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ABSTRACT

Critical wedge theory provides a direct link between the form of an orogen, the 
rate of orogen evolution, and the accretionary and erosional fluxes that promote oro-
gen growth and decay, respectively. We explore several fundamental characteristics 
of an eroding critical orogen: (1) the sensitivity of steady-state orogen size to tectonic 
and climatic forcing, (2) the response time of a critical orogen to perturbations in forc-
ing, and (3) the behavior of surface topography and the rock uplift field in a system in 
which they are not prescribed. To do this, we develop a numerical model that couples 
a two-dimensional, planform surface erosion model with a two-dimensional, plane-
strain finite element model of deformation. We first present a base model in which a 
critical orogen evolves to a steady-state under boundary conditions similar to those of 
analog sandbox experiments. We find that mean topography and tectonic uplift reach 
steady states, whereas planform topography remains dynamic throughout the simula-
tion. From a suite of simulations, we determine the steady-state scaling relationship 
between orogen size and tectonic and climatic forcing and find good agreement with 
predictions from one-dimensional models. In addition, we examine the response of 
the steady-state orogen to climatic and tectonic perturbation with four simulations in 
which changes in tectonic and climatic conditions lead to either growth or contraction 
of the orogen to a new steady state. We show that the response time to perturbation 
agrees well with predictions from a one-dimensional semi-analytical model. We find 
that the transient evolution of erosion rate and erosional flux is potentially useful for 
distinguishing between tectonic and climatic forcing mechanisms.
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INTRODUCTION

The evolution of convergent mountain belts has long been 
a topic of interest in tectonics. Increasingly over the last two 
decades, geomorphology has added to this study by investigat-
ing how erosion of topography by surface processes can alter the 
form and rate of orogen evolution. In addition, linkages over a 
wide range of spatial and temporal scales have been proposed to 
exist between climate and tectonics, through the influence of sur-
face topography, which is both product and player in the compe-

tition between climate and tectonics. The coupling among tecton-
ics, erosion, and climate appears to be rich in complexity, and a 
broad community of scientists is now discovering and examining 
first-order linkages in the coupled system.

Coupling between tectonics and climate exists through 
various mechanisms that operate in both directions. That is, tec-
tonics and climate both affect each other, resulting in feedback 
between processes. Tectonics influences local and regional cli-
mate primarily by raising high mountains and plateaus leading to 
orographic enhancement of precipitation (Smith, 1979; Koons, 
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critical orogens. We use the model to (1) examine the time evolu-
tion of a critical orogen to a steady state, (2) quantify the scaling 
relationship between steady-state orogen size and tectonic and 
erosional forcing, (3) examine the behavior of additional degrees 
of freedom allowed in our model, and (4) quantify the controls on 
the response time of a critical orogen to perturbations in forcing. 
Where appropriate, we make direct comparisons of the results 
from this model to equivalent analytical models.

COUPLED MODEL

The coupled model consists of a finite element mechanical 
model, which describes deformation of a plastic material in cross 
section, and a surface process model (SPM), which simulates flu-
vial and hillslope erosion in planform.

The mechanical model is a variant of models presented in 
several studies of orogenic evolution (Beaumont et al. 1992, 
2001; Willett, 1999a, 1999b); deformation of the crust occurs in 
response to convergence and accretion of new material. At oro-
gen scale, this occurs under circumstances similar to Figure 1, in 
which accretion represents the transfer of crustal material from 
a downgoing or subducting plate to an overriding plate. In our 
numerical experiments, which match the basic design of ana-
log sandbox experiments (Malavieille, 1993; Wang and Davis, 
1996), accretion is driven by the side and basal velocity bound-
ary conditions shown in Figure 2. Deformation of the subducted, 
downgoing plate is not considered further in this model. As in 
the analog experiments, deformation occurs first at the point S, 
where the basal velocity decreases from the convergence velocity 
V

c
 to zero, and later outboard of point S along shear zones that 

propagate upwards from the basal surface.

1990; Molnar, 1997; Willett, 1999a; Beaumont et al., 2001; Roe 
et al., 2003). Climate affects tectonics through enhanced erosion 
of tectonic structures or entire mountain belts, altering the gravi-
tational stresses and thus internal deformation (Beaumont et al., 
1992, 2001; Willett, 1999a).

