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MODELING STRONG MOTIONS PRODUCED BY EARTHQUAKES 
WITH TWO-DIMENSIONAL NUMERICAL CODES 

BY DONALD V. HELMBERGER AND JOHN E. VIDALE 

ABSTRACT 

We present a scheme for generating synthetic point-source seismograms for 
shear dislocation sources using line source (two-dimensional) theory. It is based 
on expanding the complete three-dimensional solution of the wave equation 
expressed in cylindrical coordinates in an asymptotic form which provides for 
the separation of the motions into SH and P-SV systems. We evaluate the 
equations of motion with the aid of the Cagniard-de Hoop technique and derive 
close-formed expressions appropriate for finite-difference source excitation. 

INTRODUCTION 

Recent strong motion modeling efforts have been restricted to plane-layered 
models as displayed in Figure la. Point-source shear dislocations, or double couples, 
are applied at each element where the seismic field is decomposed into SH and P- 
SV type motions and the vertical and horizontal dependences separated following 
the approach pioneered by Harkrider (1964). Nonuniform fault slip may be simu- 
lated by summing weighted point sources distributed along the fault plane to 
construct realistic synthetic seismograms. Recent inversion studies based on match- 
ing these synthetics to observations such as Hartzell and Heaton {1983), Archuleta 
(1984), and Olson and Apsel (1982) have provided amazing detail on the complex 
faulting process for the Imperial Valley 1979 earthquake. Unfortunately, most 
geologic structures in the vicinity of earthquakes are at least as complicated as 
displayed in Figure lb. Separating propagational effects from complex faulting 
becomes much more difficult in these situations. 

In this paper, we address the construction of synthetics along the surface for two- 
dimensional structures such as displayed in Figure lb. We assume that the model 
remains constant into and out of the plane of the paper along with line sources 
through each element. We design the line-source characteristics to mimic the 
vertical radiation pattern appropriate for double couples, where the SH and P-SV 
field remain decoupled along paths to the receivers. Our main objective is to derive 
these line-source excitation functions. 

In a companion paper [Vidale and Helmberger (1988)], we discuss numerical 
strong ground motion calculations for a two-dimensional structural model through 
the Los Angeles region and compare these results with observations from the San 
Fernando earthquake. 

THEORY 

The approach follows closely the usual shear dislocation theory developed for 
treating plane layered models, where the wave field is separated into vertical and 
horizontal functions. This separation is essential for expressing the field in terms 
of SH and P-SV systems and provides the key to our approach. A particularly 
convenient form of the solution is given by Helmberger and Harkrider (1977) in 
terms of Laplace-transformed displacements along the vertical, tangential, and 
radial directions, 
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FIG. 1. Schematic diagram displaying energy paths for (a) flat-layered model versus (b) laterally 
varying structure. The model is two-dimensional or constant properties into and out of the plane of the 
paper. 

cO~ 
~¢= ~ + sp5 

_ 

1 cO[h 1 cO~5 cOX 

r cO0 spr cOzcOO cOr 

= a$ 1 __a25 + _1 _°; (1) 
Or sp OrOz r 00 

where z, r, and 0 are the vertical, radial, polar angle coordinates, respectively. The 
P wave potential  (~), the S V  wave potential  ([~), and the S H  wave potential (×) 
for a strike-slip orientation are 

~c i°°+c _ Mo 2 Im (_p2) P__ exp(-s~/. ] z - h [)K2(spr) dp • sin 20 
47rp 7r 7/. 
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= Laplace transform variable 
= ray parameter 
= ( 1 / v  2 _ p2)1/2 

= depth of source 
= compressional velocity 
= shear velocity 
= density 
= seismic moment 
= a small constant that offsets path of integration from the imaginary axis, 

and 

where 

+11 z > h * = h' and 
- -  Z (  

0 = strike from the end of the fault plane. 

The geometry displaying the orientation of the fault in the cylindrical coordinate 
system is given in Figure 2. Note that a strike-slip event is defined by h = 0 ° and 

= 90". Integrals of the type given in equations (2) through (4) can be transformed 
back into the time domain by applying the Cagniard-de Hoop technique as discussed 
by Helmberger and Harkrider (1977). An asymptotic solution and one useful for 
our purpose can be obtained by expanding the modified Bessel functions 

] K 2 ( s p r )  = ~ s p r  e -spr 1 + 8-~pr + " ' "  (5) 

substituting the resulting power series in potentials back into the displacements, 
expression (1), and expand again in powers of (l/s). The first term of such an 
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z 

FIG. 2. Description of conventions for mechanism and orientation. 
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expression has the following form 

