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FINITE-DIFFERENCE SEISMOGRAMS FOR SH WAVES 

BY JOHN VIDALE, DONALD V. HELMBERGER, AND ROBERT W. CLAYTON 

ABSTRACT 

The accuracy of the finite-difference method for generating synthetic seismo- 
grams of SH wave propagation in cylindrically symmetric media is discussed. 
The finite-difference method has the advantage that arbitrary density and velocity 
fields in the medium may be specified. A point source is generated by a simple 
transformation of a line source. The accuracy of the finite-difference seismograms 
in flat- and dipping-layered media is confirmed by comparison with the general- 
ized ray method. A source radiation pattern is inserted by introducing a "near- 
field" which has permanent displacement near the source. 

Strong motion synthetics are constructed with this new method for the 1968 
Borrego Mountain earthquake as recorded at El Centro. Good fits to the data are 
achieved using the laterally varying model determined by a detailed refraction 
survey and the source parameters determined by teleseismic waveform model- 
ing. Shallow faulting is no longer necessary to explain the long-period surface- 
wave development. 

INTRODUCTION 

The understanding of earthquake-generated motions has improved significantly 
in recent years. This progress is due in large part to the refinement of methods for 
generating synthetic seismograms to compare with an ever-growing collection of 
observations. Synthetic seismograms are generally used in iterative forward mod- 
eling schemes where the source and medium parameters are perturbed until a best 
match with the data is obtained. This technique has proven to be powerful for 
determining subtle features of both the source and the medium. The technique is 
limited, however, by the range of earth structure that can be modeled. Traditionally, 
the medium models have been a stack of homogeneous layers, which is inadequate 
for laterally heterogeneous structures such as ocean-continent transition zones and 
basin structures. 

In this paper, we relax some of these limitations by allowing dipping structure 
and introducing a procedure whereby two-dimensional finite-difference (FD) cal- 
culations can be mapped into synthetic seismograms with the proper point source 
shear dislocation characteristics. This procedure has the advantage of allowing for 
arbitrary density and velocity fields in two dimensions. In this paper, only SH waves 
(horizontally polarized shear waves) are treated but the method may be extended 
to P-SV waves. 

In the first section, a procedure for mapping line source responses (the source 
used by the FD method) to point source responses with a radiation pattern is given. 
The similarity of the generalized ray theory (GRT) expressions for strike-slip and 
dip-slip types of sources leads to the identification of the vertical radiation patterns 
required for the line-source FD source. In the next section, FD seismograms 
generated using these radiation patterns are seen to agree well with GRT seismo- 
grams. In the last section, this technique is applied to model the seismogram 
recorded at E1 Centro for the 1968 Borrego mountain event. 

SOURCE REPRESENTATION 

The source representation described in this section is the first, to our knowledge, 
that allows the use of two-dimensional FD or finite-element programs to create 
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point source synthetic seismograms that may be compared with data for both 
amplitude and waveform. This source is derived by matching previously known 
first-term asymptotic solutions (e.g., Helmberger, 1983) with the "pseudo-near- 
field" terms necessary to produce radiation patterns with two-dimensional codes. 

The SH displacement in a horizontally layered medium from a buried point 
dislocation source can be conveniently expressed as a sum of generalized rays 
(Helmberger and Malone, 1975) 

v(t) = M°47rpod [ d D(t) * ~ Aj+a(O' x' dt j=l (1) 

where 

• SHj(p) II (2) 

are the generalized rays, t is time, r is horizontal distance between source and 
receiver, n is the number of rays used to approximate the response, Mo is seismic 
moment, p0 is density at the source, D (t) is the dislocation history across the fault 

X2 ~ ~  XI 
v.,:o 

FIG. 1. Description of conventions for mechanism and orientation. 

d D(t) . d D(t) . 
element, and d----~ is the far-field time function. The area under d----~ is 

normalized to one. The dependence on azimuth and mechanism are contained in 

the terms 

A4 = cos 20 cos X sin 5 - ½ sin 20 sin X sin 25 (3a) 

A ~ = s i n 0 c o s h c o s f - c o s 0 s i n X c o s 2 5  (3b) 

where 0 is the strike from the end of the fault, X is the rake angle, and 5 is the dip 
angle. Figure 1 shows the fault orientation conventions. The strike-slip and dip-slip 
vertical radiation patterns are, respectively, 

