Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Quaternary Research 71 (2009) 150-161

Contents lists available at ScienceDirect

Quaternary Research

journal homepage: www.elsevier.com/locate/yqres

On the interpretation of Chinese loess as a paleoclimate indicator

Gerard Roe

Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA

ARTICLE INFO

Article history: Received 18 March 2007 Available online 20 December 2008

Keywords: Loess Dust Windstorms Spring Siberian High

ABSTRACT

The records of wind-blown dust (i.e., loess) in China are some of the most important terrestrial records of past climate changes, stretching back over the last 10 Ma. In the paleoclimate literature, intervals of increased dust generation have been almost always interpreted as being associated with more intense or prolonged wintertime conditions. Here it is shown that, in accordance with modern observations, dust outbreaks in Asia are predominantly springtime phenomena. During spring, frequent cyclogenesis in the lee of the Mongolian Altai and the passage of strong cold fronts produce the intense windstorms that loft and entrain dust into the air. The meteorology governing such outbreaks is likely robust in past climates. Contrary to the common paleoclimate presumption, it is actually the breakdown of the Siberian High that permits the dust-producing windstorms to occur. The importance of cold fronts in generating such windstorms suggests that cooling of high-latitude climate during the Miocene, or during glacial intervals, might play a significant role in the signal recorded in the loess deposits. The unique springtime factors that generate dust storms are an example of why the common partitioning of Asian climate into a 'winter' and 'summer' monsoon is oversimplified and can be misleading.

© 2008 University of Washington. All rights reserved.

Introduction

Dust outbreaks in Asia are among the most dramatic of meteorological phenomena in the northern middle latitudes. Vast swaths of the continent are blanketed every year by thick clouds of windblown dust generated in the desert regions of Asia (Fig. 1) that accumulate on land as loess. The reduction in visibility, the respiratory effects, and the severe windstorms that accompany the dust outbreaks represent significant deleterious hazards: one hundred fatalities were attributed to a severe dust storm in May 1993 (e.g., Liu and Diamond, 2005). Dust is lofted high into the troposphere and transported across the Pacific by the prevailing winds; plumes from big outbreaks are sometimes still visible when they reach North America (e.g., Husar et al., 2001). The radiative effects of loess on climate are also argued to be significant (e.g., Claquin et al., 2003), but the magnitude of such effects is highly uncertain (e.g., IPCC, 2001).

Over geologic time, loess gradually accumulates in stratified layers downwind of the source regions, most notably in the Loess Plateau located just northeast of the Tibetan Plateau. These deposits, some of which are hundreds of meters thick, constitute some of the most important continuous terrestrial climate records on Earth, stretching back over the last 8 Ma (e.g., An, 2000; Porter, 2001) and possibly as far back as 22 Ma (Guo et al., 2002). Dust sedimentation rate, grain size, and magnetic susceptibility are all interpreted in terms of the climatic factors controlling them. For example, these loess records have been argued as reflecting the progressive desertification of Asia during the Miocene (e.g., Guo et al., 2002), changes in atmospheric circulation and seasonality associated with the tectonic evolution of the Tibetan Plateau (e.g., Prell and Kutzbach, 1992; An et al., 2001), an increase in climate variability during the Pleistocene glacial cycles (e.g., An, 2000; Sun and An, 2005), and also Heinrich events—massive discharges of icebergs in the North Atlantic that have been associated with global changes in climate (e.g., Porter and An, 1995; Hemming, 2004).

In the paleoclimate literature, dust flux has been interpreted almost exclusively as a proxy for wintertime circulation. It is common to find statements like "It is widely accepted that the Chinese loess was transported mainly by winter-monsoon winds driven by the Siberian-Mongolian high pressure system" (Ding et al., 2005a, emphasis added). In contrast, the modern literature describes a strikingly different picture: "The simulated seasonal cycle is characterized by a maximum in late spring and a minimum in late autumn and winter...fully agrees with the seasonal cycle established from synoptic observation of dust storms" (Laurent et al., 2005, emphasis added). The purpose of the present study is to evaluate this apparent contradiction. Part of the issue lies in terminology: if the annual cycle in Asia is characterized in terms of a winter monsoon and a summer monsoon, as is commonly done in the Chinese literature, the picture of climate is quite different from when it is described in terms of the four seasons of winter, spring, summer, and fall. As is demonstrated in this paper, the other issue is that there are some robust aspects of the atmospheric circulation that are responsible for the observed springtime maximum in modern dust outbreaks. These aspects are likely to hold in past climates too. I therefore show that, all else being equal,

E-mail address: Gerard@ess.washington.edu.

^{0033-5894/\$ –} see front matter © 2008 University of Washington. All rights reserved. doi:10.1016/j.yqres.2008.09.004

Figure 1. Desert and desertified areas in eastern Asia. Taken from Laurent et al. (2005).

enhanced loess generation probably more properly reflects enhanced and/or prolonged spring conditions rather than winter, in contradiction to the usual paleoclimate interpretation.

The presumed connection between dust and the wintertime circulation is widely disseminated in research papers (e.g., Porter and An, 1995; Mayewski et al., 1997; Meeker and Mayewski, 2002; Zhang et al., 2002; Sun and Wang, 2005; Yancheva et al., 2007; Sun et al., 2008) and review papers (e.g., Liu and Ding, 1998; An, 2000;

Broecker and Hemming, 2001; Porter, 2001; Voelker et al., 2002; Mayewski et al., 2004), although it should be noted a few review papers have noted the springtime maximum in connection with paleoclimatic interpretations (e.g., Kukla, 1987; Rea, 1994; Harrison et al., 2001).

