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Abstract. We quantify the effect of spatial patterns in climatological rain-9

fall on shallow landslide susceptibility by forcing a physically-based model10

of slope stability (SHALSTAB) with the rainfall pattern produced by a high-11

resolution atmospheric model (MM5) over the western Olympic Mountains12

of Washington state. Our results suggest that for two small basins in the Olympics,13

10 km scale variations in rainfall have a substantial effect on landslide sus-14

ceptibility. Assuming uniform rainfall equal to the average rainfall over the15

basins results in a moderate underestimate of landslide susceptibility. If cli-16

matological data from a lowland station is used to characterize the rainfall17

over the basins a substantial underestimate of susceptibility occurs. The ef-18

fect of spatial variability in rainfall on variations in stability is comparable19

with the effect of moderate-to-large variability in soil parameters (such as20

±30% variations in soil thickness). At a practical level, these results imply21

that accounting for persistent patterns of rainfall may aid in discerning re-22

gions within the same watershed where similar land use practices will lead23

to differing landslide risk.24
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1. Introduction and Background

One of the primary triggers for shallow landslides on soil mantled landscapes is high25

intensity and/or long duration rainfall [e.g., Caine, 1980; Guzzetti et al., 2008]. Over26

mountainous regions, where slides tend to occur, atmospheric circulations forced by the27

topography lead to distinct rainfall patterns that may include greater than two-fold differ-28

ences in accumulation over horizontal distances of a few kilometers [e.g., Bergeron, 1968;29

Smith et al., 2003; Roe, 2005; Kirshbaum and Durran, 2005]. However, it is not gener-30

ally known how strongly such spatial variations of rainfall control slope stability. If the31

influence is sizable, and the rainfall patterns are predictable, then climatologies and/or32

forecasts of kilometer-scale rainfall patterns may prove valuable for landslide hazard as-33

sessment and forecasting.34

In this paper we will distinguish between different timescales on which rainfall char-35

acteristics affect the spatially variable likelihood of landslide occurrence over a region.36

Landslide probability on storm timescales will refer to the likelihood of slope failure dur-37

ing a single storm or series of storms that may last from hours to weeks. This may be38

strongly influenced by the detailed features of a given storm such as its intensity, dura-39

tion, track, structure, and interaction with the topography. Landslide susceptibility on40

climatological timescales will refer to the spatially variable likelihood of failure given the41

distribution of storms that occur in a region over the course of years to millennia. This42

depends on the statistical properties of the climatological distribution of storms, including43

the average, variability, and extremes of storm intensity, duration, etc.44
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Previous work on rainfall patterns and slope stability is limited and, almost exclusively45

has focused on the storm timescale. Some of these studies have used slope aspect and46

wind direction in an attempt to empirically relate the pattern of wind driven rainfall to47

the locations of slope failures [e.g., Pike and Sobieszczyk , 2008], but these studies typically48

neglect horizontal variations in rainfall rate (the vertical flux of rain), variations which,49

as mentioned above, can be quite large. Recently researchers have begun to use small-50

scale rainfall patterns in modeling slides triggered by individual storms. In New Zealand a51

landslide forecasting system is being developed using physically-based models of hydrology52

and slope stability forced by rainfall from a numerical weather prediction model on a 12 km53

horizontal grid [Schmidt et al., 2008]. However, while small-scale rainfall forecasts have54

been used in this modeling efforts, the authors stopped short of quantifying the effect of55

the spatial rainfall variations or the value added to their predictions by considering them.56

Other studies have used ground- and space-based radar measurements to estimate the57

rainfall distribution and relate it to slide locations [Campbell , 1975; Wieczorek et al., 2001;58

MacLeod , 2006; Chang et al., 2008]. Uncertainties with estimating surface rainfall from59

radar can limit the effectiveness of such methods [e.g., Wieczorek et al., 2001; MacLeod ,60

2006], however a combination of radar and gauge observations can be use to make a61

more confident analysis of the rainfall pattern [e.g., Chang et al., 2008]. Using NEXRAD62

radar Wieczorek et al. [2001] found that a localized (∼5 km radius) region of particularly63

heavy rainfall was collocated with many of the slope failures occurring during an extreme64

convective storm on June 27, 1995 in the Blue Ridge Mountains of Madison County,65