Active convergent orogens are particularly sensitive to 
mass redistribution by surface processes, as crustal thickening 
can result in orogens with critical topography, such that regional 
topographic gradients are in balance with the strength of the 
crustal rock. In the case where deformation is frictional plastic 
and crustal accretion occurs by shortening above a frictional 
detachment, topographic gradients attain a constant slope and the 
orogen takes the cross-sectional form of a wedge (Davis et al., 
1983). This tectonic system, in spite of its seeming complexity, 
lends itself well to analytical treatment (e.g., Dahlen, 1984; Davis 
et al., 1983). If an orogenic wedge is in a critical state, any per-
turbations to the cross-sectional form of the orogen, such as those 
that arise from surface erosion, lead to compensatory deforma-
tion to restore the wedge to its critical state. Thus, there is a direct 
coupling between erosion and tectonic deformation.

The effect of erosion on a critical wedge, including feed-
back to the erosion process, has also been treated extensively by 
analytical and numerical methods. Dahlen and Barr (1989) and 
Barr and Dahlen (1989) considered the effects of erosion on the 
internal kinematics and heat budget of a wedge with an assumed 
erosion rate, but did not incorporate any feedback from tectonics 
on erosion rates. Koons (1990) and Willett et al. (1993) also dis-
cussed the effects of erosion on orogen structure and kinematics 
but did not address the strength of the feedback between topog-
raphy and erosion rates. This feedback is included in a class of 
numerical models that couple plane-strain finite element models 
of crustal deformation to one-dimensional (1-D) erosion models 
(e.g., Batt and Braun, 1997; Willett, 1999a), but these models 
include complexities in the tectonic model, such as isostatic com-
pensation and temperature-dependent viscous deformation, that 
obscure the connections with critical wedge theory.

The most explicit examination of the linkages between criti-
cal wedge theory and erosional processes has been conducted in 
the studies of Hilley et al. (2004), Whipple and Meade (2004), 
Roe et al. (this volume), and K.X Whipple and B.J. Meade (2004, 
personal commun.)These models are based on the coupling of a 
critical taper angle, which defines the mean elevation profile, and 
a one-dimensional hillslope-fluvial channel profile. As a group, 
the studies examine how the coupling of tectonics and erosion 
inherent in a critical orogen affects the steady-state orogen size as 
a function of tectonic and erosional forcing and the response time 
of a critical orogen to climatic and tectonic perturbation. Because 
of the assumptions required for solution, these models do not 
address how several important degrees of freedom (e.g., spatial 
variability in rock uplift, spatial and temporal variability in the 
channel network) influence the behavior of a coupled orogen.

In this paper, we develop a numerical model that allows for 
these degrees of freedom and contains more complete descrip-
tions of the tectonic and erosional processes relevant to eroding 

FE

FA

pro-wedge

retro-wedge

Figure 1. Schematic diagram of a doubly vergent wedge (pro- and retro-
wedges are labeled). In this model, material enters and exits the wedge 
via accretionary (F

A
) and erosional fluxes (F

E
), respectively. Large 

black circle is equivalent to point S in Figure 2 and denotes where the 
upper crust detaches from the downgoing plate (after Yeh, 2003).
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Decoupling of the incoming material from its base and 
accretion into the wedge is affected by the mechanically weak 
décollement. The physical interpretation of the basal surface is 
dependent on both the setting and scale of the specific applica-
tion of the numerical model. In reference to orogenic, crustal-
scale wedges, the basal surface represents a décollement either 
within the upper crust, at the upper-lower crust boundary, or 
at the Moho. In analog sandbox experiments, it represents the 
boundary between sand and an underlying material, typically 
Mylar (Davis et al., 1983; Wang and Davis, 1996). In the mod-
els of this paper, we assume that the basal surface remains hor-
izontal throughout the simulation, such that isostatic compen-
sation of excess topography is not allowed. This permits more 
careful comparison with the analytical critical wedge theory.

The finite element formulation solves the quasi-static form 
of the Navier-Stokes equation to calculate deformation of a 
material obeying a nonlinear viscous flow law. Plastic behav-
ior is simulated by requiring that (1) material behave rigidly 
(highly viscous) for stresses below the Mohr-Coulomb yield 
strength of the material and (2) that strain occur at a rate such 
that the stress never exceeds the yield strength (Willett, 1992). 
Numerical solution with this formulation yields horizontal and 
vertical velocities within the cross-sectional domain that, when 
linked to the SPM, provide one of the mechanisms by which 
the two models are coupled.

We simulate planform surface erosion with a variant of 
the Cascade surface process model (Braun and Sambridge, 
1997). A particular strength of Cascade is its representation of 
topography by an irregular network of nodes. This grid allows 
for accurate tracking of material in systems with significant 
amounts of lateral strain, such as the wedge investigated in 
this study.