Asian dust outbreaks are springtime phenomena

In the modern climate, dust outbreaks in Asia are almost exclusively springtime phenomena. Figure 2 shows dust outbreak frequency, by month, for surface stations across eastern Asia, compiled by Kurosaki and Mikami (2003) from weather station reports. The dominant peak in March, April and May is conspicuous. Zhou and Zhang (2003) report that 82.5% of severe dust outbreaks occur in these three months. Figure 2 also demonstrates a clear association between these dust outbreaks and the occurrence of strong winds, defined here as a surface wind speed exceeding 6.5 m s⁻¹ averaged over a threehour period. This speed is the commonly assumed threshold for dust lofting in many numerical models (e.g., Kalma et al., 1988; Tegen and Fung, 1994), although some studies suggest a range of thresholds depending on locations and environmental factors (Kurosaki and Mikami, 2004; Ishizuka et al., 2005; Laurent et al., 2005).

As noted in the Introduction, paleoclimate studies frequently presume that because average surface winds in East Asia are strongest during winter, dust production, transport, and consequent deposition should be regarded as a proxy for wintertime circulation. While it is true that the climatological mean surface winds maximize in winter (e.g., Peixoto and Oort, 1992), Figure 2 demonstrates that it is the wind gusts that matter for dust generation, and that these wind gusts peak in spring.

Sun et al. (2003) measured dust deposition and its mineralogical and magnetic properties in an impressive array of collectors deployed across the Loess Plateau. They found a springtime peak in deposition, but in the southern part of the loess plateau it is a relatively weak peak, in apparent contradiction to Figure 2. A possible interpretation put forward by Sun et al. (2003) is that some significant portion of the dust deposition in the southern region comes from locally reworked loess, possibly disturbed by human activities. This suggestion is supported by observations that dust generation in the desert regions

Figure 2. Taken from Kurosaki and Mikami (2003). Monthly dust outbreak frequency (bars) and strong wind frequency (circles) from Jan. 1993 to Jun. 2002 (white) and the same from Jan. 2000 to Jun. 2002 (black). The frequency of dust outbreaks is defined as the percentage of the number of dust outbreaks reported to the total number of observations within a given period at each observatory and/or given region. Similarly, the frequency of strong winds (hereafter, strong wind frequency) is defined as the percentage of the number of strong winds to the total number of observations.

Figure 3. Selected daily surface station data from Qitai in Xinjiang province, China (44.01° N 89.56° E), during the month of April, 2001. (a) Steep drops in visibility indicate periods of dust outbreaks. Asterisks denote days on which dust was reported (WMO codes 07, 08, and 09); (b) Daily average surface temperature shows that the dust outbreaks occurred during times of cooling temperatures (i.e., during the passage of a cold front); and (c) maximum sustained (two-minute average) wind speed (m s⁻¹). The strong sustained winds and wind gusts are responsible for lofting and transporting the dust.

(i.e., Fig. 2; Xuan et al., 2000; Kurosaki and Mikami, 2003) and dust transport in the Pacific (e.g., Lunt and Valdes, 2002; Mahowald et al., 2006) are dominated by strong springtime peaks.

Cold air surges

The springtime peak in Asian dust outbreaks is well known from the modern observational record, and the meteorological causes have been studied in detail (e.g., Middleton, 1991; Littman, 1991; Parungo et al., 1994; Husar et al., 2001; Uno et al., 2001; Zhou and Zhang., 2003; Liu et al., 2003; Kurosaki and Mikami, 2003, 2004; Qian et al., 2004; Laurent et al., 2005; Aoki et al., 2005; Ding et al., 2005b). The peak wind gusts responsible for the outbreaks are associated with the passage of strong, and largely dry, cold fronts. Several factors associated with cold fronts lead to these windstorms. The intense temperature gradients across the front produce strong vertical gradients in the wind because of tendency towards thermal wind balance (e.g., Wallace and Hobbs, 2006), drawing strong winds close to the surface. Secondly, the strong vertical wind shear also enhances shear instability and mixing. Thirdly, the advancing cold dense air tends to plow under the receding warm air, lifting it and producing near-surface convection. It is the combination of the close proximity of high-momentum air to the surface and enhanced turbulent mixing that leads to strong surface wind gusts during frontal passages (e.g., Bluestein, 1993, Pauley et al., 1996; Wallace and Hobbs, 2006).

Figure 3 shows station data from Qitai in Xinjiang province China, near the Mongolian border (44.01° N, 89.56° E) for April 2001, during which several major dust outbreaks occurred. All outbreaks were marked by sharp drops in visibility (Fig. 3a) as well as weather reports of dust in the air. In the case of the first event, the frontal passage is clearly denoted by the steep drop in the daily mean temperature of 10°C over the three days (Fig. 3b). This cold front was also accompanied by high winds, with maximum sustained (two minute average) wind speeds exceeding 10 m s⁻¹ on the 5th and the 7th of April (Fig. 3c). Precipitation of 4 mm was recorded over this period.

Nearby stations also reported exceptionally strong winds: at Karamay (45.60° N, 84.85° E) gusts topped 34 m s⁻¹, and at Shisanjianfang (43.2° N, 91.71° E) gusts exceeding 40 m s⁻¹ were recorded. This basic pattern is repeated for the other events, although with some variations. In the outbreak on the April 16th, the maximum sustained wind speeds again topped 10 m s⁻¹, although the temperature drop was not as sharp. On the 20th, peak sustained winds were only 7.5 m s⁻¹, not much above the background level for the month and possibly suggesting a non-local source for the dust. However, on the 27th and the 28th, maximum sustained winds again exceeded 10 m s⁻¹. Precipitation totaled 10 mm between the 26th and 29th.

The relationships in Figure 3 do not demonstrate *per force* that the dust originated close to Qitai, or that transport, wind direction, soil moisture, vegetation, limited rain-out, or mesoscale interactions with local topography did not play a role in altering the concentration of dust and affecting the visibility. These factors, and probably others, cause variations in the relationships between falling temperatures, wind gusts, and local visibility. Nonetheless, this and other station data during periods of major dust storms (e.g., Zhou and Zhang, 2003) support the basic climatological connections between springtime gustiness and dust outbreaks seen in Figure 2.