Virginia. Using a physically-based transient model of slope stability forced by radar66

derived rainfall from this event, Morrissey et al. [2004] found significant “spatial and67
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temporal variations of the factor of safety” (a measure of slope instability) correlated68

with the movement of individual convective storm cells, just a few kilometers in width,69

across the landscape. Results from this event suggest an important role for small-scale70

rainfall features in determining where slide are triggered on the storm timescale. Yet, if the71

rainfall from such convective cells is distributed randomly across a region from storm to72

storm they will have no net influence on the pattern of susceptibility over climatological73

timescales. For spatial variations in mountain rainfall to influence the climatological74

pattern of landslide susceptibility they must be both large and persistent enough. Whether75

this is the case on small (10 km or less) scales remains an open question.76

In mapping landslide susceptibility over climatological timescales, spatial distributions77

of various parameters (e.g. slope, drainage area, vegetation, bedrock geology) are often78

used. Quantitative hazard assessment is typically accomplished either through the use of79

empirical models [e.g., Gupta and Joshi , 1990; Baeza and Corominas , 2001; Lee et al.,80

2003; Saha et al., 2005], or spatially-distributed physically-based models of slope stability81

and hydrology [e.g., Montgomery and Dietrich, 1994; Wu and Sidle, 1995; Casadei et al.,82

2003; Morrissey et al., 2004]. Information on 10 km scale spatial variability of rainfall83

is very seldom considered in long-term susceptibility analysis, in part because mountain84

rainfall patterns have not been well observed or understood on those scales. However, in85

recent years it has become clear that large variations in precipitation occurring on spatial86

scales of 10 km or less are a persistent and predictable feature of mountain climates in a87

variety of regions [James and Houze, 2005; Anders et al., 2006, 2007; Minder et al., 2008].88

A better understanding of the impact of these variations may have important applications.89

For instance, researchers have been developing techniques to use intensity-duration thresh-90
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olds for slope failure, and satellite-borne radar estimates of precipitation at 0.25◦ × 0.25◦91

horizontal resolution to issue near real-time assessment of landslide hazard [Hong et al.,92

2006]. However, the effects of subgridscale variations in rainfall on such a system have not93

been determined. Furthermore, observations of precipitation in mountainous regions are94

usually sparse. As a result, studies of landslides often are forced to rely upon gauge ob-95

servations from a single point to characterize the rainfall over an entire study region [e.g.96

Casadei et al., 2003; Gorsevski et al., 2006, provide recent examples]. Available gauges97

tend to be sited in accessible lowlands and valleys [Groisman and Legates , 1994], loca-98

tions that may poorly represent conditions at the locations where slides occur. Yet the99

errors in hazard assessments due to the distance between gauge observations and landslide100

locations have not been well quantified.101

We aim to better characterize the influence of small-scale rainfall patterns on clima-102

tological shallow landslide susceptibility. To do so we consider two adjacent watersheds103

in the Olympic Mountains of Washington state and use a modeled rainfall climatology104

(supported by observations) to force a simple model of slope stability in order to address105

the following: What effect on landslide susceptibility may be expected from rainfall vari-106

ations occurring over spatial scales of 10 km? How large of a bias in hazard assessment107

may occur if a lowland station is used to characterize precipitation across a mountainous108

catchment? How does spatial variability of precipitation compare to spatial variability in109

soil properties for determining variations in slope stability?110

2. Rainfall and Landslides over the Western Olympic Mountains

The Olympic Mountains of Washington State receive copious amounts of precipitation111

over their western (windward) slopes. Most of this rainfall occurs during midlatitude cy-112
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clones as stably stratified moist air from over the Pacific is forced over the topography by113

southwesterly winds. Precipitation at locations in the Olympics can amount to over 5 m in114

the annual total. Using 6 years of operational forecasts from the MM5, a high-resolution115

(4 km in the horizontal) weather model used for operational forecasts in the Pacific North-116

west [Mass et al., 2003, and http://www.atmos.washington.edu/mm5rt/mm5info.html], a117

small-scale precipitation climatology was developed over the region [Anders et al., 2007].118