1 
SH1 = ~o-- ~ (4a) 

and 

SH2 - --E~I (4b) 
~o2p 
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where fl0 is the shear wave velocity at the source. For receivers above the source, 
is - 1  and is +1 for receivers below the source. Hi is the product of transmission and 
reflection coefficients for the ith ray. In a whole-space, there is only one ray, 
however, and 

sin 
p -  

is the ray parameter, and 

COS o~ 

t = pr + ~h 

where a is the angle between the vertical and a line connecting the source and 
dp 

receiver that is shown in Figure 2, and ~-/is determined from t(p). 

Receiver 
h~ PI= 27g/cc ~ / ~ - -  

/~1 = 3.7 k m / s e c ~  

t~..-,~2 = 4.8 km/sec 
Source 

FIG. 2, Flat-layer over a half-space geometr~ with shear wave velocities and densities. The crust 
has hi of 9 km with a density pl of 2.7 gm/cm and a shear wave velocity ~1 of 3.7 km/sec, and the 
underlying upper mantle has p2 of 3.6 gm/cm 8 and f12 of 4.8 km/sec. The source is placed 18 km below 
the surface, or h2 is 9 km. 

Note that Vl(t) and V2(t) do not depend on azimuth or mechanism but contain 
only the vertical radiation patterns. This separation allows the two Vj's to be 
constructed by equation (2), and the azimuthal pattern and mechanism to be 
calculated by equation (1). 

R 
For tr >> T, where T is the source duration and # is ~ ,  equation (2) simplifies to 

sin a H ( t  - t r )  
V 1 -  ~3 R (5) 

for a strike-slip fault and 

c o s a H ( t -  #) 
V 2 -  / ~  R (6) 

for a dip-slip fault where R is the source to receiver distance. Thus, the trigonometric 
functions specify the well-known radiation patterns. Substituting (5) into (1) and 
letting X = 0 ° and 5 = 90 ° for the strike-slip case, the displacement in centimeters 
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v(r, z, t) - Mo Fo /Sin a~ d D( t  - tr) 1 
4~p0 ~ - - ~ - ]  cos 20 dt "yR (7) 

where # is given in kilometers/second, R in kilometers, and Fo = 10 -2o for unit 
conversion and 7 = D (oo) for strength normalization. 

To maintain the correct behavior for large R, we need to include a pseudo-near- 
field term (Helmberger, 1983) 

171 = ~ Re(p) Im (8a) 

that simplifies to 

t sin a H ( t  - tr) (8b) 
V 1 = # 2  R R 

and 

V2 - f12 R -~  (9a) 

that simplifies to 

t cos a H ( t  - tr) (9b) 
R 

These are not the complete near-field effects but only compatible with the asymp- 
totic nature of the solution. If we were to include the exact near-field solution for 
the radiated S H  waves, we would have to include the near-field contributions of P 
and S V  as well (Helmberger and Harkrider, 1978). 

The solution for a symmetric line source assuming a horizontally layered media 
becomes 

d 
¢(r, z, t) = ~ [ / ( t )*~]  (10) 

= 2 (II) 
i=I i 

with the same definitions given for expressions (1) and (2). 
A symmetric point or line source is easily grasped intuitively if the state variable 

is pressure in an acoustic problem, but a symmetric S H  source is more difficult. A 
symmetric S H  line source may be visualized as being caused by a tug on the line 
source. A symmetric S H  point source, however, must simply be considered to have 
the same S H  amplitude and sign for every take-off angle and azimuth. 
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For a whole-space 

ko = (12) 

~ t  2 R 2" 

Substituting (12) into (10), we obtain 

~ ( r , z , t )  = ~ / R 2 

V t2 f12 

that is the well-known line source solution. By comparing expression (11) with (2) 
and the near-field effects just discussed, we can determine the constants and 
mapping required, namely let 

Vj(t) = ~t~t,Oj (14) 

where ~j is the output of the FD code with the following source descriptions 

(si R a )  H ( t -  6) (15a) 
• 1 = ~ o  - -  t -t / R 2 

V t2 ~2 

for the strike-slip orientation and 

~2 = ~o - -  t 
H(t-  tr) 

