent this depth‐dependent
behavior. For example, an Arhenius‐type function can be
introduced into the flow factor: A ∼ exp(Q/RT), where Q is
an activation energy and T is the temperature. For our
purposes, it also suffices to specify a depth dependence to
the normalizing stress, t*: the lower t*, the more readily

the crust deforms. To demonstrate the effect of different
rheologies for the upper and lower crust, t* is only
changed below a given depth,

�* ¼ �0* z� zsð Þ < Ht

�* ¼ �0*e
� z�zs�Ht

DHð Þ z� zsð Þ � Ht

ð31Þ

where t0* is constant. We take Ht = 25 km, andDH = 2 km.
In an Arrhenius‐type temperature dependence, this short
e‐folding scale would correspond approximately to a Q of
135 kJ mol‐1 and a geothermal gradient of 20 K km−1.
[59] Figure 9a show the height of the orogen for three

different rheologies, as a function of orogen width and
calculated from the numerical solution. It becomes
increasingly hard to build the profile above about 4 km in
height (or 25 km in total depth): the strong decrease in t*
means steep surface slopes cannot be supported at depth,
and so the orogen profile flattens out.
[60] The results in this paper have presented the strength

of the tectonic feedback in terms ofy, the exponent governing
the critical topographic form. An equivalent value for y for
the curves in Figure 9a can be calculated from the slope of ln
(H)/ln(L). These are shown in Figure 9b. For small orogens
widths, y is a constant and, as expected, matches the values
from the analytical solutions. As the orogen profile nears
4 km in height, however, the flattening out of the profile
is reflected in a steep drop in the value of y. For the near
Coulomb plastic case of (a, b) = (30, 1), this drop in y occurs
over a change in width of only 20 km. During this transition,

Figure 8. For different rheologies, the response of the critical form to changing the pattern of the basal
traction velocity from constant (black lines) to a linear decrease (gray lines). Curves are offset on the y
axis for clarity. The surface slope at the divide must go to zero. For a near Coulomb plastic rheology,
the critical form is almost unaffected.
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there is an accompanying large change in orogen sensitivity
and feedback strength, which can be calculated from (29),
and is shown in Figure 10. For the more viscous rheologies,
the transition is more gradual.

8. Discussion

[61] A framework has been presented to evaluate the
importance of precipitation and accretionary flux in setting
the scale and erosion rates of steady state convergent oro-
gens. The rheologic control on the orogen is directly man-
ifested in the relationship between the height and width. A
given rheology results in a topographic form for the orogen,
which can be combined with fluvial erosion to produce
scaling relationships for the width, height, and rock uplift
rates of the orogen in terms of the accretionary flux, F, and
precipitation rate, P. Whereas previous studies considered
only Coulomb plastic wedges with a critical taper angle, we
have extended the analysis to incorporate rheologies varying
from linear viscous to Coulomb plastic. Orogen development
can be reduced to a straightforward flux‐balance problem.
The growth or decay of the orogen is proportional to the
imbalance between the accretionary and erosional fluxes, and
the system is constrained to always have the same critical
topographic form.
[62] There are two principal results. The first is that for a

wide range of assumed rheologies, the topographic form is

strongly insensitive to the pattern of erosion rates and
underplating, just as in the case of a critical taper wedge.
The tectonic governor concept is derived from the fact that
regardless of rheology, a wedge will tend to be form steady.
An additional conclusion is that the sensitivity of the orogen
width to precipitation and accretionary flux remains similar
regardless of rheology. The exponents on F and P in the
scaling relationships vary by less than a factor of two for all
common choices of the erosion parameters. The exponents
in the scaling relationships are also all less than one,
implying a generally weak sensitivity of orogen attributes to
changes in climate or tectonic forcing.
[63] The vertically integrated horizontal mass flux within

the orogen is composed of a translational component due to
the basal traction and an oppositely directed deformational
component. This deformational flux can be viewed as a
return flow directed toward to the front of the wedge. It
operates as a strongly nonlinear diffusion process that, given
a perturbation, will restore the wedge back to a steady state
form. Significant perturbations to the critical topographic
form are therefore only possible during the transient evolu-
tion of the system, and then only by changes occurring on
timescales that are shorter than that required for the defor-
mational flux to adjust. This timescale can be estimated by a
scale analysis of (19) and (20). The timescale for the resto-
ration by the deformational flux is shorter with increasing y.
The prediction is that Coulomb plastic wedges should return