Erosion of the model topography occurs by fluvial inci-
sion and bedrock landsliding. The rate of fluvial incision, E, is 
calculated by the stream power law:

 E = KQmSn, (1)

where K is a measure of the substrate erodibility, Q is the dis-
charge at a point along the channel network, S is the down-
stream slope (e.g., Whipple and Tucker, 1999), and m and n are 
exponents related to the physical processes of bedrock erosion 
(e.g., Whipple et al., 2000). Here, we use the unit stream power 
law (m = 1/2, n = 1). The discharge is equal to the product of 
the precipitation rate, P, which is assumed to be constant over 
the landscape, and the upstream contributing area, A. Combin-
ing equation 1 with tectonic forcing terms yields equations that 
describe the horizontal and vertical velocities of a representative 
channel node:

 dx
i
/dt = v

i
,  (2a)

 dz
i
/dt = u

i
 – KQ

i
mS

i
n,  (2b)

where v
i
 and u

i
 are the horizontal and vertical velocities at the 

ith node, respectively. We assume completely detachment-lim-
ited conditions, such that transported sediment and sediment 
eroded from the bed do not influence the rate of erosion (e.g., 
Howard, 1994). Water is allowed to exit the model domain 
only through the left and right boundaries (Fig. 2).

To simulate hillslope erosion, we use a simple threshold-
slope model of bedrock landsliding, which is consistent with 
results from large-scale topographic analyses (e.g., Burbank et 
al., 1996; Montgomery, 2001). This is implemented, when nec-
essary, by lowering nodal connections until all slopes are at or 
below the critical value, which is set in our models to 30°. The 
landslide mass is assumed to not influence fluvial incision.

The coupling of the mechanical and surface process models 
is achieved through a sequence of four steps: (1) the mechani-
cal model calculates the velocity field within the entire cross-
sectional domain, (2) the rates of uplift and lateral advection 
from the surface of the mechanical model are interpolated to 
each SPM node, (3) within the SPM and at much smaller time 
steps, the surface topography is uplifted, advected, and eroded 
for the length of the mechanical model time step, and (4) a 
mean elevation profile is calculated for the SPM topography 
and set to be the upper boundary of the mechanical model. 
This sequence is repeated for the length of the simulation.

Nondimensionalization of the coupled model follows nat-
urally from the scale-independence of purely frictional critical 
wedges (Dahlen, 1984; Willett, 1999a). By using the height 
of the incoming material, H, and the convergence velocity, 
V

c
, as characteristic length and rate scales, respectively, this 

approach allows for generalization of the numerical results to 
both sandbox wedges, where H ~ 10−1 m and V

c
 ~ 104 m/yr, 

and fold-and-thrust belts, where H ~ 103 m and V
c
 ~ 10−2 m/yr. 

For instance, nondimensionalization of equations 2a and 2b 
yields:

 dx
i
*/dt* = v

i
*,  (3a)

 dz
i
*/dt* = u

i
* – N

e
(Q

i
*)m S

i
n,  (3b)

Figure 2. Numerical model with boundary conditions. Mechanical 
model is shown in the x-z plane, and the surface process model is 
shown in the x-y plane. Material to the left of point S moves laterally 
at a velocity V

c
. To the right of point S, the velocity is zero. The upper 

surface of the mechanical model (black line) is equivalent to the mean 
elevation profile of the planform topography and is assumed to be a 
stress-free surface. H is the thickness of the incoming material.

SV = Vc V = 0

H Z

Y

X
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where N
e
, the erosion number, is KH2mV

c
m – 1.

All equations and model quantities presented in the fol-
lowing sections are given in nondimensional form. The model 
dimensions (Fig. 2) are ∆X* = 1000, ∆Y* = 8, and ∆Z* = 1. The 
along-profile width, ∆X*, and strike-parallel width, ∆Y*, are large 
enough such that the boundaries do not influence the evolution of 
the mean elevation profile. Note that one unit of nondimensional 
time represents the amount of time required to accrete one crustal 
thickness of material into the domain. For example, if H = 103 m 
and V

c
 = 10−2 m/yr, T* = 1 would be equivalent to 0.1 m.y.

BASE MODEL EVOLUTION

We first examine the evolution of the coupled wedge as it 
grows to a steady-state and then characterize the topography and 
deformation field at steady state. The tectonic boundary condi-
tions and the requirement of purely plastic deformation are cho-
sen to imitate the analog sandbox experiments of Malavieille 
(1993) and Wang and Davis (1996) and the numerical experi-
ments of Willett (1999b), noting that none of these included ero-
sion. We present here the time evolution of the planform topog-
raphy, strain rate field, mean elevation profile, erosional flux, and 
wedge volume.