W -  Mo d [/)(t) * (we + w,)]sin 20 (6) 
41rp dt 

V -  Mo d [/)(t) * v,]cos 20 (7) 
47rp dt 

Q _  M0 d [ / ) ( t ) .  (q~+q~)]sin20 (8) 
47rp dt 

where 

we = ~ * Im (-p2)(-eT~) ~ (9) 

~ _ 2 r  1 [ ~  t (_~_~p dp)] w, = ~ * Im (-epT,)(p) -~ (10) 
\ 7, 

v~ = * Im (p) dp (11) 

~ / / ~  l[~tt ( _~  dp)] q~ = ~ * Im (_p2)p -~ (12) 

qe = ~ * Im (-epTe)(-eT,) -~  • (13) 
\ 7, 

This is a first term asymptotic expansion similar to the expansion used for explosive 
sources, see Helmberger (1968). The approximation is accurate for spr >> 1, which 
means it is most accurate for high-frequency, large range, and nonvertical take-off 
angles. The two arrivals in the wj and q1 cases are the P wave and SV wave. Note 
that the first term becomes uncouples in the V depends only on x, and W and Q 
only on ¢ and 12; so, the SH solution separates from the P-SV solution in this 
asymptotic form. 

Suppose we now consider the field variable given by 

q' = ~ * Im (i4) 

which has a simple interpretation following the Cagniard-de Hoop technique, where 

r ( R2~ '/2 [zl 
p = - ~  t + i.t ~ -  V2 ] R2 

[z[ { R2~ '/2 r 
7v = --~ t -  i\t2 - V2 ] R2 (15) 



and 
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dp = i~vH(t - RIV)l(t - 
dt 1/2] ' 

where V can be either a or ft. Substituting these equations into (14) yields 

1 
~P ~ -~ H( t  - R / V )  

where R = (r 2 pl z2) 1/~ and the imaginary parts of p and ~v have been neglected, 
namely 

Re(p) = sin ¢ / V  and Re(~v) = cos ¢/V.  

The (p) becomes the well-known ray parameter and (~v) the vertical slowness. The 
extra (p2) occurring in W~ becomes the vertical radiation pattern and ~ the vertical 
component of the P wave. The (E) expresses the jump in polarity across the origin 
(see Figure 3a). This series of simplifications is called the first-motion approxima- 
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FIG. 3. The top panel displays the vertical radiation field appropriate for a strike-slip excited P wave 
with a sin2~b pattern. The bottom panel displays the azimuthal field showing the strong P wave loading 
near 45 °. Between the times t~ and ta, the material in the fourth quadrant flows away from the maximum 
compression, namely clockwise for 0 > 45 ° and counterclockwise for 0 < 45 °. 
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tions and has proven itself quite useful in modeling seismograms at teleseismic 
distances [see Langston and Helmberger (1975)]. 

A more accurate solution at local distances can be obtained by solving expressions 
(9) through (13) numerically and substituting into (6), (7), and {8), which yields the 
first term of the asymptotic displacement as discussed. The results for a whole- 
space model are displayed in Figure 4. Higher order terms, (1/S) n, a r e  included along 
with the exact Cagniard-de Hoop solution on the bottom [see Helmberger and 
Harkrider (1977)]. Note the slight upturn for the 12-term solution at the end of the 
radial motion. The solution rises rapidly for longer times, and these asymptotics 
suffer the usual blow-up at large times characteristic of such series. Also, note that 
the so-called near-field terms are missing along the top row. The near-field contri- 
butions are particularly easy to see by noting that the first term of the tangential 
motion, V of expression (1), depends on the azimuthal change of the P wave. A 
schematic of the horizontal P wave pattern is displayed in Figure 3b, indicating the 
compressional field peaked at ~ = 45 °. Since the material at a receiver, as in Figure 
4, behaves elastically before the arrival of the shear wave, it relaxes by moving 
counterclockwise for angles less than 45 ° . Similar drifts occur for the other two 
components between the P and S wave arrivals, where each time the material moves 
to relax from the P wave loading. This drifting should end upon arrival of the shear 
wave, which is well known from the exact solution. Unfortunately, the asymptotics 
continue to drift, which can cause severe problems at long periods, and should be 
avoided for source durations longer than a significant fraction of (t~ - to), the 
timing separation between the P and S waves. 

Expressions (6) through (13) have produced the goal of separating the motions 
into vertical and horizontal functions, but we still must require that these expres- 
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FIG. 4. Comparison of the three components of displacement for a whole-space with a strike-slip 
source. The top four rows contain the asymptotic summation with 1, 2, 4, and 12 terms. The full solution 
is displayed at the bottom. The source depth is 8 km, and the range is 16 km. Model parameters are a = 
6.2 km/sec, ~ = 3.5 km/sec, and p = 2.7 gm/cm 3. 
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sions be solutions of the two-dimensional wave equation. This requires removing 
the ~ dependence. 