The recurrent role of cold air masses in dust outbreaks in eastern Asia can be seen from near-surface air temperatures. Figure 4 shows six maps of 850 mb (1 km above sea level) daily mean temperatures from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP–NCAR) reanalysis data sets (Kalnay et al., 1996), a representative selection from days when Zhou and Zhang (2003) report major dust outbreaks in northern China over the last 50 yr. As is clear by comparison with climatological mean, the dust-generating cold fronts delimit the leading edge of large-scale cold air surges from Siberia. Although details such as location and intensity differ from storm-to-storm, this basic picture of dust outbreaks being generated by windstorms associated with the passage of cold fronts is repeated for all of the major dust storms that I examined (approximately 40 of the over 220 that were reported by Zhou and Zhang, 2003).

Figure 4. 850 mb (i.e., <1 km elevation) temperatures from NCEP–NCAR reanalysis on days of major dust outbreaks, selected from those reported by Zhou and Zhang (2003) for the last 50 yr. The top panel shows the March–April–May mean climatology. All events show strong incursions of cold air over central Asia during major dust storms. Where the 850-mb surface lies beneath the surface elevation, the field has been interpolated down into the topography via standard algorithms (e.g., Kalnay et al., 1996). Since the vertical structure of the field changes quite slowly the patterns would look very similar at other levels. The green line shows the 3-km elevation contour from the NCEP–NCAR reanalysis grid.

The southeastward surges of cold air can be seen by following the synoptic development during the buildup to dust outbreaks. Figure 5 shows the 850-mb temperature and the 500-mb geopotential heights (essentially streamlines of the atmospheric flow at approximately

5.5 km altitude) for 5 days leading up to the two major dust outbreaks in April 2001 seen in Figure 3. In both cases the growth of a wave in the mid-tropospheric circulation produces strongly northerly flow over several days. This cold air is also advected by the general westerly

153

Author's personal copy

G. Roe / Quaternary Research 71 (2009) 150-161

Figure 5. Case studies of two dust outbreaks in April, 2001. Figures show 500 mb (<5.5 km elevation) geopotential heights (contour interval 100 m) and 850 mb (<1 km elevation) temperatures from NCEP–NCAR reanalysis over 5 days leading up to the main dust storm events record at Qitai (see Fig. 3), whose location is indicated by the pink dot. Note both events show development of wave-like feature in the circulation at mid-levels in the troposphere, drawing cold air from western Siberia down across central Asia over the course of several days. The green line shows the 3-km elevation contour from the NCEP–NCAR reanalysis grid.

circulation, and hence the cold air originates in northwestern or central Siberia. This basic evolution of the circulation, which is repeated for all of the large dust storms reported by Zhou and Zhang (2003), is the canonical picture for these Asian dust storms in the modern climate: in springtime cold air builds over Siberia during quiescent periods; during synoptic development of mid-latitude storms, this cold air is drawn southward. Strong gusts at the leading front of this cold surge lofts dust into the atmosphere where it is transported by the prevailing winds.

154

Given the complex regional orography, it is not surprising that mountain airflow dynamics also appear to play an important role in the details of any given windstorm. Aoki et al. (2005) use a highresolution numerical model to study one dust storm in the low-lying Tarim Basin. During the passage of a cold front, the cold, dense air plunges through a gap in the topography at the eastern end of the basin. Thus, despite the large-scale flow being primarily westerly, the winds that raise the dust in the basin are actually easterly at the time of the windstorm.

The causes of the springtime predominance

In order to identify possible causes of changes in loess records, it is important to understand why there is a preponderance of dust outbreaks in springtime and not in other seasons. The foregoing analyses have shown that there are two major prerequisites for dustgenerating windstorms: the growth of synoptic-scale disturbances in the atmospheric circulation and strong meridional temperature gradients. Together these combine to generate strong cold fronts that are the source of the windstorms.

Figure 6, adapted from Chen et al. (1991), shows the frequency of cyclogenesis (i.e., the development of synoptic cyclones) over Asia as a function of season. Similar results are also seen in other diagnostics

Figure 6. Number of cyclogenetic events (×10⁻²) per 2.5° quadrangle per month for (a) DJF, (b) MAM, (c) JJA, and (d) SON for the period 1958–1987. Modified from Chen et al. (1991). Note the relative dearth of storms in winter, the slight springtime maximum, and the presence of storms throughout the summer and fall. Contour interval is 3.

(e.g., Hoskins and Hodges, 2002; and analyses available at http:// www.nercessc.ac.uk/<kih/AMIP2/era results new.html). Focusing first over the continent, a striking observation is the almost complete absence of wintertime cyclogenesis in central Asia, compared to the other three seasons. The frequency of cyclogenesis in spring is over three times as great as in winter. Summer and fall cyclogenesis also exceeds that in winter by at least a factor of two. The cause of this dearth of wintertime storms is the dominant influence of the Siberian high-pressure system (Fig. 7a), which reflects strong land cooling and accompanying net descent of air over Asia. This results in a very stable air mass that damps vertical motions and inhibits interactions between the surface and the middle and upper troposphere. These interactions are important for the development of synoptic cyclones (e.g., Eady, 1949; Holton, 2004). A compounding factor is that the upper tropospheric subtropical jet, a focus for the propagation of upper level waves seen in Figure 5, is displaced south of the Tibetan Plateau in winter (e.g., Peixoto and Oort, 1992; Hoskins and Hodges, 2002).