/ t  2 - R_~ 2 
t~ 2 

(i5b) 

for the dip-slip. The constant is 

~o -- fl-5/2 % .  (16) 

In other words, 4)1 and ~2 specify the displacement that is imposed in the source 
region, which must have constant velocity and density equations (15a) and (15b) 
represent a whole-space solution. The FD code propagates the energy through the 
laterally heterogeneous structure to the receivers. The point source seismograms 
from shear dislocations are generated with equation (1) using the Vj from equation 
(14) which use ~/from the FD code. 
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The separation of variables between the V/s and the Aj's allows two different 
ways to use equation (1). If synthetic seismograms for several different mechanisms 
are desired, one calculates both Vj's from two FD runs and combines them with the 
appropriate A4 and A5 for each seismogram. If only one seismogram is desired, one 
can combine the Vi's with the appropriate A's to create the source and only run the 
FD code once. 

We will next discuss the FD method and then compare FD and line source GRT 
results. 

FD TECHNIQUES 

The FD S H  code used is similar to the acoustic code described by Brown and 
Clayton (1977). The code is fourth order in accuracy of spatial derivatives (see 
Alford et al., 1974, for definition and examples of order for FD codes). The fourth- 
order scheme reduces grid dispersion, which artificially slows down the propagation 
of the higher frequency waves. Figure 3 shows the relative error of the second- and 
fourth-order approximations. The fourth-order scheme allows propagation with 

1.0 

' -  " -  0 . 8  

0 .6  

Eo0.4 
z 

0 .2  

P e r i o d ,  sea  

I 2 3 4 

I I I 

_ F o u r t h - o r d e r  , , .  ~ : - - ~ 3  

I 

- A 

o I , , , ] ~ i , I ] I 
0 2 4 6 8 I0 12 

Wovelength (grid intervals) 

FIG. 3. Estimated spatial derivative divided by true spatial derivative plotted against wavelength 
measured in grid spaces on the bottom and period in seconds on the top. The line with solid circles shows 
the curve for second-order algorithms. 

negligible dispersion for energy with wavelengths down to five grid points, or one- 
half the limit of 10 points per wavelength of a second-order scheme. 

Absorbing boundary conditions are imposed on the sides and the bottom of the 
FD grid as described by Clayton and Engquist (1980), and the top of the grid is 
made a free surface for S H  waves (reflection coefficient is equal to 1) by the method 
of Alterman and Karal (1968). 

Several schemes for source insertion have been described in the literature. 
Imposing the displacement as a function of time either at one side or at the bottom 
of the box works if the source is too far from the receiver to be embedded in the 
box (see Boore, 1972, for example). A simpler approach imposes an initial displace- 
ment in a source region for the first two time steps and leaves the grid source-free 
for the remaining time steps (Alford et al., 1974). A third method commonly used 
is described in Alterman and Karal (1968). In essence, it solves the wave propagation 
twice in the source region, once imposing the source and once without a source, and 
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combines the results so that the source region does not act as a rigid reflector. This 
method has the advantage that an arbitrary time function can be specified. We use 
the method of Alterman and Karal (1968), except that fourth- instead of second- 
order boundary conditions are used to match the source region with the surrounding 
region. 

Figure 4 illustrates the explosive, strike-slip, and dip-slip sources that correspond 
to the sources described in equations (13), (15a), and (15b). all three sources have 
a transient wave that moves outward, but the sin 0 (strike-slip) and cos 0 (dip-slip) 
sources also have a two-lobed displacement pattern that is permanent. This per- 
manent displacement is analogous to permanent deformation caused by movement 

N E A R - F I E L D  EFFECTS 

symmetric 

t=25 t=50 

Strike- Slip 

t =50 

Dip- Slip 

1:25 t=50 

FIG. 4. Snapshots of displacements for the symmetric source, the sin 0 mechanism source, and the 
cos 0 mechanism source. The left frames show displacements after 25 timesteps, the right after 50. The 
amplitude scale is different for each plot. Positive displacements are filled in with black, but negative 
displacements are difficult to discern. 

on a fault. The permanent displacement falls off with distance as r -1, while the 
transient displacement falls off as r -~/2. 