This climatology suggests that substantial enhancement of storm total and annual mean119

precipitation occurs over 10–20 km scale ridges relative to the adjacent valleys [Anders120

et al., 2007; Minder et al., 2008]. The most pronounced enhancement in the model occurs121

over a 15 km wide, 1 km high topographic ridge separating the Queets and Quinault122

basins (Fig. 1 shows the topography of the basins).123

Four years of observations from a high density network of precipitation gauges in the124

region support the model climatology, with MM5 and gauges both showing 60 to 80 %125

more rainy-season (October-May) precipitation atop the ridge than in the valleys that126

flank it. Figure 2 shows a comparison of annual total precipitation from the MM5 and127

observations at gauge locations in a transect across the ridge for most of one rainy season128

(locations of the gauges are shown in Figure 3). The model captures well both the amount129

and spatial distribution of precipitation across the gauge network, with the model’s nor-130

malized route mean squared error in rainy season total precipitation at the gauge sites131

ranging from 10–22 % [Minder et al., 2008]. Favorable performance of the MM5 is found132

despite the coarseness of its 4 km mesh relative to the ridge-valley topography, and MM5133

case studies with higher (1.33 km) resolution produce similar rainfall [Minder et al., 2008].134

The pattern of ridge-top enhancement is a particularly robust feature of heavy rainfall135
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events [Minder et al., 2008], during which the ridge can receive over three times the rain-136

fall of adjacent valleys [Anders et al., 2007]. While individual major storms are frequently137

misforecast by the model, on average the precipitation modeled for major storms is quite138

realistic [Anders et al., 2007; Minder et al., 2008].139

Shallow landslides are a pervasive feature in the western Olympic Mountains.140

Mapped shallow and deep-seated landslides in the Queets and Quinault basins141

are shown in Figure 1. These were primarily surveyed by Lingley [1999] us-142

ing areal photography and made available as a digital coverage by the Wash-143

ington State Department of Natural Resources Landslide Hazard Zonation Project144

(http://www.dnr.wa.gov/forestpractices/lhzproject/). This region has a variety of land145

cover, with vegetation ranging from mature forest (> 50 yrs old) to clear-cuts. The surface146

geology is also variable, including Quaternary alpine glacial deposits as well as Tertiary147

marine sedimentary and volcanoclastic rocks (broken by a number of faults, shearing, and148

bedding structures) [Lingley , 1999].149

3. Methods

We wish to quantify the effect that spatial variations in climatological precipitation150

may have on shallow landslide susceptibility. To this end we will use the rainfall pattern151

from the MM5 as a best estimate of the rainfall distribution over the region, and the152

SHALSTAB model of slope stability [Montgomery and Dietrich, 1994] as a representation153

of the fundamental physics governing landslide triggering by rainfall. Our aim is to deter-154

mine, in a semi-idealized context, if climatological rainfall patterns similar to those found155

in the Olympic mountains represent a large enough physical signal to play an important156

role in determining landslide susceptibility. It is not our intent to directly test whether157
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considering rainfall patterns improves prediction of landslide locations, as uncertainties in158

our datasets (e.g. rainfall climatology, landslide mapping, and soil properties) make such159

a task intractable.160

The SHALSTAB model [Montgomery and Dietrich, 1994], utilizes GIS software to cou-161

ple an “infinite-slope” stability model with a steady-state model of rainfall infiltration and162

topographic-driven flow of water within the soil. The only detailed spatial information re-163

quired by the model is a high resolution digital elevation model (DEM) of the topography.164

By assigning spatially-uniform mean values to other, often poorly mapped, parameters165

the model can be used to indicate where topographic factors make slopes prone to failure,166

with steep, convergent slopes identified as the most unstable [Montgomery and Dietrich,167

1994]. Since root strength offers significant reinforcement in forested regions, we consider168

a formulation of SHALSTAB that includes the effective soil cohesion due to vegetation169

[Montgomery et al., 2000]. However to avoid making assumptions about landslide size we170

consider only basal cohesion and not cohesion around the perimeter of the slide. SHAL-171

STAB may be applied by solving, at each DEM grid cell, for the critical value of a chosen172

parameter at which failure should occur. In principle any parameter may be used. We173

choose to solve for critical soil cohesion as our measure of slope instability:174

175

Ccrit = zρwg cos2(θ) tan(φ)

×
[
a

b

q

T

1

sin(θ)
− ρs

ρw

(1 − tan(θ)

tan(φ)
)

]
, (1)