It needs to be emphasized, therefore, that contrary to the common assertion in the paleoclimate literature, it is not the case that dust storms are driven by the winds associated with the Siberian High. In fact, exactly the opposite is true—it is the breakdown of the Siberian High that permits the occurrence of dust storms. Counter to the usual paleoclimate inference, enhanced or prolonged wintertime conditions actually act to suppress dust storms, all else being equal. Studies of the relationship between modern interannual variability and atmospheric circulation also bear out this relationship. Ding et al. (2005a) find that dust outbreak frequency in Asia has a significant negative correlation with the strength of the Siberian High in spring. Other studies (e.g., Zhou and Zhang, 2003; Kurosaki and Mikami, 2004; Qian et al., 2004) can also be interpreted as supporting this relationship.

In comparison to winter, climatological conditions are quite different in the other three seasons. The Siberian High is weak in spring and fall and absent in summer (Fig. 7), and so the atmosphere is less stable to vertical displacement during those seasons than in winter. Also the upper-level jet stream is south of the plateau in winter, whereas during spring, summer, and fall it is north of the plateau (not shown). This has two consequences for atmospheric dynamics during spring, summer, and fall: firstly, the reduction in vertical stability of the atmosphere means that upper-level waves propagating on the jet stream can more easily interact with the surface to produce cyclone development; and secondly, the northward location of the jet stream is also conducive to lee cyclogenesis-the atmospheric flow over and past the topography stretches vertical columns of air and imparts a curvature to the circulation that tends to favor cyclonic development (e.g., Han et al., 1995; Davis, 1997; Hoskins and Hodges, 2002).

Off the east coast of Asia, the contrasting thermal inertia between continent and ocean produces strong wintertime temperature gradients, and the resulting baroclinicity does produce frequent coastal cyclogenesis in winter. However, despite these temperature gradients maximizing in winter, nearly twice as many storms are

Figure 7. Climatological 850-mb temperatures and mean sea-level pressure (contour interval 4 mb) from NCEP–NCAR reanalysis, by season. See Figure 4 for more details. In winter the Siberian High is strong and the region of strong temperature gradients is displaced south of the dust source regions. In summer the entire continent has warmed up. Note also that the strength of the Siberian High in fall is significantly greater than in spring. Temperatures in northwest Siberia are also a little cooler in spring compared to fall. The green line shows the 3-km elevation contour from the NCEP–NCAR reanalysis grid.

generated in spring as in winter (Fig. 6). It is an interesting speculation, therefore, that the springtime peak in Asian lee cyclogenesis may play a role in the relative minimum of storminess in the Pacific in midwinter (e.g., Nakamura, 1992; Chang et al., 2002).

The other prerequisites for dust storms are strong meridional temperature gradients. These are necessary for the formation of strong cold fronts and the accompanying windstorms. In winter the whole continent is cold and the band of strong temperature gradients lies to the south of the desert regions (Fig. 7). In spring, a reservoir of cold air still exists in the north, but the sun has begun to warm the land in the lower mid-latitudes. This leads to the large climatological temperature gradients capable of generating intense cold fronts. By summer, however, even the high latitudes have warmed up, and the meridional temperature gradients are consequently weakened. Fall temperatures look quite a lot like those in the spring, although there are some subtle, but apparently important, differences. In fall, the location of the coldest air is displaced eastward compared to spring, and eastward of the major dust-generating regions (Figs. 7b, d). A significant reason for this is that the annual cycle in air temperature in northwestern Siberia (the source region of the cold air surges in Fig. 5) is influenced by the sea ice extent in the Barents Sea. The sea ice feels the thermal inertia of the ocean mixed layer, and it reaches its maximum extent in spring and its minimum extent in fall. Consequently the seasonal cycles in snow cover and cold temperatures in Siberia are skewed towards spring (Fig. 7).

There appear to be several contributing reasons why the frequency of dust storms in fall is so much less than in spring (Fig. 2). The difference in climatological temperatures (Figs. 7b, d) already mentioned is one reason; a second is the approximately 50% less frequent occurrence of cyclogenesis in fall, shown in Figure 6. This latter observation is consistent with the fact that the Siberian High is significantly stronger in fall than it is in spring (Fig. 7). Other factors during the fall are that the monsoonal precipitation is skewed towards late summer (Araguas-Araguas et al., 1998), producing soil moisture (e.g., Mintz and Serafini, 1992) that inhibits dust lofting and also vegetation that, relatedly, also persists into fall (e.g., Yu et al., 2004). Vegetation plays an important role in anchoring dust on the ground (e.g., Tegen and Fung, 1994; Mahowald et al., 1999). It is hard to estimate the relative importance of these different factors without analyzing a detailed model of dust lofting, but together they are sufficient to suppress fall dust storms. Laurent et al. (2005) attempted to look at the various factors and tentatively concluded that the frequency of wind gusts is the dominant control in the modern climate.

Dust storms in climate models

In seeking to reconcile variations in paleo-proxy records with the climate changes that gave rise to them, global climate models are the only tools capable of a self-consistent accounting of all the contributing factors. A necessary (but not sufficient) cause for confidence in the modeled climate changes is that the model has an adequate representation of the weather events that give rise to the proxy record. I have described the meteorological conditions for the windstorms that generate dust outbreaks: strong cold fronts and lee cyclogenesis. In both cases, the relatively coarse resolution of climate models is a serious issue. Global climate models do not represent the scale of cold fronts (<10-km resolution would be necessary compared to the 100s of km that are typical in climate models), and so they do not properly resolve the dynamics giving rise to the wind gusts. Secondly, the model resolution may not be adequate to capture the process of lee cyclogenesis. Of course these two issues center only on the model's ability to represent the lofting of the dust into the air, and they are arguably only the minimum requisites for the successful simulation of dust outbreaks by climate models. The transport, deposition, and possible re-entrainment of the dust are also important factors in the climate signal left in the loess record and are addressed further in the discussion.