Two of the most significant characteristics of a mountain 
belt are the spatial extent over which erosion and deformation 
occur. Within the coupled model, these can be measured with the 
planform topography and strain rate field, respectively (Fig. 3). 
In addition, because the mechanical model responds directly to 
the gravitational stresses imposed by the mean elevation profile, 
the surface evolution (Fig. 4) is intimately tied to the pattern and 
magnitude of deformation. Results from pre-steady-state stages 
are shown to illustrate the period of rapid change in the early 
evolution of the wedge.

Beginning from a flat initial topography, wedge growth ini-
tiates as a single pop-up structure centered above the S point. 
Deformation occurs within conjugate shear zones; the width of 
each shear zone is dictated by the resolution of the mechanical 
model mesh. Growth of the pop-up structure continues until T* 
= 1/4. By T* = 1/2, shear zones form on either side of the pop-
up structure, and deformation within these shear zones results 
in uplift and widening of the pro- and retro-wedges. This occurs 
until T* = 2, when the mean elevation of the divide reaches the 
approximate steady-state elevation. Between T* = 2 and T* = 4, 
the deforming region expands from three to five shear zones as 
the wedge widens and the flanks are uplifted. At T* = 4, both the 
deformation field and the mean elevation profile are very similar 
to those of T* = 20, indicating that the wedge has achieved a 
large-scale steady state.

T* = 2

T*=4

T* = 20

T* = 1/8

T* = 1/4

T* = 1/2

T* = 1

Figure 3. Planform topography and xx-component of strain rate through 
time for the base model. Warmer colors represent higher elevations 
and higher rates of strain.
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At steady state, the mean elevation profile can be divided 
into three segments: (1) the pro-wedge segment, which has a 
slope of 1.5°, (2) the upper retro-wedge segment, which has a 
slope of 4.9°, and (3) the lower retro-wedge segment, which has 
a slope of 1.6° (Fig. 4). This compares well with critical wedge 
theory (Dahlen, 1984) and the analog sandbox experiments of 
Wang and Davis (1996), which reveal that the slopes of seg-
ments 1 and 3 are equal to the minimum taper angle (1.5°), and 
that the slope of segment 2 is less than the maximum taper angle 
(6.0°).

Next, we examine predictions for the time evolution of ero-
sional flux and wedge volume. These are important quantities 
in natural systems, because they can be related to observations 
from sedimentary basins such as provenance, deposition rates, 

and sediment volumes. In Figure 5, we plot the evolution in time 
of the erosional flux, which is the integral of the erosion rate 
over the SPM domain, and wedge volume, which is defined as 
the volume of the excess topography above the original base 
level. Also plotted in Figure 5 is a line representing the volume 
of an equivalent noneroding wedge, which increases with a 
slope of HV

c
.

Erosional flux increases rapidly from T* = 0 and asymptoti-
cally approaches a steady value, which is achieved at T* ~ 4. We 
note that the volume of the noneroding wedge departs from the 
volume of the eroding wedge at a rate equal to the erosional flux. 
At T* = 4, the noneroding wedge is more than 2.5 times larger 
than the eroding wedge.

Steady-State Width Scaling Relationship

The size of the wedge at steady state is a fundamental mea-
sure of the response of the coupled system to tectonic and cli-
matic forcing. Roe et al. (this volume) analyzed the coupling 
between a one-dimensional river profile, which erodes according 
to equation 1, and a critical wedge in which the mean elevation 
profile is defined by a constant taper angle. A scaling relationship 
was derived between steady-state wedge width, W, accretionary 
flux, F

A
, and precipitation rate, P:

 W F P
A

hm
m

hm∝ +
−

+
1

1 1 ,  (4)

where h is the Hack’s Law exponent, which relates along-profile 
distance x to contributing area A (A ∝ xh). Equation 4 is very 
similar to the scaling relationship derived by Whipple and Meade 
(2004). As demonstrated by Roe et al. (this volume), equation 4 is 
valid for systems in which topography is advected laterally and in 
which rock uplift is allowed to be nonuniform but is constrained 
to change self-similarly. It can easily be shown that equation 4 
also applies to doubly vergent wedges (i.e., wedges composed 
of pro- and retro-wedges) (Whipple and Meade, 2004). Thus, 
the remaining differences between the analytical and numeri-
cal models are that a non-self-similar rock uplift pattern and an 
emergent and evolving two-dimensional (2-D) channel network 
are allowed for in the numerical model.