176

where q is a steady-state precipitation flux, g the is acceleration due to gravity, T is177

the saturated soil transmissivity, a/b is the contributing drainage area per gridcell length178
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(calculated as in Montgomery et al. [2000]), ρs is the wet bulk density of the soil, ρw is the179

density of water, θ is the angle of the topographic slope, φ is the angle of internal friction,180

z is the soil depth, and Ccrit is the critical cohesion of the soil. Actual soil cohesion likely181

varies greatly across our study area due to variations in vegetation and land use, however182

solving for Ccrit means we need not make assumptions about the actual cohesion. Note183

that in the model slopes that become saturated have their critical cohesion set to the value184

occurring at saturation, as excess water is assumed to run off as overland flow. For given185

topography and soil parameters, locations predicted to remain stable under saturated186

conditions, even without soil cohesion, are termed “unconditionally stable”.187

In our SHALSTAB simulations we use a 10 m DEM grid, the highest resolution available188

for our study area. To isolate the effects of spatial variability in rainfall we assume uniform189

values for soil depth and material properties (Table 1). These values were mostly taken190

from previous studies in the Oregon Coast Range [e.g., Montgomery et al., 2000], and are191

only meant to represent reasonable mean values for illustration.192

SHALSTAB models the response of soil pore pressures to steady rainfall of infinite193

duration. This is an approximation to the pseudo-steady state response of actual soils to194

prolonged rainfall, which occurs on a timescale of about 1 day for small slides in diffusive195

soils [Iverson, 2000]. Many slides are actually triggered by the transient response of pore196

pressures to bursts of intense rainfall, which occurs on a timescale of tens of minutes for197

shallow slides in diffusive soils [Iverson, 2000]. However, we focus on the pseudo-steady198

response since it is less dependent upon high-frequency variations in rain-rate (which are199

poorly characterized), and since regions of increased saturation due to this slow response200

will be more prone to failure due to transient forcing.201
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We first run SHALSTAB to calculate the critical cohesion using equation (1), including202

the spatially varying pattern of rainfall (q(x, y)) predicted by MM5. For this we use the203

7 year maximum 24 hr average rainfall rate at each MM5 grid point (Figure 3b). The 7204

year maximum rainfall rate is used to determine the most hazardous conditions at each205

location that would be expected over a climatological timescale. Ideally a period longer206

than 7 years would be used to develop a proper rainfall climatology, but we are limited by207

the extent of the MM5 dataset and the semi-idealized nature of our study only requires208

a plausible climatology. Furthermore, based on the storm-to-storm robustness of the209

rainfall pattern we expect a longer climatology would look similar, except perhaps with210

larger extreme rainfall rates. A 24 hr averaging period is used since this is the timescale211

over which pseudo-steady-state adjustment of groundwater flow occurs [Iverson, 2000].212

To calculate the 24 hr rain rates we first construct a time series of 0–12 UTC and 12–213

24 UTC forecast rainfall from forecast hours 12–24 of the MM5 runs (initialized twice214

daily at 0 and 12 UTC). For practical reasons the 24 hr averages are obtained by using a215

24 hr running mean window that shifts forward in time by 12 hr increments rather than216

by 1 hr increments, thus the actual maximum rate is potentially underestimated. Before217

feeding the rainfall pattern into SHALSTAB we linearly reinterpolate it to a 1 km grid218

to smooth out some of the sharpest gradients introduced by the coarseness of the MM5219

mesh.220

The pattern of 24 hr maximum rainfall rate shown in Figure 3 exhibits both a steady221

increase in rainfall towards the interior of the Olympic mountains, as well as variations in222

rainfall associated with the major ridges and valleys. This pattern is somewhat different223

than the pattern of rainy season total precipitation (shown with the transect in Figure 2224
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and in Anders et al. [2007] and Minder et al. [2008]). While both the season-total and225

extreme rainfall patterns exhibit large variations associated with the ridge-valley relief,226

for the extreme rainfall the maximum appears to be shifted away from the ridge crest227

towards the southeastern slopes of the ridge. Case studies analyzed by Minder et al.228

[2008] suggest that such a shift in the rainfall pattern is reasonable.229

We consider the results from our first SHALSTAB simulation, using the MM5 rainfall230

pattern, as our best estimate of the true slope stability. We then rerun SHALSTAB twice,231

both times with uniform rainfall forcing. For the first of these runs we choose an uniform232

rain rate representative of the spatially averaged maximum 24 hr rain rate over the basins:233