156

I examine one state-of-the-art climate model, the Community Climate System Model (CCSM3, Collins et al., 2005), for which daily model output was available (Camille Li, personal communication, 2007). Model simulations for both modern and last glacial maximum climates have been performed and have already been used to simulate the dust cycle (Mahowald et al., 2006). I evaluate the modeled 850-mb temperature over Asia, both for the mean and the high-frequency variance, as a function of season. The temperature variance can be thought of as a diagnostic of the model's ability to reproduce the cold air surges from Siberia. The model output is compared to NCEP-NCAR reanalysis. In terms of evaluating whether the model correctly captures the factors controlling dust outbreaks, this perhaps sets the lowest bar: as already noted, the wind gusts occurring during the passage of cold fronts are not modeled because of the coarse model resolution. Wind gusts are not, in any case, available from daily mean model output.

The CCSM does a good job of capturing the seasonal variations in temperature in the region, as seen by comparing Figure 7 with Figure 8. The biggest discrepancy is over Tibet, presumably due to the interpolation of the model output down to the 850-mb pressure level over high topography.

However, and importantly for modeling dust storms, the CCSM does a poor job of simulating the seasonal cycle in temperature variability. To evaluate this, the daily model output was high-pass filtered using a sixth-order high-pass Butterworth filter to emphasize variability on 1–5 day timescales (using filtfilt as implemented in MATLAB). Figure 9 plots the standard deviation of this high-frequency variability for NCEP–NCAR reanalysis and for the CCSM modern

simulation. The CCSM model is clearly deficient in this aspect of the modern simulation. The temperature variability is much stronger than in the reanalysis, by about a factor of two on average, And beyond this difference in magnitude, it is also clear that there are some major discrepancies in the seasonal cycle of variability.

The seasonality of the temperature variability can also be addressed using station data. Figure 10 compares station observations, filtered in the same way as the model output, for station observations around (45° N, 90° E). All of the station data show a springtime peak in temperature variability. The NCEP-NCAR reanalysis reproduces the magnitude of the temperature variability in this region but has a secondary fall peak that is larger than that at the surface stations, except possibly Baytik Shan (45.37° N, 90.53° E). Figure 10 also clearly shows the temperature variability in the CCSM modern simulation is too large and peaks in late summer instead of spring. The last glacial maximum CCSM simulation has temperature variability whose overall magnitude is similar to that in the modern simulation, but has an increase in winter variance and a reduction in summer variance. However, given the model's failure to reproduce the observed magnitude and phasing of the seasonal cycle, the changes suggested for the last glacial maximum should probably be regarded skeptically.

A similar set of analyses for the 850-mb winds was also made (not shown). The mean winds were in good agreement with the reanalysis but the high-frequency variability was again too large, and with a different seasonal cycle. All these calculations suggest that this particular model has difficulty in simulating the meteorology of Asian dust storms. Excessive high-frequency variability appears to be a general characteristic in midlatitudes in the CCSM3 (Li, 2006) and so is

Figure 8. 850-mb temperatures, by season, from the CCSM climate model. Apart from a problem in the model output of interpolating down to 850 mb over the plateau, a comparison with Figure 7 shows that the model is in good general agreement with the reanalysis. The green line shows the 3-km elevation contour from the NCEP–NCAR reanalysis grid.

Figure 9. Left panels, high frequency variability in 850-mb temperatures in the NCEP–NCAR reanalysis, by season. The reanalysis output was filtered with a sixth-order high-pass Butterworth filter (filtfilt as implemented in MATLAB) to emphasize variability on 1–5 day timescales. The figures show the standard deviation of this variability; right panels, the same, but for the CCSM model output for the modern climate (filtered in the same way as NCEP reanalysis). The CCSM model does a poor job of representing the seasonal cycle—it overestimates the variance by about a factor of two and gets the seasonal cycle wrong. The green line shows the 3-km elevation contour from the NCEP–NCAR reanalysis grid.

not directly related to its relatively coarse resolution of T42 (about $3^{\circ} \times 3^{\circ}$). These results are for just one climate model and it would clearly be useful to analyze the whole suite of climate models

available, with a particular focus on higher-resolution models. However, in relation to paleoclimate dust studies, these results emphasize the challenge in modeling even one component of the

Figure 10. Comparison between seasonal cycles in daily temperature variability in the NCEP–NCAR reanalysis, the CCSM model simulations and station observations near 45° N, 90° E. Analysis method is as for Figure 9. Most stations (thin lines) show a springtime peak in temperature variability. The reanalysis (thick, solid line) does a fair job with the amplitude of the seasonal cycle although there is a larger secondary peak in fall than for most stations. The CCSM modern (thick, dashed line) and last glacial maximum (thick, dash-dotted line) simulation show variance that is much higher than observed. The CCSM modern simulation does not have the same seasonal cycle as the observations. The last glacial maximum simulation has a large drop in variance in summer and a large increase in winter, compared to the modern simulation (Qitai, 44.01° N, 89.56° E; Karamay, 45.50° N, 84.85° E; Shisanjianfang 43.21° N, 91.73° E; and Baytik Shan 45.36° N, 90.53° E).

weather responsible for dust outbreaks in the modern climate. Inferences from the loess record about the cause of past climate changes can be made only cautiously.

Summary and discussion

In the modern climate, dust outbreaks in Asia arise because of a particular set of circumstances that prevail in springtime. Frequent cyclogenesis events in the lee of the Mongolian Altai combine with strong meridional temperature gradients to produce cold air surges from Siberia. These surges interact with the complex regional orography to produce intense windstorms at the leading edge of this air mass. It is during these windstorms that dust is lofted and entrained into the atmosphere.

The windstorms are conditioned on two factors: strong temperature gradients and lee cyclogenesis. In winter, lee cyclogenesis is suppressed by both the strength of the Siberian High and the displacement of the subtropical jet stream to south of the Tibetan plateau. In summer, strong temperature gradients do not exist because the whole continent has warmed. In fall, the relative absence of dust appears to be due to subtle differences from spring (a slightly stronger Siberian High, slightly warmer temperatures) reducing the occurrence of windstorms, although soil moisture and vegetation that anchors dust to the ground remain possible contributing influences.