The source for Figures 5 and 6 is symmetric and generated analytically by 
convolving an excitation function with the impulse response for a line source that 
is given in equation (13). Figures 7 through 10 use the dislocation sources given in 
equation (15). 

Line source seismograms are described above, but point source seismograms are 
desired. Line source seismograms may be transformed to point source seismograms 
by equation (14) as described above. A linear sum of the two sets of point source 
seismograms can then be used to make seismograms for any strike, dip, and rake 
earthquake mechanism for a given velocity and density structure as given by 
equation (1). 
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LINE SOURCE 

A 40kin-/" 3.78 .ix,.. 3.71 
I I I I 

1 2 0  ~ 20sec 1.97 ~ 20sec 1.93 

2 0 0  ~ 1.54 ~ 1.53 

280 ~ I l 2 I ~ l l ~ i Z 4 

360 ~ i.io ~ i.o7 

440 ~ i.ol ~ - - i . o 2  

520 - - - / 'V 'V 'k /~ ,  0.93 ~ ' ~ V V v ~ - . -  0.94 

600 ~ 0.85 J ~ A / ' v v ~  085 

6 8 0  ~ 0.79 ~ 0.78 

760 - z N / ' v v v w -  o~2 ~ o7= 
o) Cognierd b) Finite Difference 

FIG. 5. Comparison of the line source synthetic seismograms generated by the GRT and FD methods. 
Results are for a 9-km-thick layer over a half-space. The source is 9 km below the layer, and the receivers 
are on the surface and range from 40 to 760 km in horizontal distance from the source. Both sets of 
seismograms are convolved with a trapezoidal time function. The amplitudes are absolute. 

POINT SOURCE 

..... 3.17 - / ~  3.15 A=40 km" l~  I I l 
120 - - ~  20see 1.85 ~ 20see 2.02 

200 - ~  1.63 ~ ,.~3 

280 ~ .,.32 ~ , ~ .  ,.43 

36o ~ "  ,.12 ~ ,.23 

440 - - ~ / ~ -  ..05 ~ - - , . 2 0  
520 - ~ ~ ' - 0 2  ~ ..00 

600 ~ 0.9. - - - ~ / V ~  0.95 

680 ~ 0 . 8 '  ~ - ~ A / ~ 0 . 9 ~  

760 ---..j~/I/VV'-o.~8 ~ 0 . 9 0  
o) Cagniard b) Finite Difference 

FIG. 6. Comparison of the point source synthetic seismograms generated by the GRT and FD methods 
for the same flat-layer geometry as is used for Figure 5. Amplitudes are absolute and may be scaled to 
moment. 
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SHALLOW DIP-SLIP MECHANISM 

/k:40 km-/~,,~ 5.47 
I I 

120 ~ 20 sec 1.94 

200 ~ 1.53 

280 ~ 1.03 

360 -~ ' k j /~  ~ ' '  0.83 

4 4 0  ~ 0.68 

520 ~ 0.57 

600 ~ 0.50 

680 ~ 0.45 

760 ~ 0.41 
a) Cagniard 

- / ~  1 t 4.70 
2 0  sec  .2.33 

1.63 

1.23 

0.88 

~ V ' ~  0.74 

~ - N / ~ / ~  .... 0.62 

- J " N ~ J ~  O. 52 

~ j ~ ~ 0 . 4 9  

b) Finite Difference 

FIG. 7. Comparison of the point source cos 0 mechanism synthetic seismograms generated by the 
GRT and FD methods for the same flat-layer geometry as is used for Figure 5. 
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1.82 -J~ I I 1"96 

0.64 ~ 20sec 0.70 

0.42 ~ 0.48 

O. 28 ~ 0.52 

0.22 ~ 0.26 

0.18 ~ -  0.21 

0.16 ~ / ~ ~ 0 . 1 6  

0.14 ~ 0.15 

0 . , 2  

,o 0.,2 

a) Cagniard b) Finite Difference 

760 

Fro. 8. Comparison of the point source sin 0 mechanism synthetic seismograms generated by the 
GRT and FD methods for the same flat-layer geometry as is used for Figure 5. 
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FT 

t ~  SUPERSTITION 
I MAINSHOCK , ~ HILLS 

"',%, ~ , ,ULT 

REFRACTION / " " . .  ~ I  MPERIAL 
LINE " ' - . .  EL ~ VALLEY 

km CE ULT 
I I 

0 2O 

NW S E  

A A'  
0 ........... z ........... ----:-----;"_" _----_'-_-: T 7"'-:"---- "--'--';- -; _-;: "_'.--'~-_'_-_-_-_ :r 

, ( . _  _ . . . . . . . . . .  ~.~ . . . . . . . . . . .  -~-k=L- .'.-.=:::: :-.': . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . .  