One approach is to expand q~p in a power series about some fixed direction, po, 

1 1  ~Po p____p___ 
4pp= 4~po + ~-~po (p - po) = - ' ~  + 24~p ° 

and carry the second factor as a correction term. The first term has shown to be 
adequate in, Vidale et al. (1985) where we approximated 

-~R' 

although we must avoid p0 = 0 or r = 0. The effective vertical radiation patterns 
then become the real-part operator, Re( ), of a product of complex p's and ~'s as 
defined in (15). For instance, from (9) we obtain 

~ 1  i m ( 1  _~dp(_p2)(_e~?,))=Re(ep2y,)H(t_R/a)( t2 -a2]R2~ 1/2 

and after some complex algebra 

Re(~p2~) _ -~'z[t3[[ 
R 6  - z 2 _ 3r 2 + ~ (  2 r 2 - z  2) . 

Thus, the vertical displacement for an incoming P wave from a strike-slip source 
becomes 

] , ~I/1 

where (~1) solves the two-dimensional wave equation. Note that for times near the 
wave front, t = R/a and the function 

cos ¢ sin2¢e 
Re(~P 2y-) - ~3 

which is the result obtained earlier from the first-motion approximation. To produce 
transparent source box conditions for the finite-difference requires a complete 
solution for all times and (~1) serves this role. In short, the complex near-field 
terms which change their shape with time is required if we want to send out a 
simple sin20 pattern at larger distances. Similar expressions can be derived from 
equations (10) through (13) and explicit two-dimensional excitation functions 
determined by evaluating the Re( ) operators. The grid mechanics along with the 
other fundamental fault orientations are given in Vidal~ and Helmberger (1987). 
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We will include these results here for completeness. Let  

F ,  = V ~ \ 4 ~ r p o ] ~  ( M o  × 10 -2°) and 
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R 2 

T,  -- t2.y 2 

where ~ = a or/~ expressed in ki lometers/second,  R is in kilometers, and Mo is in 
ergs. We will assume t h a t / 9  (t) = b (t) [slightly smoothed as discussed in Vidale e t  

al. (1985)], or tha t  the slip funct ion across the fault  corresponds to a Heavside step 
function. Also, we define superscripts 1, 2, and 3 to refer to strike-slip, dip-slip, and 
45 ° dip-slip fundamenta l  fault orientations.  Wi th  these definitions, the analytic 
source expressions used in defining the displacements in the grid become 

(Strike-slip) 

(Dip-slip) 

(45" dip-slip) 

W ~  = - z ( z  2 - 3r 2 + T~(2r 2 - z 2 ) ) q ,  

W ~  = - z ( 3 r  2 - z 2 + T ~ ( z  2 - 2 r 2 ) ) ~  

r 1 
V~ - R2 t2~2 xI~'~ 

Q 1  = r ( r  2 _ 3 z  2 + 3 T ~ z 2 ) ~ ,  

Q~ = r(3z 2 - r 2 + T ~ ( r  2 - 2 z 2 ) ) ~ .  

W 2 = - r ( 2 r  2 - 6z 2 + T,(4z  2 - 2 r 2 ) ) q ,  

W~ = - r ( 6 z  2 - 2r 2 + T ~ ( r  2 - 5z2))q~ 

z 1 
V~ - R2 t2~2 xlt~ 

Q2 = z ( 6 r  2 _ 2z 2 + T~(2z  2 _ 4 r 2 ) ) ~  

Q~ = z(2z 2 - 6r 2 + T~(5r 2 - z2))q/~. 

W 3 = - z ( 9 r  2 - 3z  2 + T ~ ( z  2 - 8 r 2 ) ) q / ~  

W~ = - z ( 3 z  2 - 9 r  2 + T ~ ( 6 r  2 - 3 z 2 ) ) ~  

Q ~  = r ( 9 z  2 - 3 r  2 + T , ( 2 r  2 - 7 z 2 ) ) ~ ,  

Q ]  = r ( 3 r  2 - 9 z  2 + T ~ ( 6 z  2 - 3r2))~I,~.  