In comparing the steady-state predictions of the analytical 
and numerical models, we use results from a suite of simulations 
with different tectonic and climatic forcing for three different flu-
vial erosion laws. Each erosion law has the general form of equa-
tion 1 but with different exponents: the unit stream power law 
(m = 1/2, n = 1), the unit shear stress law (m = 1/3, n = 2/3), and 
the stream power law (m = 1, n = 1) (e.g., Whipple and Tucker, 
1999). The ratio of the steady-state wedge widths and a refer-
ence width are plotted versus the ratio of the climatic and tectonic 
forcing and reference forcing in Figure 6. Also plotted in Figure 
6 are the predictions of equation 4 (Roe et al., this volume), using 
calculations of the Hack’s law exponent h from the model topog-
raphy. There is very close agreement between the analytical and 
numerical predictions, indicating that the nonuniform rock uplift 

40 45 50 55 60
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α = 1.5o
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Figure 4. The mean elevation profile through time, from initiation 
of a pop-up structure to steady state. Regression lines and calculated 
slopes, α, also shown for segments of the steady-state profile.

0 2 4 6 8 10
0

4

8

12

16

T*

V
*

0

0.5

1

1.5

2

F
  *  E
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Figure 5. Evolution of wedge volume and erosional flux of the base 
model. Also shown is the volume of a noneroding wedge forced by the 
same accretionary flux.
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and evolving two-dimensional channel network do not change 
the basic relationship between wedge size and tectonic and cli-
matic forcing.

Spatial Distribution of Exhumation Rates

A steady-state mean elevation profile requires a wedge-scale 
balance between accretionary and erosional fluxes and a local 
balance between rock uplift and erosion rates. For a steady-state 
tectonic system in which rock moves with vertical and horizontal 
velocities u*(x*) and v*(x*), respectively, the two scales can be 
related by an expression for the flux through the mean elevation 
profile z*(x*):

F u x v x
dz
dx

dx E x d
A

W

* *( *) *( *)
*
*

* *( *)= −






= −∫ xx F
E

W

* *= −∫ , (5)

where E*(x*) is the erosion rate. The v*(x*) dz*/dx* term in 
equation 5 is included to account for vertical motion of the mean 
elevation profile caused by lateral advection of topography (e.g., 
Willett et al., 2001).

The steady-state profiles of selected terms from equation 5 
are shown in Figure 7. The rock uplift rate u*(x*) is greater on 
the pro-wedge than on the retro-wedge. Because the topographic 
slope of the mean elevation profile switches sign at the divide, 
the lateral advection term is negative on the pro-wedge and posi-
tive on the retro-wedge. The result is that the erosion rate is more 
uniform than the rock uplift rate. The most significant deviation 
from uniformity occurs near X* = 52.5, which coincides with the 
retro-wedge segment of the shear zone initiating at the S point, 
which is at X* = 50. The maximum erosion rate at X* = 49 is off-

set from the main divide at X* = 51.5. The segment of the mean 
elevation profile defined by the maximum taper angle lies above 
the region of lowest erosion. Overall, we find that the coupled 
tectonic-erosional system evolves to a steady-state in which non-
uniform erosion exists without spatial gradients in precipitation 
rate and without temporal and spatial changes in the mechanism 
of erosion.

Planform Topography

Planform topography and the mean elevation profile both 
vary as the wedge evolves to a large-scale steady state. However, 
while the mean elevation profile eventually achieves a steady 
form (Fig. 4), planform topography never reaches a true steady 
state (Fig. 3). In the approach to a large-scale steady state, ero-
sion progressively shapes the planform topography, resulting in 
creation of interfluvial relief and a change in the geometry of 
drainage basins. Initially, however, erosion does not significantly 
alter the planform topography. Not until outward propagation of 
deformation at T* = 1/2 does erosion in transverse rivers etch the 
sides of the wedge, thereby narrowing and roughening the divide. 
Distinct drainages develop at T* = 2 to form a series of narrow 
transverse drainages, and are deeply incised by T* = 4. Between 
T* = 4 and T* = 20, the main divide becomes more sinuous, and 
basins draining both the pro- and retro-wedges increase in along-
strike width.

The reorganization of drainage basins at large-scale steady-
state is driven by lateral advection of topography. As with the 
models of Willett et al. (2001), the incorporation of lateral advec-
tion leads to a highly transient topography. Although the SPM 
used here has a simple representation of ridge migration by ero-
sion (Tucker and Slingerland, 1994), it does allow for the gen-
eration of new topographic features at the toe of the wedge and 
their progressive uplift and erosion as they are advected across 