8 . . . . .  ~ . . . . . .  
r~ Basement / 

Velocity (kin/s) 
12 -" . . . . . . . . . .  qi.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.s .... 

Sub- bajsemenl 
16 ~ ~,s J i L I i 7.s 

0 20  4 0  6 0  80  

Distance (km) 

FIG. 9. Sketch map of the area of the  Borrego M o u n t a i n  main  shock and the E1 Centro s t rong mot ion 
stat ion.  The  af tershock zone and some of the  faul ts  in the  area are shown. The  cross-sect ion shows the 
P-wave velocit ies e s t ima ted  by Fuis et  al. (1983) from refract ion work along profile A - A  '. 

We use a trapezoid of 3-sec duration with 1-sec rise time and 1-sec fall time as 
an excitation function for the flat-layer models. The trapezoidal time functions 
filter out frequencies that would disperse in the grid and may be thought of as 
source time functions, as is common in modeling earthquake records (Langston and 
Helmberger, 1975). 
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DISCUSSION 

The FD code is compared with the flat-layer GRT code that has been well-tested 
(c.f. Apsel and Luco, 1983) for a model with one layer over a half-space that 
represents simple oceanic lithosphere. The geometry and media parameters are 
shown in Figure 2. 

Receivers for the plots in Figures 5 through 10 are positioned on the surface at 
lateral distances of 40 to 760 km from the source. These plots are reduced by a 4.8 
km/sec velocity. 

Figure 5 contains synthetic seismograms for the line source problem with sym- 
metric source. The results from the GRT code (Figure 5a) and the results from the 
FD code (Figure 5b) are in excellent agreement. 

(a) 

) D C. displ 
Integr accel 

~ Vertical 

~ ' ~ ~  Rad,al 
(d) 

S~3T~aW ~ Tangential 
I v I I I 1 I I I 

0 20 40 sec 60 80 

Deconvolved Carder displ. 
Integrated 
accelerogram 

FIG. 10. Summary of observed ground motion. (a) Comparison of deconvolved Carder displacement 
meter record and integrated accelerogram for N-S component. (b) Comparison of deconvolved Carder 
displacement meter record and integrated accelerogram for E-W component. (c) Ground motion rotated 
into vertical, radial, and tangential components [from Heaton and Helmberger (1977)]. 

Amplitudes differ betwcen the two sets of synthetics by no more than 3 per cent, 
and the detailed waveforms are nearly identical. Even the highest frequencies shown 
agree well for the first portion of each seismogram. The later portion of the 
seismograms shows some contamination by dispersed high-frequency energy. This 
agreement is consistent with Figure 3, which shows that the energy with periods 
above 2 sec should be propagated correctly. The discrepancies between the traces 
are high frequency and small. 

The point source synthetics fare nearly as well. They are generated by equation 
(14), described above. The synthetics are convolved with the long-period WWSSN 
instrument response. The shortest and longest period energy is attenuated in 
transforming the line source seismograms to the point source seismograms and 
including the instrument response. The traces generated by the point-source, flat- 
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layer GRT program (Figure 6a) and those obtained by the transformation of the 
FD seismograms (Figure 6b) are in close agreement. The waveform agreement is 
excellent. The amplitudes agree to within 20 per cent in all cases. 

The next question is whether the FD seismograms with sine and cosine vertical 
radiation patterns agree with their GRT equivalents. For Figures 7 and 8, the same 
flat-layer geometry described above is used. Figure 7 shows traces for the cos 0 
radiation pattern, and Figure 8 shows traces for the sin 0 radiation pattern. The 
agreement in waveform is good, and again the amplitudes agree to within 20 per 
cent for all but the nearest offsets. 