This paper has focused on the meteorological factors involved in the generation of dust outbreaks in eastern Asia. This is a minimum, but by no means complete, part of the climate signal reflected in the loess deposits. The loess deposits are also influenced by the processes governing the strength and extent of dust source regions, as well as the transport, deposition and possible re-entrainment of the loess. It is to be expected that these factors vary as a function of mean climate state.

Dust modeling studies differ about the importance of changes in dust-source area during glacial climates. Mahowald et al. (1999) concluded that the records of dustiness can only be explained by significant changes in dust-source area; using a different model, Werner et al. (2002) concluded that changes in circulation and precipitation alone could be sufficient. I have also not tried to address the causes of variations in magnetic susceptibility, which are argued to reflect changes in soil chemistry and have been interpreted as an indicator of the intensity of the eastern Asian summer monsoon and sedimentation rate. (e.g., An et al., 1991b; Liu and Ding, 1998; Porter, 2001).

Contrary to the usual paleoclimate interpretation, it is actually the breakdown of the Siberian High in spring that permits and promotes the windstorms that produce dust. This relationship is also borne out in observations of interannual variability of dust outbreaks, which are negatively correlated with interannual variability in the Siberian High (Ding et al., 2005b). The unique springtime factors that generate dust storms is an example of why the common partitioning of Asian climate into a 'winter monsoon' and a 'summer monsoon' is oversimplified and can be misleading. All else being equal, the modern record of dust outbreaks strongly suggests that enhanced dust flux ought to be interpreted as prolonged or more intense springtime conditions rather than prolonged or more intense wintertime conditions.

Looking to the broader implications of the results presented here. it is interesting to speculate what past changes in climate might be consistent with the enhancement of dust flux over the Loess Plateau. The modern record suggests that the presence of cold air at high latitudes, and in particular over western Siberia, is important. In glacial climates, the presence of permanent ice sheets there would have provided a year-round reservoir of cold air as a source for the cold air surges, which together with lee cyclogenesis in spring, summer, and fall (Fig. 6) might permit dust outbreaks extending over a greater fraction of the year. It might also be possible that with colder summers, a reduction in rainfall and vegetation cover allows for dust outbreaks to occur in the fall. Over the longer geological record, the gradual cooling of global climate during the Miocene coincides with the well-established aridification of central Asia and the onset of loess deposition. It has been suggested here that the sea-ice maximum in spring sets the seasonal cycle of the temperature over western Siberia from which the cold surges originate. Preliminary analyses for the present climate do suggest that springs with enhanced temperature

variance in central Asia are associated with increased sea ice in the Barents Sea (Roe et al., 2004). Perhaps it is also possible that onset of winter sea ice during the Miocene played a role in the onset of dust generation, transport, and deposition.

Of course, it is to be emphasized that the above ideas are unsubstantiated and merely speculations. It is clear that the meteorology giving rise to dust is complicated and sensitive to small changes in any one of a number of atmospheric variables, a conclusion supported by the high degree of interannual variability of dust outbreaks in the modern climate (e.g., Parungo et al., 1994; Ding et al., 2005a). In addition to the climate sensitivities, paleo-records are also subject to uncertainties about dust source strength and area, transport pathways, and the mechanisms of deposition and re-entrainment. All of these extra factors add uncertainty to climate changes inferred from loess records. For example, it has been estimated that recent anthropogenic desiccation of Owens Lake in California east of the Sierra Nevada, with an active emitting area of just 90 km², created the largest single dust source in the United States, with annual dust production of between 900,000 and 8,000,000 tons (Gill and Gillette, 1991). This illustrates a critical sensitivity of emissions to transient changes in dust sources that may themselves be a function of climate. The multiple uncertainties about controls on dust production and transport are warning flags about the confidence with which the cause of past changes in dust flux can be confidently known. From the paleorecord, it may be possible only to make some broad generalizations about dust as a function of mean climate state. Unique interpretations of the actual climate mechanisms responsible may not be attainable.

Climate models offer potentially useful tools to study the relative importance of different mechanisms influencing the loess record. A prerequisite for their use is that they reflect the meteorology of dust outbreaks (in addition to the transport and deposition of dust), or at least correctly capture the large-scale controls. For dust outbreaks the dynamics of cold front gusts and down-slope windstorms are important but occur at scales too small for climate models to capture. The one climate model examined in this study also failed to get the large-scale controls right. High-frequency variance in low-level winds and temperatures was a factor of two too large, and the phasing of the seasonal cycle was wrong. These are tough targets for GCMs to meet even in the current climate, but without demonstrated skill for the present there can be little confidence in their output under the dramatically different climate of, for example, the last glacial maximum.

The paleo-loess record can be regarded as an exemplar of a general issue in the interpretation of paleoclimate records, particularly when the proxy reflects rare weather events. It highlights the importance of looking at individual case studies and interannual variability in modern observations in order to understand the meteorological and climatological controls on that weather event. It is only by careful analysis of modern observations that there is some hope of establishing the proper target for climate models, and that a level of confidence can be established as to how effectively the climate history entangled within the paleo-proxy record can be teased out. Paleoclimate studies are often motivated under the mantra that 'the past is the key to the future'. However, most important for understanding what paleo-proxy records actually reflect, and in the spirit of Hutton's original idea, it is equally true that 'the present is the key to the past'.

Acknowledgments

I am extremely grateful to Camille Li for supplying the CCSM data and the filtering tools, and to Peter Molnar, Justin Wettstein, Lynn McMurdie, Cecilia Bitz, Eric Kirby, Natalie Mahowald, and Inez Fung for instructive and insightful conversations. I thank David Battisti, Peter Molnar, Sandy Tudhope, Stephen Porter, Justin Minder, and Natalie Mahowald for useful comments on drafts of the manuscript, and to John Dodson, Eric Steig, and Derek Booth the editors. This work was funded by the National Science Foundation Continental Dynamics Grant #6312293.