Figure 9. For different rheologies, (a) height of the orogen H and (b) value of the height‐width power
law relationship y as a function of orogen scale L during the approach to a plateau. An exponential
decrease in the normalizing stress has been assumed at depths exceeding 25 km. Consequently shear stres-
ses within the orogen cannot support topography above approximately 4 km. See equation (31) and text
for more details.
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to a steady state (or critical) form faster than a linear viscous
wedge.
[64] The strongly restorative nature of this nonlinear dif-

fusion process suggests that the conclusions of this study
should be robust with respect to the abstraction and as-
sumptions used in the analysis. Our analysis shows that an
orogenic wedge will tend to maintain a critical form as long
as there is sufficient accretion and erosion to allow the
system to move between different critical forms if the
effective rheology changes with wedge size. All that is
required is some tendency of the wedge to grow or shrink
laterally as it grows or shrinks vertically.
[65] We have assumed erosion occurs fluvially and via a

standard formulation of river incision into bedrock. Recent
work has explored alternative “tools‐and‐cover“ formula-
tions [Sklar and Dietrich, 1998, 2001; Whipple and Tucker,
2002], which reflect the effects of varying sediment con-
centrations on the erosive ability of the river. N. M. Gasparini
and M. T. Brandon (A power law scaling relationship for
bedrock incision at the drainage network scale, submitted to
Journal of Geophysical Research, 2010) argue that such
models can all be characterized by effective values ofm and n.
This result indicates that our analysis here can be easily
expanded to include a range of fluvial incision models.
Tomkin and Roe [2007] have explored the case of glacial
erosion; they argue a fully glaciated orogen is more sensitive
to precipitation than the fluvial case, and this conclusion
would carry over to the present analysis. Whatever the

dominant processes are in reality, the scaling relationships
demonstrate that the general dependence of erosion on slope
and drainage area are important, and suggest that overly
simplistic treatments such as purely diffusive erosion, or
buzz‐sawing an orogen above a given altitude will not
properly model the system dynamics.
[66] Further development of the model rheology is pos-

sible. Apart from the depth dependence of the normalizing
stress, the rheology has been assumed homogenous within
the orogen. The exponent on the power law (13) might
also be varied with depth or horizontal distance to provide,
for example, a mixed plastic‐viscous rheology. Crustal
deformation along localized shear zones, whether brittle or
viscous, has been neglected. However, they are pinned to
material and thus are advected rearward into the wedge
(as can be seen in sandbox experiments including erosion
[e.g., Konstantinovskia and Malavieille, 2005]). Although
nomaterial motion across faults can take place, the location of
active faults must step outward in order to produce an inward
flux of material to balance the surface erosion occurring
within the orogen. Sand box experiments with surface erosion
included show material trajectories that are similar to those in
idealized Coulomb plastic wedges [e.g., Hoth et al., 2006;
Brandon et al., 1998], and numerical models that do not have
faults but do have zones of concentrated deformation closely
follow our analytical results [Stolar et al., 2006, 2007]. Using
numerical models, Stockmal et al. [2007] find agreement with
wedge predictions at the large scale, and explore departures at

Figure 10. For different rheologies, feedback factors (a) fL and (b) fH and fU, as a function of orogen
size L, during the approach to a plateau. (h,m,n) = (2,1/2,1) was assumed for the values shown. Details
of calculations as for Figure 9. Because hm/n = 1, fH = fU, but this is not generally true. Note the different
scales on the y axes. For the near‐Coulomb plastic rheology, note the strong change in orogen sensitivity
between approximately 50 and 70 km in width.
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the local scale associated with individual thrusts. It is unlikely
therefore that the inclusion of faults would overturn the
general picture developed here; however, further work in this
area would clearly be useful.
[67] We have only considered steady state balances.

Whipple and Meade [2006] and Stolar et al. [2006] show in
analytical and numerical models that the transient evolution
of the system occurs in a quasi steady state fashion [e.g.,
Kooi and Beaumont, 1996] in which the critical form is
maintained at all times, but that the rate of growth (or decay)
of volume is proportional to the flux imbalance between the
accretionary and erosional fluxes.Whipple andMeade [2006]
and Roe et al. [2008] show further that the characteristic
timescale to steady state is a function of the exponents in the
scaling relationship. These results translate directly to the
rheologies considered here. A dynamical system can be have
several relevant timescales [e.g.,Willett and Brandon, 2002].
In addition to the “volume‐filling” timescale noted above,
the viscous rheologies also can be characterized by kine-
matic timescale (due to advection), and a diffusive timescale
(due to deformation), directly analogous to the situation for
sliding glaciers [e.g., Nye, 1965; van de Wal and Oerlemans,
1995; Bahr et al., 1998]. Our focus in this study was on
steady state relationships, but these transient dynamics as a
function of rheology are tractable and interesting issues to
pursue.
[68] Only one‐sided orogens have been considered. Two

additional constraints allow the two‐sided case to be con-
structed out of back‐to‐back one‐sided wedges (following
Whipple and Meade [2004]). Continuity requires the two
wedges to have the same height, and conservation of mass
means that the sum of the fluxes accommodated under each
of the wedge equals the total incoming accretionary flux.
The pattern of strain within the orogen will depend sensi-
tively on the pattern of underplating assumed [e.g., Willett,
1999a, 2001]. However since the critical topographic form
is so insensitive to the pattern of underplating and erosion,
the scaling relationships will be essentially the same. This
has been demonstrated for the Coulomb plastic rheology
[e.g., Whipple and Meade, 2004; Roe et al., 2008], and the
extension to the present study is direct.