256 mm/day. Comparison of the output from this run with the original patterned rainfall234

run is used to determine how much the rainfall pattern affects landslide susceptibility. For235

the second run we use the MM5 rainfall to choose a uniform rain rate representative of the236

maximum 24 hr value that would be measured at the location of the Black Knob (BKBW,237

shown in Figure 3), the nearest weather station with precipitation data for multiple years238

that would be readily available for hazard assessment: 141 mm/day. Comparison of the239

output from this run with the patterned rainfall run is used to determine the biases240

that may occur if lowland observations are used to characterize the rainfall and landslide241

susceptibility across a mountainous catchment.242

4. Results

Figure 4 shows Ccrit calculated across the basin using the MM5 precipitation pattern.243

The highest values of critical cohesion are greater than 6 kPa, suggesting that those slopes244

would fail under the most extreme 7 yr rainfall unless they had significant stabilization245

associated with vegetation and root strength. Many of the mapped slides initiate in246

D R A F T September 23, 2008, 1:33pm D R A F T



MINDER ET AL.: RAINFALL PATTERNS AND LANDSLIDES X - 13

steep topographic hollows, and SHALSTAB does qualitatively well at identifying these247

locations as regions of high Ccrit (e.g. Figure 6). We make a cursory check on the248

ability of SHALSTAB to identify the locations prone to failure using methods analogous249

to Montgomery et al. [1998]. More specifically, for each of the shallow landslides mapped250

in Figure 1 we associate the slide with the location within the mapped slide polygon251

where the critical cohesion is a maximum (this is done to better associate the mapped252

slide, which include both scar and run-out, with the location of of failure). We bin the253

frequency of slide occurrence by the slide’s maximum critical cohesion, and then normalize254

each bin by the total area in the study region with that value of critical cohesion. The255

results from this, plotted in Figure 5, show a clear tendency for slides to occur much256

more frequently with high values of Ccrit, as should be expected if the model is skillful257

at identifying the locations where failures tend to occur. While this analysis does not258

definitively demonstrate SHALSTAB’s skill, the combination of these results with more259

rigorous evaluations of the model in settings similar to our study region [e.g. Montgomery260

et al., 1998] give us confidence in its appropriateness for this study.261

Figure 7 shows the difference in Ccrit that occurs when patterned rainfall is used relative262

to when uniform rainfall equal to the region average is used (patterned - average). As263

should be expected, it shows that neglecting the rainfall pattern causes an overestimate264

(underestimate) of slope stability in regions that receive more (less) than the area average265

rainfall. The change in Ccrit is modest over most of the study region (< 0.5 kPa), but can266

be more substantial near the locations of the minima and maxima in the precipitation267

pattern (> 1 kPa). A larger fraction of the study region experiences an overestimate268

than an underestimate of the stability when the pattern is neglected since the most gentle269
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slopes, which are unconditionally stable, tend to reside in the lowlands and valleys where270

rainfall rates tend to be more modest.271

Figure 8 shows the difference in Ccrit that occurs when patterned rainfall is used relative272

to when uniform rainfall from the lowland station BKBW is used (patterned - lowland).273

Since nearly all locations where slides may occur (locations that are not unconditionally274

stable) receive more rainfall than the BKBW’s lowland location, Ccrit is found to increase,275

and the stability is overestimated, almost everywhere when the rainfall pattern is consid-276

ered, and by upwards of 3 kPa in the center of the ridge’s rainfall maximum. In other277

words, considering the rainfall pattern instead of just the lowland precipitation reveals a278

larger number of slopes that require significant reinforcement from root strength to resist279

failure.280

We further analyze the results of these experiments by considering bulk statistics from281

the runs. Figure 9a shows a frequency distribution of Ccrit values for the patterned and282

uniform rainfall cases. When the rainfall pattern is neglected in favor of the average283

rainfall, the distribution of Ccrit is shifted towards somewhat lower (more stable) values,284

corresponding to an overall modest overestimate of the stability of slopes in the study285

region. When the rainfall pattern is neglected in favor of the lowland rainfall a much286

more substantial shift in the distribution and overestimate of the stability occurs.287

Figure 9b shows the frequency distribution of the changes in critical cohesion experi-288

enced between the uniform and patterned case (patterned - uniform). Figure 9b again289

shows that using the rainfall pattern instead of the uniform average precipitation increases290

Ccrit for some slopes and decreases it for others, indicating that neglecting rainfall pat-291

terns under or over estimates the stability depending upon location. In contrast, using the292