Some disagreement is expected for near-vertical takeoff angles because of a slight 
difference in geometrical spreading between the two-dimensional and three-dimen- 
sional geometries. For three-dimensional spreading, there should an additional 
factor of ~ a in the vertical radiation pattern. This factor can be seen, for 
example, as an additional ~p  for the point source that is not in the line source on 
p. 181 of Helmberger (1983). We are not able to simulate the additional factor of 

a because the expression is singular at a of 0 ° and 180 ° that introduces 
numerical problems. However, we are generally not interested in vertical paths 
since they are easily handled by other methods, see Scott and Helmberger (1983), 
for example. 

APPLICATION TO THE BORREGO MOUNTAIN EARTHQUAKE 

We have developed above a method for constructing seismograms for general 
structures, but it remains to show that this flexibility aids in the interpretation of 
data. To show its usefulness, we will investigate the well-studied Borrego Mountain 
strong-motion recording from E1 Centro. Figure 9 shows the relative locations of 
the epicenter, major structures, and the receiver. The displacement data is sum- 
marized in Figure 10, which is taken from Heaton and Helmberger (1977). The 
agreement between the deconvolved Carder displacement record and the integrated 
accelerogram is excellent. E1 Centro is located along the strike of the fault, roughly 
8 ° off, which places it near the SH maximum and a P-SV node. If the station were 
at a P-wave node on a flat-layered earth, one would expect the N-S and E-W traces 
to have the same waveform, and all the energy would rotate to the transverse 
component. For simplicity, we follow Ebel and Helmberger (1982) in modeling the 
first 50 sec of the N-S integrated accelerogram after dividing by cos 37 °, which is 
the angle between the back-azimuth and north. This record is shown as the second 
trace of (a) in Figure 10 and again as trace (D) in Figure 12. For later times, the 
motion appears to arrive at the station mostly on the radial and would not be 
explainable with a two-dimensional SH model. The objective of this section is to 
investigate the effect of using the most recent data about the cross-sectional 
structure on the long-period motions, given the simple teleseismic source descrip- 
tion. 

One of the first teleseismic waveform modeling studies was conducted on this 
earthquake by Burdick and Mellman (1976). They modeled the long-perid P 
waveform with P, pP, and sP rays as well as the long-period SH waveform with S 
and sS rays. Their results suggest a zone of faulting around a depth of 8 km, with 
three distinct sources. Their first source has 75 per cent of the moment and has the 
expected focal mechanism. The other two subevents have unexpected mechanisms 
that may be a result of crustal phases produced by nonplanar structure and are less 
accepted by the seismological community. More recently, Ebel and Helmberger 
(1981) studied the P-wave complexity and found evidence for two asperities. Forward 
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and inverse modeling of the data suggest a two source model, each of less than 2- 
sec duration. The second source occurred about 2.2 sec after the first, and both 
events appear to be at a depth of 8 km. This complex source was used to synthesize 
the direct S H  arrival on velocity and acceleration records with some success. The 
long-period teleseismic synthetics generated with the more complicated source 
model appears to agree well with the initial source found by Burdick and Mellman 
(1976). 

Little evidence for shallow faulting is suggested by the teleseismic data. On the 
other hand, Heaton and Helmberger (1977) suggest substantial shallow faulting to 
explain the strength of the Love waves at E1 Centro. From a modeling point of 
view, one would expect the ratio of body waves to surface waves to be an excellent 
depth discriminant. However, a flat-layered model may not provide the appropriate 
Green's function in this particular path as suggested by the recent study of Fuis et  
al. (1983). We will investigate the properties of the more complicated Green's 
functions in this study using the first long-period source found by Burdick and 
Mellman (1976), namely a 0.1-, 1.0-, 4.0-sec trapezoid. 

M O D E L  A 
V 

~,6' :/h = _~ i = 1.5 2.9 

B2= 3.3 

M O D E L  B 

~#1 = 1.0 

B3 = 3.75 

' M O D E L  C 20 km 

FI6. 11. Three models of the structure between the Borrego Mountain earthquake, shown by an 
asterisk, and the E1 Centro station, shown by a small triangle. There is no vertical exaggeration. The 
velocities and assumed densities for the profiles on the left and right sides of the model are given in 
Table 1. 