Appendix A: Feedback Factors and Gains

[69] In deriving the expressions for the feedback factors
and gains, we follow the analysis of Roe et al. [2008] where
more details of this standard method can be found. We can
define sensitivity parameters for L, H, and U, which relate a
change in these variables to a change in the accretionary
flux,

DL ¼ 	LDF

DH ¼ 	HDF

DU ¼ 	UDF

: ðA1Þ

Obviously, these sensitivity factors are different when a
feedback is operating compared to when it is not. The gains
and feedback factors characterize this change in sensitivity
of the system.

[70] To begin with, the orogenic wedge system obeys the
scaling relationship from (9),

F / L1þhm�nHnPm: ðA2Þ

We define the reference case as the Coulomb critical wedge:
H / L. A truncated Taylor series expansion of (A2) gives

DF ¼ @F

@L
DLþ @F

@H
DH ¼ @F

@L
DLþ @F

@H

@H

@L
DL; ðA3Þ

which on substitution from (A2) and assuming H / L, gives

DF ¼ 1þ hm� nð ÞF
L
þ n

F

H

H

L

� �
DL: ðA4Þ

And so for the reference case (denoted by the superscript 0)

	0
L ¼ 1

1þ hmð Þ
L

F
: ðA5Þ

In the general case however, H / Ly. On substitution of this
into (A2) and (A3), we get

DF ¼ 1þ hmð ÞF
L
þ n y � 1ð ÞF

L

� �
DL

¼ 1

	0
L

1þ 	0
Ln y � 1ð ÞF

L

� �
DL: ðA6Þ

Therefore, for this general case

	L ¼ 	0
L

1� n 1�yð Þ
1þhmð Þ

: ðA7Þ

The gain, GL, is defined asDL/DL0, and so is equal to lL/lL
0.

The feedback factor is defined viaGL = 1/(1 − fL), and so from
(A7) is given by

fL ¼ n 1� yð Þ
1þ hm

: ðA8Þ

For lH, the Taylor series expansion of (A2) can be written in
terms of DH,

DF ¼ @F

@H
þ @F

@L

@L

@H

� �
DH ðA9Þ

The reference case lH
0 has a similar form to that for orogen

width,

	0
H ¼ 1

1þ hmð Þ
H

F
ðA10Þ

On substituting the critical form L = H
1
y into (A9), and fol-

lowing the method above, we get

fH ¼ y � 1ð Þ 1þ hm� nð Þ
y 1þ hmð Þ : ðA11Þ

The rock uplift rate is related toF and L viaU = F/L. Roe et al.
[2008] showed that the following relationship always holds,

GU ¼ 1þ hm� GL

hm
: ðA12Þ
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Upon substitution from (A8) and a lot of rearranging, this
boils down to

fU ¼ n y � 1ð Þ
1þ hmð Þ hm� n 1� yð Þ½ � : ðA13Þ

Appendix B: Coordinate Stretching

[71] A horizontal coordinate transformation can be used to
remove numerical problems encountered in integrating (19)
to calculate the critical topographic form when no analytical
solution is possible. Simplified, (19) has the following form,

z
s
dz�s
dx

¼ c1zs þ c2F xð Þ; ðB1Þ

where c1, c2 are constants, and n = a(1 − b) + 2, and m = a.
[72] The boundary condition is that zs = 0 at x = 0. For

finite F(x = 0), and for finite a, this means dzs/dx must go
to infinity at x = 0. The goal is to find a coordinate transform
t = t(x) that keeps the slope dzs/dt well behaved at that point.
First, we construct the series solution for zs in the neighbor-
hood of x = 0,

zs ¼ xp a0 þ a1xþ a2x
2 þ . . .

� 	
; ðB2Þ

where an are constants to be found, and the first term in the
series is of order p, also to be found. Taking the derivative
gives

dzs
dx

¼ xp�1 a0pþ a1 pþ 1ð Þxþ a2 pþ 2ð Þx2 þ . . .
� 	

: ðB3Þ

On substitution of these series expansions into (B1), the
leading order terms on the left‐ and right‐hand side must
match. So for finite F(x = 0), we must have

p
 þ p� 1ð Þ� ¼ 0; ðB4Þ

or

p ¼ �

�þ 

: ðB5Þ

Therefore in the limit of x→ 0, zs ∼ x
�


þ� and so dzs /dx ∼ x�
�


þ�.
In the case of a linear viscous wedge (a, b) = (1, 0), which
gives (m, n) = (3, 1), and so dzs /dx ∼ x�

3
4.

[73] The solution for the orogen profile is just

zs xð Þ ¼
Z x

0

dzs
dx

� �
dx: ðB6Þ

The forgoing analysis shows that this is an improper integral
with an integrable power law singularity at the lower
boundary. For such an integral, if the integrand, f(x), di-
verges as (x ‐ a)−g, 0 ≤ g < 1, near x = a, the standard
identity is [e.g., Press et al., 1992],

Z b

a
f xð Þdx ¼ 1

1� �

Z b�að Þ1��

0
t

�
1��f t

1
1�� þ a

� �
dt: ðB7Þ

Therefore we use the change of variable t = x1�




þ�, before
numerically integrating to solve for the orogen profile.
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