References

- An, Z., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171–187.
- An, Z.S., Kukla, G., Porter, S.C., Xiao, J.L., 1991b. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 2936.An, Z.S., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and
- An, Z.S., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya Tibetan plateau since late Miocene times. Nature 411, 6266.
- Aoki, I., Kurosaki, Y., Osada, R., Sato, T., Kimura, F., 2005. Dust storms generated by mesoscale cold fronts in the Tarim Basin, Northwest China. Journal of Geophysical Research 32, doi:10.1029/2004GL021776.
- Araguas-Araguas, L., Froelich, K., Rozanski, K., 1998. Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research 103, 28,721–28, 742.
- Bluestein, H.B., 1993. Synoptic–Dynamic Meteorology in Midlatitudes, vol. 2 Observations and Theory of Weather Systems. Oxford University Press, Oxford. U.K.
- Broecker, W.S., Hemming, S., 2001. Climate swings come into focus. Science 294, 2308–2309.
- Chang, E.K.M., Lee, S., Swanson, K.L., 2002. Storm track dynamics. Journal of Climate 15, 2163–2183.
- Chen, S.-J., Kuo, Y.-H., Zhang, P.-Z., Bai, Q.-F., 1991. Synoptic climatology of cyclogenesis over East Asia, 1958–1987. Monthly Weather Review 119, 1407–1418.
- Claquin, T., Roelandt, C., Kohfeld, K.E., Harrison, S.P., Tegen, I., Prentice, I.C., Balkanski, Y., Bergametti, G., Hansson, M., Mahowald, N., Rodhe, H., Schulz, M., 2003. Radiative forcing of climate by ice-age atmospheric dust. Climate Dynamics 20, 193–202.
- Collins, W.D., Blackmon, M., Bitz, C.M., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., Hack, J.J., Kiehl, J.T., Henderson, T., Large, W.G., McKenna, D., Santer, B.D., Smith, R.D., 2005. The Community Climate System Model: CCSM3. Journal of Climate 19, 2122–2143.
- Davis, C.A., 1997. The modification of baroclinic waves by the Rocky Mountains. Journal of Atmospheric Sciences 54, 848–868.
- Ding, R., Li, J., Wang, S., Ren, F., 2005a. Decadal change of the spring dust storm in northwest China and the associated atmospheric circulation. Geophysical Research 32, doi:10.1029/2004GL021561.
- Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S., 2005b. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 45–55.

Eady, E.T., 1949. Long waves and cyclone waves. Tellus 1, 33–52. Gill, T.E., Gillette, D.A., 1991. Owens Lake: a natural laboratory for aridification, playa

Gill, T.E., Gillette, D.A., 1991. Owens Lake: a natural laboratory for aridification, playa desiccation, and desert dust. Geological Society of America With Programs 23, 462.

Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., W, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from lo deposits in China. Nature 416, 159–163.

- Han, W., Chen, S.J., Egger, J., 1995. Altai-Sayan Lee cyclogenesis: numerical simulations. Meteorite Atmospheric Physics 55, 125–134.
- Harrison, S.P., Kohfeld, K.E., Roelandt, C., Claquin, T., 2001. The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Science Review 54, 43–80.
- Hemming, S.R., 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, doi:10.1029/2003RG000128.
- Holton, J.R., 2006. An Introduction to Dynamic Meteorology, fourth ed. MA, Elsevier, Boston (529 pp).
- Hoskins, B.J., Hodges, K.I., 2002. New perspectives on the Northern Hemisphere storm tracks. Journal of Atmospheric Sciences 59, 1041–1061.
- Husar, R.B., Tratt, D.M., Schichtel, B.A., Falke, S.R., Li, F., Ja, e, D., Gasso, S., Gill, T., Laulainen, N.S., Lu, F., Reheis, M.C., Chun, Y., Westphal, D., Holben, B.N., Gueymard, C., McKendry, I., Kuring, N., Feldman, G.C., McClain, C., Frouin, R.J., Merrill, J., DuBois, D., Vignola, F., Murayama, T., Nickovic, S., Wilson, W.E., Sassen, K., Sugimoto, N., Malm, W.C., 2001. Asian dust events of April 1998. Journal of Geophysical Research 106, 18,317–18,330.
- Intergovernmental Panel on Climate Change, 2001. In: Houghton, J.T., et al. (Eds.), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to The Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York, p. 881.
- Ishizuka, M., Mikami, M., Yamada, Y., Zeng, F., Gao, W., 2005. An observational study of soil moisture effects on wind erosion at a Gobi site in the Taklimakan Desert. J. Geophys. Res. 110, doi:10.1029/2004JD004709 D18S03.
- Kalma, J.D., Speight, J.G., Wasson, R.J., 1988. Potential wind erosion in Australia: a continental perspective. Journal of Climatology 8, 411–428.
- Kalnay, E., et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society 77, 437–471.
- Kukla, G., 1987. Loess stratigraphy in central China Quat. Science Review 6, 191–219. Kurosaki, Y., Mikami, M., 2003. Recent frequent dust events and their relation to surface
- wind in East Asia. Geophysical Research Letters 30, doi:10.1029/2003GL017261.
 Kurosaki, Y., Mikami, M., 2004. Effect of snow cover on threshold wind velocity of dust outbreak. Geophysical Research Letters 31, doi:10.1029/2003GL018632.
- Laurent, B., Marticorena, B., Bergametti, G., Chazette, P., Maignan, F., Schmechtig, C., 2005. Simulation of the mineral dust emission frequencies from desert areas of

China and Mongolia using an aerodynamic roughness length map derived from the POLDER//ADEOS 1 surface products. Journal of Geophysical Research 110, doi:10.1029/2004JD005013.