These  expressions and functional form are compatible with Cartesian coordinates 
with the horizontal  coordinate, x, replacing r as discussed by Helmberger  (1974). 
Thus,  the aforement ioned expressions can be used to define the desired line-source 
excitat ion [see Vidale and Helmberger  (1987)] for the details of source loading. 
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FIG. 5. P -SV  vertical radiation patterns. The divergence and curl fields due to strike-slip, dip-slip, 
and 45 ° dip-slip sources are shown after 150 timesteps. The plots have a grey background, where positive 
is shown in black and negative in white. 
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The whole-space finite-difference solutions for the P-SV system are displayed in 
Figure 5 in the form of divergence and curl. Note that the divergence is nonzero 
where there is compressional wave energy, and the curl is nonzero for shear wave 
energy. The far-field radiation patterns are the expected ones. For example, in the 
strike-slip case, the outgoing P wave has the classic two-lobe pattern while the SV- 
wave has a four-lobed pattern. The complex near-field pattern can be seen in the 
inner clover leaf followed by a 12-lobed pattern at the source box boundary. Note 
that this complex pattern changes with time but is required to produce the proper 
far-field behavior as discussed earlier. The corresponding patterns for the tangential 
displacement fields for the strike-slip and dip-slip cases are given in Figure 6. These 
solutions are considerably simpler. Note that this finite-difference excitation is 
appropriate for a homogeneous region which was assumed for convenience. However, 

SH VERTICAL RADIATION PATTERNS 
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FIG. 6. SH vertical radiation patterns. The displacement field due to strike-slip and dip-slip sources 
are shown after 125 and 250 timesteps. The plots for the earthquakes have a grey background, where 
positive displacements are shown in black and negative in white. 
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with the help of generalized-ray theory, we could load this source box in a layered 
structure if desired. 

After the energy propagates across the structural model to the receiver (as shown 
in Figure lb), we extract the vertical, radial, and transverse motions from the finite- 
difference code indicated by the symbols l~d, V, and Q for each of the fundamental 
orientations. Finally, the point-source synthetic seismogram is constructed at the 
observation point by evaluating 

! 
t 

1 

t 

1 

* (A1 VV "1 "Jc A2 W2 + A3 l/d 3)] 

* (A4 ~1 + A5 ~z2)] 

, (A1Q ~ + A2{~ 2 -}- A3Q")] 

where the azimuthal radiation patterns are defined by 

A~ = sin 20 cos ~ sin 5 + ½ cos 20 sin h sin 25, 

A2 = cos 0 cos k cos 5 - sin 0 sin h cos 25, 

A3 = 1 sin ), sin 25, 

A4 = cos 20 cos k sin 5 - 1 sin 20 sin ~, sin 25, 

A5 = - s in  0 cos h cos 5 - cos 0 sin h cos 2~f, 

where 0 is the strike from the end of the fault plane, ~, is the rake angle, and 5 is 
the dip angle (as shown in Figure 2). The same definitions have been used in 
previous source discussions [see Langston and Helmberger (1975)]. 

CONCLUSIONS 

A procedure for constructing synthetic seismograms appropriate for earthquake 
sources using two-dimensional finite-difference codes is discussed. It is based on 
breaking down the three-dimensional motion field produced by shear dislocations 
into S H  and P - S V  systems which can be solved independently applying the two- 
dimensional wave equations. Note that the line sources must be aligned perpendic- 
ular to the structure such that no SH-S V mixing is allowed as the motion propagates 
through the model. Line-source S H  and P - S V  excitation functions are derived using 
Cagniard-de Hoop theory for the three principal faults which allows an arbitrarily 
oriented fault to be simulated by linear summation. Numerical tests of this new 
technique against analytical codes show good agreement [e.g., see Figure 7 and 
Vidale and Helmberger (1987)]. 

The main disadvantage of this approach is the computational expense in running 
the finite-difference routines and the banded-limited nature of the results. The 
latter limitations are caused by grid size constraints which control the highest 
frequency allowed and by the asymptotic approximations at the lowest frequency. 
The main advantage of this technique over other analytical methods is that it is 
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FIG. 7. Comparison of finite-difference (solid) and GRT (dashed) seismograms for the ranges 32, 48, 
and 64 km for t.he strike-slip, dip-slip, and 45 ° dip-slip mechanisms, respectively. The far-field source 
time functions, D(t), is specified by a trapezoidal shape with equal ~tj's of 0.2 sec. The parameter for the 
layers are given in Table 1 with a source depth of 8 km. Amplitudes may be scaled to moment. 

u n i q u e  in  a l l owing  t h e  s e i smic  i n v e s t i g a t i o n  o f  c o m p l e x  m o d e l s  such  as  c ross-  
s e c t i o n s  t h r o u g h  b a s i n s  a n d  r idges .  T h e  u se fu lne s s  o f  t h i s  s c h e m e  is i l l u s t r a t e d  in  
Vida le  a n d  H e l m b e r g e r  (1988). 
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