Figure 6. Comparison of the steady-state wedge width determined by 
numerical model with predictions from width-scaling law (equation 4) 
(see Roe et al. [this volume] and Whipple and Meade [2004]). Numeri-
cal results are denoted by symbols, which indicate the particular ero-
sion law used in the simulation. Analytical predictions from Roe et al. 
(this volume) for precipitation and accretionary flux scaling are shown 
with black and gray lines, respectively.
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the orogen. The direction of advection leads to an interesting 
asymmetry in the mechanisms that promote basin reorganization 
on the pro- and retro-wedges. On the pro-wedge, advection of 
river junctions from the toe toward the divide and truncation of 
basins at the divide lead to an increase in the along-strike width 
of basins over time. Reorganization of retro-wedge drainages 
occurs when the headwaters of pro-wedge rivers are advected 
over the divide and decapitated by retro-wedge rivers. Addition 
of drainage area (and thus discharge) by this process leads to 
growth of some retro-wedge basins at the expense of others. 
This also leads to changes in the pro-wedge channel network, 
because the decapitated basins, having less drainage area, are at 
a competitive disadvantage. Overall, these mechanisms favor a 
more sinuous main divide and drainage basins with larger along-
strike widths.

Advection of topography and basin reorganization lead to a 
highly transient topography, even at large-scale steady state. We 
quantify the variability of the elevation field in a fixed reference 
frame by translating the planform topography at selected time 
steps to a regular grid and then calculating the standard deviation 
of the elevation over time at each grid point. In Figure 8, eleva-
tion contours of the mean elevation surface are superimposed on 
the map of topographic variability. Both the mean elevation sur-
face and topographic variability are calculated over a period of 
∆T* = 86, during which the mean elevation profile and deforma-
tion field are steady. Over most of the wedge, the standard devia-
tion of elevation is a significant fraction of the mean elevation 
(1/5–1/3). The magnitude of the variability is much larger on the 
pro-wedge, where horizontal velocities are greater.

RESPONSE TO CLIMATIC AND TECTONIC 
PERTURBATION

Geologic time series, such as basin deposition rates and 
thermochronometric age series, testify to the time-dependent 
response of landscapes to unsteady tectonic and climatic forc-
ing. By providing predictions for this response, theoretical mod-
els are important tools for interpreting the geologic record. In the 
preceding section of this paper, we examined how several char-

acteristics of the coupled tectonic-erosional system (e.g., wedge 
volume, erosional flux, and exhumation rate) vary as functions 
of time and space under steady tectonic and climatic forcing. In 
this section, we impose perturbations in climatic and tectonic 
forcing on the steady-state base model and examine the time-
dependent response as expressed by three important properties: 
wedge width, erosional flux, and mean erosion rate.

Because of the strong negative feedback between erosion 
rate and topographic slope, the perturbations in forcing are ulti-
mately expected to lead to new equilibrium states. The relation-
ship between the initial and final steady states can be determined 
for each of the three properties. The final steady value of the 
erosional flux is simply defined, because, at steady state, it must 
equal the accretionary flux. The sensitivity of wedge width and 
mean erosion rate to accretionary flux and precipitation rate fol-
low from the results of the 1-D analyses of Whipple and Meade 
(2004) and Roe et al. (this volume). Equation 4 relates the 
steady-state wedge width to the accretionary flux and precipita-
tion rate, and a similar expression can be written for the mean 
erosion rate, E , which is the erosional flux divided by the width 
of the wedge:

 E F P
A

hm
hm

m
hm∝ + +1 1

.  (6)

Unlike the wedge width, the mean erosion rate is positively 
dependent on both accretionary flux and precipitation rate. What 
is not given from equations 4 and 6, however, is the time-depen-
dent behavior of the coupled system following a change in tec-
tonic or climatic forcing.

We present four simulations in which step-function tectonic 
and climatic perturbations are imposed on the steady-state base 
model presented in the previous section. We chose perturbations 
in accretionary flux and precipitation rate such that, for the four 
simulations, the wedge grows and contracts to only two differ-
ent steady-state widths. For example, given m = 1/2, equation 
4 implies that doubling the precipitation rate leads to the same, 
smaller steady-state width as a decrease in accretionary flux by a 
factor of 1 2/ ; halving the precipitation rate results in the same, 
larger steady-state width as an increase in accretionary flux by a 
factor of 2 . In the left and right panels of Figure 9, we plot the 
time series of wedge width, mean erosion rate, and erosional flux 
for growth and contraction of the wedge, respectively. Because 
time is nondimensionalized with the convergence rate, and the 
convergence rate is adjusted to change the accretionary flux, we 
use the initial convergence velocity to nondimensionalize time in 
simulations with variable accretionary flux.