D R A F T September 23, 2008, 1:33pm D R A F T



MINDER ET AL.: RAINFALL PATTERNS AND LANDSLIDES X - 15

rainfall pattern instead of the uniform lowland precipitation increases Ccrit nearly every-293

where, indicating that uniform lowland rainfall results in a very widespread overprediction294

of slope stability.295

The scale of the differences in Ccrit can be used to place the impact of spatial rainfall296

variations in context. For instance, direct measurements of cohesive reinforcement by297

roots in Pacific Northwest forests (collected from the Oregon Coast Range) reveal that298

typical cohesion from roots ranges from 6.8–23.2 kPa for industrial forests, and from 1.5–299

6.7 kPa for clear-cuts <11 yrs old [Schmidt et al., 2001]. Therefore, particularly for heavily300

logged basins, the maximum biases in the estimate of Ccrit due to use of uniform lowland301

rainfall (∼ 3 kPa) are equivalent to a substantial portion of the net reinforcement provided302

by tree roots, suggesting that such biases are indeed relevant. Even the seemingly modest303

changes in the estimate of Ccrit introduced by using uniform averaged precipitation (as304

much as 1 kPa) may appear non-trivial in this context.305

Figure 9c shows the fractional area of the landscape exceeding various values of Ccrit.306

This can be used to determine the fraction of the landscape that would be considered307

unstable if a given value of cohesion were present everywhere. For instance, if all soils on308

the landscape had a cohesion of 6 kPa, the model would predict that about 7% of our309

study region would fail. Figure 9d shows the fractional change in the curves of Figure 9c310

that occurs when the precipitation pattern is neglected. For example, if a critical cohesion311

threshold of 6 kPa is used, 15% fewer slopes would be identified as unstable when the312

uniform average rainfall is used instead of the rainfall pattern, indicating a significant313

underestimate of the area in danger of failure. When the uniform lowland rainfall is used314

instead of the rainfall pattern 55% fewer slopes would be identified as unstable, indicating a315
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very substantial underestimate of the area in danger of failure. A higher (lower) percentage316

increases in the number of unstable slopes is found if a higher (lower) Ccrit threshold is317

used, and the underestimate reaches 64% for the use of lowland rainfall when a 7 kPa is318

used. We thus conclude that in regions with large spatial variability in rainfall (such as319

the Olympic Mountains) the spatial pattern of rainfall acts to moderately increase the320

area prone to shallow landsliding by focusing rainfall on the mountain ridges where slopes321

are steep relative to the lowlands and valleys. Additionally, the use of lowland rainfall322

data alone to estimate hazard throughout even a relatively small mountainous catchment,323

may result in a substantial underestimate of the landslide susceptibility.324

5. Sensitivity Analysis

Certainly, hillslope properties that we have considered to be uniform in our analysis so325

far actually vary significantly on real landscapes. Even if there is a sizable effect on slope326

stability associated with rainfall variations, it may be largely overwhelmed by the effect327

of variations in other factors. We investigate the relative importance of spatial variability328

in different factors by first quantifying the sensitivity of slope stability to characteristic329

small-scale rainfall variations, and then comparing this to the sensitivity to variations in330

soil properties.331

Figure 10 shows contours of Ccrit predicted by SHALSTAB as a function of θ and a/b332

for the parameters listed in Table 1 and uniform rainfall of 260 mm/day (roughly the333

mean value from the MM5 rainfall pattern). The stability of any site on the landscape334

may be determined by locating the point on such a plot. Note that steeper slopes lead335

to increased Ccrit, as does greater topographic convergence (a/b). However, increases in336

a/b only increase Ccrit until the soil reaches saturation (this occurs along the arching bold337
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line in Figure 10), at which point overland flow is assumed to occur and pore pressures do338

not increase further. The most unstable point (as predicted by value of Ccrit) within each339

mapped shallow landslide polygon is shown as a dot on this figure. As already shown in340