Three structures are shown in Figure 11 that  increase in verisimilitude as well as 
complexity from models A to C. Model A is the layer over a half-space used by 
Heaton and Helmberger (1977) and Swanger and Boore (1978). Model B is a more 
accurate dipping layer model. Model C is the S-wave version of the structure from 
Fuis et  al. (1983). The S-wave velocities for profiles on the left and right sides of 
model C are given in Table 1. The ratio of P- to S-wave velocity is assumed to be 
J3  except in the top layer where it is taken to be 2. 

A strike-slip source is introduced with the depth (8 kin) and the time function (a 
0.1-, 1.0-, 4.0-sec trapezoid) estimated from teleseismic studies (Burdick and Mell- 
man, 1976). The resulting displacements for models A, B, and C are shown in Figure 
12, A to C. The E1 Centro displacement record is shown in Figure 12D. The 
seismogram in Figure 12E results from a perturbation to model C discussed below. 
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The flat-layered model A generates the correct initial long-period displacement, 
as it was designed to do. There is little short-period energy, and the signal dies away 
too fast. The dipping-layer model B is seen to trap short-period energy in Figure 
12B, as discussed below, but  the long-period energy does not mimic that in the data. 

The seismogram in Figure 12C from model C matches the first 20 sec of the data 

TABLE 1 

VELOCITIES IN MODEL C 

Depth to Top of Layer 
S-Wave Velocity Density (km) 

(km/scc) (gm/cm s) 
Left Side Right Side 

1.0 1.4 0. 0. 
1.55 1.9 1.6 1.6 
1.8 2.0 - -  3.8 
3.0 2.3 1.8 5.0 
3.75 2.7 2.6 6.2 
4.0 2.8 12.2 12.2 
4.125 2.8 12.6 12.6 
4.25 2.9 13.2 13.2 
4.375 2.95 13.8 13.8 
4.5 3.0 14.2 14.2 
4.625 3.1 14.6 14.6 
4.75 3.2 15.2 15.2 

Vidale et al., 1985, in preparation. 

DISPLACEMENT SEISMOGRAMS 

A. _.(~ /~ /~ A /~,,,j,~"-~ 10.6 cm 
V,,J v v -  10.2 

E . ~  14.9 

' I0 s e c  ' 

FIG. 12. The displacements at E1 Centro resulting from: (A) model A in Figure 11; (B) model B in 
Figure 11; (C) model C in Figure 11; (D) the actual earthquake; and (E) model C, but with the velocity 
of the top layer set to 1.2 km/sec instead of 1.0 km/sec. See text for detailed description. 

reasonably well, aside from the initial pulse. The initial pulse is higher in frequency 
and arrives with a polarization suggesting a direction of travel that is 30 ° away from 
the azimuth from receiver to source. This section is focusing on a match to the 
longer-period displacement records which can be attained with a two-dimensional 
model, as discussed above, so the misfit with the initial pulse [s not investigated in 
this paper. 
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A moment of 1.2 x 1026 dyne-cm is found by matching the amplitude of the 
synthetic in Figure 12C with the displacement record, which is similar to the result 
of 1.1 x 102G found by Burdick and Mellman (1976) from teleseismic body waves 
and also by Butler (1983) from long-period surface waves. 

Profiles for a single layer that dips down away from the source are shown in 
Figure 13 both to reaffirm the accuracy of our methods and to investigate the effect 
of dipping layers. The agreement in waveform and amplitude is excellent (see 
Helmberger et al., 1985, for method). The initial arrival has the same frequency 
content as the source, but the later arrivals have higher frequency content. This 
phenomenon may be qualitatively understood as follows. In the geometrical ray 
limit, energy is trapped in the layer when it is refracted by the dipping interface 
past the critical angle. In the low-frequency limit, the energy is not affected by the 
thin layer. 

The depth sensitivity of the seismograms is investigated by the GRT method 
(Helmberger et al., 1985) in Figure 14. The GRT method is considerably faster than 
the FD method and generally can treat higher frequencies, so when the structure is 
simple enough, the GRT method is preferred. 