Climatic Perturbation

The evolution of wedge width in response to perturbations 
in precipitation rate is shown in Figures 9A and 9B (black lines). 
An increase in precipitation rate leads to a decrease in wedge 
width until a new steady width is achieved (Fig. 9B); conversely, 
a decrease in precipitation rate leads to growth of the wedge to 
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Figure 8. Map of the standard deviation of elevation in a fixed refer-
ence frame over a period (∆T* = 86) during which the mean elevation 
profile is at steady state. Labeled contours of the mean elevation field 
are also shown.
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a new steady form (Fig. 9A). The stair-step nature of the curves 
is due to the finite resolution of the model mesh. The response 
of the erosional flux due to a change in precipitation is shown in 
Figures 9C and 9D (black lines). An instantaneous increase in 
precipitation rate leads to an instantaneous increase in erosional 
flux. However, because the accretionary flux is unchanged, the 
erosional flux gradually returns to its original value as the sys-
tem tends to its new equilibrium state (Fig. 9D). Following from 
equation 4, the value of the erosional flux immediately after 
the change in precipitation rate is equal to the accretionary flux 
required to maintain the original width under the new rate of 
precipitation: F

E
 = F

A
 × (P

new
/P

old
)m. Because the tectonic flux is 

unaffected by the change in precipitation rate, the wedge cannot 
maintain its width at this erosional flux and the wedge contracts. 
The converse is true for a decrease in precipitation rate. The ero-
sional flux decreases to a value consistent with the wedge topog-
raphy under the lower rate of precipitation. Erosional flux then 
gradually increases to return to the level of the accretionary flux 
as the wedge grows to a new steady state (Fig. 9C).

Mean erosion rate responds to a precipitation change in an 
interesting manner; it exhibits an instantaneous change, which 
overshoots the final steady value, followed by a gradual return to 
the new equilibrium at which the mean erosion rate matches the 
mean rock uplift rate (Figs. 9E and 9F). An increase in precipita-
tion leads to a new steady state that is characterized by a smaller 

width, a higher rock uplift rate, and consequently a higher erosion 
rate; equivalently, a decrease in precipitation leads to a steady 
state with a lower erosion rate and a larger width.

Tectonic Perturbation

Changes in tectonic flux result in a new steady-state wedge 
width that matches the width produced by equivalent changes in 
precipitation rate (Figs. 9A and 9B), showing consistency with 
equation 4. As is to be expected, increased accretionary flux leads 
to an increase in wedge width (Fig. 9A), and conversely, decreased 
accretionary flux leads to a decrease in width (Fig. 9B). A step-
function change in accretionary flux produces a gradual change 
in mean erosion rate. An increase in accretionary flux leads to a 
permanent increase in erosion rate; a decrease in flux leads to a 
decrease in erosion rate. Finally, a change in accretionary flux 
leads to a permanent change in erosional flux (Figs. 9C and 9D).

Comparison to One-Dimensional Transient Model

K.X Whipple and B.J. Meade (2004, personal commun.) also 
investigated the transient response of an orogenic wedge to per-
turbation. They employed a steady-state width-forcing law, simi-
lar to equation 4, and incorporated an assumption that growth and 
decay of the wedge occur self-similarly, which implies a quasi-

Figure 9. Response of wedge width, 
erosional flux, and mean erosion rate to 
step-function changes in tectonic and cli-
matic forcing. Results for wedge growth 
and wedge contraction are shown in the 
left and right panels, respectively. Re-
sponse to change in precipitation rate is 
shown in black. Response to change in 
accretionary flux is shown in gray.
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equilibrium throughout the response. The result is a differential 
equation for wedge width that can be solved analytically for cer-
tain combinations of h and m, numerically in all cases.

In Table 1, we list the e-folding times predicted by our numer-
ical model and the model of K.X Whipple and B.J. Meade (2004, 
personal commun.). There is a very close agreement between the 
predictions, indicating that the assumption of self-similar growth 
in the K.X Whipple and B.J. Meade (2004, personal commun.)  
model is also valid for the numerical model. In the numerical 
simulations, self-similarity of wedge growth is evident from the 
evolution of the mean elevation profile (Fig. 4) and follows from 
two assumptions of the mechanical model: existence of a quasi-
equilibrium at each time step and maintenance of critical topog-
raphy by plastic deformation.

The numerical results support an important implication of the 
K.X Whipple and B.J. Meade (2004, personal commun.) model: 
the orogen response time is more strongly dependent on the pre-
cipitation rate than on the accretionary flux. In the climate change 
simulations, the ratio of the larger and smaller final precipitation 
rates is 4; the difference in response times is ∆T* = 1.4 (Table 1). 
In comparison, the ratio of larger and smaller accretionary fluxes 
is 2, but the response times are identical.