- Li, C., 2006. A General Circulation Modeling Perspective on Abrupt Climate Change During Glacial Times. PhD thesis, University of Washington.
- Littman, T., 1991. Dust storm frequency in Asia: climatic control and variability. International Journal of Climatology 11, 393–412.
- Liu, T., Ding, Z.L., 1998. Chinese loess and the paleomonsoon. Annual Review of Earth Planetary Sciences 26, 111–145.
- Liu, J., Diamond, J., 2005. China's environment in a globalizing world. Nature 435, 1179–1186.
- Liu, M., Westphal, D.L., Wang, S., Shimizu, A., Sugimoto, N., Zhou, J., Chen, Y., 2003. A high resolution numerical study of the Asian dust storms of April 2001. Journal of Geophysical Research 108, doi:10.1029/2002JD003178.
- Lunt, D.J., Valdes, P.J., 2002. The modern dust cycle: comparison of model results with observations and study of sensitivities. Journal of Geophysical Research 107, doi:10.1029/2002JD002316.
- Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S.P., Prentice, I.C., Schulz, M., Rodhe, H., 1999. Dust sources and deposition during the Last Glacial Maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research 104, 15, 895–15,916.
- Mahowald, N.M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S., Luo, C., 2006. Change in atmospheric mineral aerosols in response to climate: last glacial period, pre-industrial, modern and doubled carbon dioxide climates. Journal of Geophysical Research 111, doi:10.1029/2005JD006653.Meeker, L.D., Mayewski, P.A., 2002. A 1400-year high-resolution record of atmospheric
- Meeker, L.D., Mayewski, P.A., 2002. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene 12, 257–266.
- Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., Prentice, M., 1997. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year long glaciochemical series. Journal of Geophysical Research 102, 26,345–26,366.
- Mayewski, P.A., Rohling, E.E., Stager, J.C., Karln, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., 2004. Holocene climate variability. Quaternary Research 62, 243–255.
- Middleton, N.J., 1991. Dust storms in the Mongolian Peoples Republic. Journal of Arid Environments 20, 287–297.
- Mintz, Y., Serafini, Y.V., 1992. A global monthly climatology of soil moisture and water balance. Climate Dynamic 8, 13–27.
- Nakamura, H., 1992. Midwinter suppression of baroclinic wave activity in the Pacific. Journal of Atmospheric Sciences 49, 1629–1642.
- Parungo, F., Li, Z., Li, X., Yang, D., Harris, J., 1994. Gobi dust storms and the great green wall. Geophysical Research Letters 2, 999–1002.
- Pauley, P.M., Baker, N.L., Barker, E.H., 1996. An observational study of the interstate 5 dust storm case. Bulletin of American Meteorology Society 77, 693–720.
- Peixoto, J.P., Oort, A.H., 1992. Physics of Climate. American Institute of Physics, New York, NY, p. 520.
- Porter, S.C., 2001. Chinese loess record of monsoon climate during the last glacialinterglacial cycle. Earth-Science Reviews 54, 115–128.

- Porter, S.C., An, Z., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305–308.
- Prell, W.L., Kutzbach, J.E., 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360, 647–652.
- Qian, W., Tang, X., Quan, L., 2004. Regional characteristics of dust storms in China. Atmospheric Environment 38, 4895–4907.
- Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep-sea: the geologic history of wind. Reviews of Geophysics 32, 159195.
- Roe, G.H., Bitz, C.M., Molnar, P., 2004. Chinese loess as a paleoenvironmental indicator of tectonics or climate: the role of the Arctic, cold air outbreaks, and lee cyclogenesis? EOS transactions AGU #T33D-06. American Geophysical Union, Fall Meeting, San Francisco.
- Sun, D., Chen, F., Bloemendal, J., Su, R., 2003. Seasonal variability of modern dust over the Loess Plateau of China. Journal of Geophysical Research 108, doi:10.1029/ 2003JD003382.
- Sun, X., Wang, P., 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 181–222.
- Sun, Y., An, Z., 2005. Late Pliocene–Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. Journal of Geophysical Research 110, doi:10.1029/2005JD006064.
- Sun, Y., Tada, R., Chen, J., Liu, Q., Toyoda, S., Tani, A., Ji, J., Isozaki, Y., 2008. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau. Geophysical Research Letters 35, doi:10.1029/2007GL031672 L01804.
- Tegen, I., Fung, I., 1994. Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness. Journal of Geophysical Research 99, 22,897–22,914.
- Uno, I., Amano, H., Emori, S., Kinoshita, K., Matsui, I., Sugimoto, N., 1998. Trans-Pacific yellow sand transport observed in April, 1998: a numerical simulation. J. Geophys. Res. 106, 18,331–318,344.
- Voelker, A.H.L., workshop participants, 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, 1185–1212.
- Wallace, J.M., Hobbs, P.V., 2006. Atmospheric Science: An Introductory Survey, 2nd ed. Academic Press, San Diego, CA, p. 483.
- Werner, M., Tegen, I., Harrison, S.P., Kohfeld, K.E., Prentice, I.C., Balkanski, Y., Rodhe, H., Roelandt, C., 2002. Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. Journal of Geophysical Research 107, doi:10.1029/2002JD002365.
- Xuan, J., Liu, G., Du, K., 2000. Dust emission inventory in northern China. Atmospheric Environment 34, 4565–4570.
- Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., Haug, G.H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445, 74–77.
- Yu, F., Price, K.P., Ellis, J., Kastens, D., 2004. Satellite observations of the seasonal vegetation growth in central Asia: 1982–1990. Photogrammetric Engineering and Remote Sensing 70, 461–469.
- Zhang, X.Y., Lu, H.Y., Arimoto, R., Gong, S.L., 2002. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records. Earth and Planetary Science Letters 202, 637–643.
- Zhou, Z., Zhang, G., 2003. Typical severe dust storms in northern China during 1954–2002. Chinese Science Bulletin 48, 2366–2370.