Figure 5, the distribution of points illustrates that while slides occur in many settings on341

the landscape, they are concentrated in the regions of high θ and a/b that SHALSTAB342

identifies as particularly unstable.343

Increasing or decreasing the value of q in equation (1) by an amount characteristic of344

the maximum basin-scale rainfall variations (± 160 mm/day, the difference between the345

maximum and minimum MM5 rainfall values) changes the value of critical cohesion at346

each point on the landscape by the amount shown in Figure 11a–b. As found for our347

case study, changes in Ccrit reach over 2.5 kPa. Additionally, this analysis illustrates that348

the sensitivity to rainfall variability is felt on a specific part of the landscape, namely349

near-saturated, relatively modest slopes with convergent topography, as this is where350

groundwater transport is focused and soils are poorly drained.351

Figure 11c–h shows the analogous results for changes in three of the soil properties352

included in SHALSTAB (z,tanφ,ρs). For comparison we choose the magnitude of changes353

in the soil properties so that they result in stability changes of roughly the same scale as354

those arising from precipitation variations in Figure 11a–b. Due to the form of equation355

(1) the sensitivity of Ccrit to changes in both soil properties and rainfall is linear, meaning356

a change in any of the parameters will lead to a linearly proportional change in stability357

(except in regions that reach saturation or unconditional stability). Note that different re-358

gions of the landscape show sensitivity depending on which parameter is varied. For each359

of the soil parameters, variations of significant amplitude are required to match the effect360
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of precipitation variations, showing that climatological patterns in extreme precipitation361

on the basin-scale can be of comparable importance with variations in soil properties for362

determining the pattern of landslide hazard. The position of mapped slides on Figure 10363

reveals that a significant number of slides occur in the region of large precipitation sensi-364

tivity as predicted from Figure 11a-b, however it is the scale of variations in precipitation365

relative to variations in soil properties that determines their importance in shaping the366

spatial distribution of hazard. For instance, Figures 10 and 11g-h suggest that if ± 30 %367

variations in soil thickness were to occur, they would have more impact than the observed368

precipitation variability in the locations where most slides are found.369

6. Conclusions

We have analyzed the relationship between spatial patterns of rainfall and patterns370

of landslide susceptibility using high-resolution atmospheric model output (supported by371

gauge observations) and a physically-based model of slope stability. We find that the372

climatological spatial variations in intense rainfall for a pair of basins in the Olympic373

Mountains are large enough to cause non-trivial variations in slope stability. For our study374

area we find that the use of area-averaged precipitation to estimate landslide susceptibility375

at a mountain site results in an underestimate of the area prone to failure from intense376

rainfall events that can exceed 20%, whereas use of lowland precipitation data can result377

in an underestimate of as much as 64%.378

The destabilizing effects of the increase in precipitation from its lowland minimum to379

its mountain maximum may be expressed in terms of soil cohesion. In this framework380

we find that the enhancement of hazard at chronically rainy locations is equivalent to a381

substantial fraction of the actual soil cohesion supplied by vegetation in industrial and382
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recently logged forests. This implies that the same land-use produces a different level383

of risk in the wetter uplands than one would assume from considering lowland rainfall384

data and assuming spatially uniform rainfall. In particular, forestry practices that reduce385

root strength can carry a greater danger of slope failure in forested upland areas than in386

the surrounding lowlands – even for the same local slope gradients and soil properties.387

Furthermore, the impact of the spatial variations of rainfall observed in locations such as388

the Olympic Mountains may be comparable to the effect of significant variations in soil389

parameters (e.g. ±30% variations soil depth).390

We expect our results should generalize to a variety of regions. Similar patterns of391

precipitation are expected to be a common feature for midlatitude mountain ranges that392

receive their heaviest rainfall under convectively stable conditions. Less is known about393

the climatology of mountain precipitation on small scales produced by convective storms.394

In part due to the stochastic nature of convection, it is possible that the extreme rain-395

fall patterns and their importance for landslide susceptibility are very different in regions396

that receive their heavy rainfall from such storms. As shown in Figure 11 unsaturated,397

relatively modest slopes with convergent topography are most sensitive to variations in398

rainfall, so our results are particularly pertinent for locations where many slides occur399

on such slopes. However, if large variations in soil properties exist, the effects of rainfall400

variability may be masked. Taken together, our results suggest that, for many regions,401

persistent spatial patterns in precipitation should be one of the factors considered in anal-402

yses of mass wasting by shallow landslides and in hazard assessments. High-resolution and403

high-quality datasets for mountain precipitation can be hard to come by, but strategically404
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placed gauge networks and high-resolution atmospheric model output may prove valuable405

resources for the study of slope stability.406
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Table 1. Uniform values for soil parameters used in SHALSTAB modeling (symbols defined

in text).