DISCUSSION AND CONCLUSIONS

Under steady forcing conditions, the coupled model pre-
sented here evolves to a flux steady state in which the erosional 
flux balances the accretionary flux (Willett and Brandon, 2002). 
Associated with this balance are a steady deformation field, a 
steady mean elevation profile, and a planform topography in 
which temporal variability is driven by lateral advection. When 
perturbed by changes in climatic and tectonic forcing, the cou-
pled model evolves to a new steady state via characteristic and, in 
some cases diagnostic, responses of orogen width, mean erosion 
rate, and erosional flux. These responses will be more compli-
cated in natural orogenic systems in comparison to the simpli-
fied numerical models shown here but can still be indicative of 
specific processes.

The width evolution in Figures 9A and 9B illustrates that 
perfect knowledge of wedge width through time is not sufficient 
to assign causation to changes in either tectonic or climatic forc-
ing. Mean erosion rate and erosional flux, however, have diag-
nostic responses to perturbations in forcing. Permanent changes 

in accretionary flux lead to permanent changes in erosional flux, 
whereas changes in precipitation rate only temporarily influence 
the erosional flux (Figs. 9E and 9F) (Bonnet and Crave, 2003). 
This differs from the response of mean erosion rate, because the 
erosion rate is permanently changed by changes in either accre-
tionary flux or precipitation rate (Figs. 9C and 9D). Mean ero-
sion rate gradually achieves a new steady value in response to 
a change in accretionary flux, whereas it responds abruptly to a 
variation in precipitation rate. Given a step-function change in 
forcing, the utility of erosion rate as a diagnostic tool, however, 
is dependent on the time-resolution of the record. Coarse records 
might not resolve the difference between abrupt and gradual 
changes in erosion rate if the response time is short and may 
only show permanent changes in erosion rate, which would not 
be diagnostic.

Isostatic compensation has a significant influence on orogen 
size and, therefore, on the response time. Local isostasy requires 
formation of a crustal root and, for typical crustal and mantle 
densities, the thickness of the root is 4–6 times greater than the 
height of excess topography. Thus, the response time of a com-
pensated orogen is much greater than that of an uncompensated 
orogen, such as the one presented in this study. However, iso-
static compensation does not change the form of the response 
of wedge width, mean erosion rate, and erosional flux; hence, 
these records and the simulations in this paper characterize the 
response of both compensated and uncompensated wedges.

In addition to isostasy and the magnitude of the perturba-
tion, the system response time is intimately tied to the rheology 
of the orogen. Frictional material is expected to respond locally 
and immediately to any perturbation to the mean elevation pro-
file (Dahlen and Barr, 1989). However, in most orogenic wedges, 
for example, Taiwan, there is abundant evidence for nonfric-
tional deformation (i.e., viscous flow), including ubiquitous duc-
tile fabrics in the core of the range (Clark et al., 1993). Impor-
tantly, because a viscous orogen has an inherent response time 
scale determined by the viscosity of the material, the response 
of a viscous orogen is expected to be longer than that of a purely 
frictional wedge.

The close agreement between the numerical model and 1-
D steady-state models (Roe et al., this volume; Whipple and 
Meade, 2004) and transient models (K.X Whipple and B.J. 
Meade, 2004, personal commun.) indicates that many first-order 
aspects of the coupled system can be described by coupling of 
relatively simple erosional and tectonic models. One important 
degree of freedom not available in the simpler models is the 
ability of the spatial distribution of rock uplift and topographic 
slope to adjust, such that local and orogen-wide balances are 
achieved between tectonic and erosional forcing. Our results 
demonstrate that nonuniform rock uplift can exist in a system 
with uniform precipitation and a steady accretionary flux (Fig. 
7). We are currently expanding upon these results by examining 
how the pattern of rock uplift is influenced by the distribution 
of precipitation, the erosion law, and the crustal rheology, and, 
more fundamentally, how the erosional and tectonic systems 
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TABLE 1. COMPARISON OF PREDICTED RESPONSE TIMES
Perturbation !*

K.X. Whipple and B.J. Meade
(2004, personal commun.)

This paper

Pf = 2Pi 1.3 1.4

Pf = (1/ 2)Pi 2.8 2.8

FAf = 1/ 2FAi 1.8 2.0

FAf = 2FAi 2.0 2.0
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achieve a balance through adjustment of internal parameters, 
such as rock uplift rate and topographic slope.

In summary, we have presented a suite of numerical simula-
tions that examine the steady-state and transient behavior of a 
coupled orogenic wedge. In this system, steady state implies a 
balance between accretionary and erosional fluxes and between 
uplift and erosion rates, but not a static planform topography. We 
find that the existence of nonuniform rock uplift does not require 
spatial variations in precipitation or erosional processes. Finally, 
we predict that records of erosion rate and erosional flux can be 
used to distinguish between tectonic and climatic perturbations.
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