Seismograms for the flat-layered case vary much more than they do for the 
dipping-layer case when the source depth changes. The depth sensitivity is an 
important issue. Sibson (1982) argues that one would expect the most moment 
release from the deeper parts of the fault plane. McGarr (1984) presents data that 
suggest that peak accelerations and velocities depend strongly on focal depth. For 
the Borrego Mountain earthquake, Heaton and Helmberger (1977) postulate a 
component of moment release in the shallow sediments to generate enough long- 
period energy to match the data. With the more realistic structure derived from the 
refraction profile, there is instead too much long-period energy 30 to 40 Sec into the 
record in Figure 12c, so the need for a shallow component of moment is no longer 
as evident. 

The structure about Borrego Mountain has considerable variations in all three 
dimensions, as may be seen by the structures shown on Figure 9 or by the various 
cross-sections in Fuis et al. (1983). This variation may also be seen by noting in the 
radial and tangential components of the E1 Centro record shown in Figure 10 that 
both the initial S H  pulse and the later portion of the Love wave approach E1 Centro 
off-strike by up to 30 °. As a result, it is not clear what is the appropriate velocity 
structure to use for modeling the E1 Centro record. 

Many parameters could be perturbed in the attempt to improve the fit to the 
data. The time function, source finiteness, and velocity structure are not known 
beyond a shadow of a doubt. The seismogram in Figure 12e, generated from model 
C with the velocity in the top 1.8 km increased by 20 per cent, illustrates that small 
changes in structure can cause significant differences in the synthetic seismogram. 
Figure 14 shows, however, that the source finiteness does not make nearly as large 
a difference as in the flat-layer case. We suspect that the source time function and 
the structure are the primary determinants of the seismogram, and we do not know 
the three-dimensional structure well enough to uniquely determine the time function 
from the E1 Centro record. With just the one station used in this study, the source 
finiteness is difficult to investigate. 

The good agreement between the data and the synthetic seismogram shows that 
incorporating the known two-dimensional structure can lead to improved prediction 
of path effects on long-period strong ground motion. 



1780 JOHN VIDALE, DONALD HELMBERGER, AND ROBERT CLAYTON 

FD GR 

.502 km .550 

.385 .411 

.210 - .220 

r m l  
I0 sec 

FIG. 13. Profiles for a single layer shows dips down 2.8 ° from the horizontal away from the source. 
The layer is 0.3-km-thick directly above the source. The source is 6 km below the surface. A trapezoidal 
time function of 0.3, 0.3, 0.3 sec has been convolved into both suites of seismograms. The seismograms 
on the left are generated by the FD method described above; those on the right are from a generalized 
ray method. 

Z~=60km A=60km 

I ~ ~ 3 k m  ,.?m ~,:,.S ~,: ,.5 / 
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FIG. 14. Profiles for a single layer shows either flat (left) or dips (right). The geometries are given at 
the top of the figure. Note that the layer thickness is the same under the station in both cases. A 
trapezoidal time function of 0.2, 0.2, 0.2 sec has been convolved into both suites of seismograms. 
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CONCLUSIONS 

The FD approach with the line to point source mapping shown to work above 
has many advantages. S H  synthetic seismograms for an explosion or earthquake 
can be constructed at least out to 100 wavelengths from the source. The medium 
can have arbitrary velocity and density variations, including, of course, dipping and 
curved boundaries, velocity and density gradients, and low-velocity zones. 

This approach has limitations. The model must be two-dimensional. In principle, 
three-dimensional FD elastic wave propagation codes are easy to formulate, but to 
be practical they require now unattainable computer memory and speed. Inversion 
schemes are difficult due both to the multiplicity of free parameters and the expense 
of many runs of a large FD program. Q is assumed to be infinite. Despite these 
limitations, this method can attack problems that are difficult or impossible to 
address by other methods. 

The proposed line to point source mapping has more general applicability as well. 
It is reversible; i.e., point source seismograms can be converted to line source 
seismograms. This property may be useful for techniques that are simplest to apply 
to line source seismograms. Also, this method may be easily extended to model P- 
S V  energy propagation (Vidale et al., 1985, in preparation). 

Once the path effects are known, source characteristics may be examined with 
more confidence. For the Borrego Mountain event, the teleseismic and long-period 
E1 Centro records may both be explained primarily by a single point dislocation 
near a depth of 8 km. 
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