Parameter Value
ρw/ρs 2

z 1m
φ 33◦

T 65m2/day
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Figure 1. Topography and mapped slides for the Queets and Quinault basins (location of the

basins within Washington State are shown in inset map). Elevation is shaded in grayscale and

ranges from 0 – 2.2 km. Shallow slides are shown in red, and deep-seated slides are green. Mapped

slides include scar and runout, and complete mapping has only been done for the Quinault basin.

The white line indicates the divide between the two basins. The blue box indicates the location

of Figure 6.

Figure 2. Total modeled and observed precipitation at locations along the transect of gauges

shown in Figure 3, for November–April of 2004–2005. Elevations of gauge sites are shown by the

shaded terrain profile (the model elevations interpolated to the gauge sites are shown with the

dashed line). Gauge observation are shown in black and model climatology interpolated to gauge

locations is shown in gray (figure adapted from Minder et al. [2008], PERMISSION PENDING

FROM JOHN WILEY & SONS).

Figure 3. Maximum 24 hr averaged rainfall rate from 7 yrs of MM5 high-resolution atmospheric

model iterations (reinterpolated from the 4 km MM5 grid to 1 km). The location of the Black

Knob weather station (BKBW) is indicated with a star, and the location of the gauge network

of Anders et al. [2007] and Minder et al. [2008] is shown with circles.

Figure 4. Critical cohesion as predicted by SHALSTAB (equation 1) using the MM5 rainfall

climatology shown in Figure 3. Gray areas represent locations classified as unconditionally stable

or with Ccrit = 0.
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Figure 5. Number of mapped landlides per km2 in each Ccrit category (calculated as described

in text) for slides mapped in the Queets and Quinault basins and SHALSTAB calculated values

of Ccrit.

Figure 6. Mapped slides and SHALSTAB modeled Ccrit for the individual hillside indicated

by the blue box in Figure 1. Elevation are shown with gray-scale shading (shading interval of

100 m). Regions of high Ccrit are color-shaded according to the inset key. The perimeters of

several mapped slides are delineated in cyan.

Figure 7. Change in critical cohesion between the SHALSTAB run using the MM5 rainfall

pattern and the run using uniform precipitation equal to the region average of the MM5 rainfall

(pattern - average).

Figure 8. Change in critical cohesion between the SHALSTAB run using the MM5 rainfall

pattern and run using uniform precipitation equal to the MM5 rainfall at the location of the

lowland station BKBW (pattern - lowland). The location of BKBW is indicated with a star.
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Figure 9. (a) Frequency distribution of Ccrit for SHALSTAB runs with MM5 patterned rainfall

(dashed black line), uniform region average rainfall (solid gray line) and lowland rainfall (solid

black line). The distributions have been normalized by the total area of the basins, and cells with

Ccrit = 0 are omitted. (b) Frequency distribution of changes in Ccrit between run with patterned

and the runs with uniform rainfall (gray line for uniform average rainfall, black line for uniform

lowland rainfall). Distributions have been normalized as in (b), and cells with change in Ccrit =

0 are omitted. (c) Fractional area of the region exceeding various values of Ccrit for patterned

and uniform rainfall runs (line styles as in (a)). (d) Fractional change in area exceeding various

values of Ccrit between SHALSTAB runs with patterned and uniform rainfall (line styles as in

(b)).

Figure 10. Critical cohesion (contoured and labeled every 1 kPa) as a function of tan(θ) and

a/b using the parameters in Table 1 and uniform rainfall of 260 mm/day. The most unstable

DEM grid cell in each mapped shallow slide (i.e. those shown in Figure 1) is plotted as a point

based on its tan(θ) and a/b values. Regions above the arching bold line are predicted to become

saturated in the model. Locations to the left of the vertical bold line are unconditionally stable.

Note, limitations of our DEM dataset cause underestimation of steep slopes, thus the slopes for

points to the right of the figure are best considered as representing minimum values.
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Figure 11. Sensitivity of Ccrit to variations in different parameters. (a)–(b) sensitivity to

modeled spatial variations in rainfall (± 160 mm/day). (c)-(h) sensitivity to variations in soil

parameters (z,tanφ,ρs). The magnitudes of variations in soil parameters (given above the figure

panels) are chosen to give changes in Ccrit comparable to those due to precipitation variations

shown in (a)–(b).
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