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COMMENT ON "A COMPARISON OF FINITE-DIFFERENCE AND 
FOURIER METHOD CALCULATIONS OF SYNTHETIC SEISMOGRAMS" 

BY C. R. DAUDT E T  AL.  

BY JOHN E. VIDALE 

The comparison between fourth-order and Fourier method finite-difference wave 
simulation schemes by Daudt et al. (1989), which finds Fourier methods preferable, 
is unfair because the fourth-order scheme they use is not as efficient as most fourth- 
order codes in use today. The fourth-order acoustic scheme that I have had a part 
in writing and using (see Vidale et al., 1985; Frankel and Clayton, 1986; Vidale and 
Helmberger, 1988; for example) is several times more efficient than the fourth- 
order scheme tested by Daudt et al. (1989). 

Our acoustic fourth-order algorithm has not been previously published, so it is 
described below. Virieux (1984) describes a more complicated scheme based on 
converting the second-order partial differential equation of motion (in pressure) 
into a system of two first-order equations (in stress and velocity). Levander (1988) 
describes the extension of Virieux's (1984) second-order scheme to fourth-order. 
The stress-velocity scheme is of comparable efficiency to our pressure scheme. 

Our extension of the original scheme of Alterman and Karal (1968) that finite- 
differences the acoustic-wave equation on an equally spaced, cartesian grid to higher- 
order accuracy is easily done by re-writing the wave equation. This scheme extrap- 
olates from the pressure at two points in time to the pressure at the next point in 
time on a cartesian grid. The acoustic equation of motion is 

( l p P x ) + ( ~ P z ) z = l P t t  (1) 

where P is pressure, x and z are cartesian coordinates, t is time, p is density, and K 
is bulk modulus. If one simply finite-differences the first and second derivatives in 
equation (1) as written, instabilities result. A simple trick allows finite-differencing 
to solve equation (1). Using the identity 

(APx)x = i[(AP)xx + APxx - A=P],  (2) 

equation (1) may be rewritten so that only second derivatives of x, z, and t are 
present. The second-order (1, -2,  1) and fourth-order ( 1 4 5 4 
convolutional operators for a second derivative, as well as higher-order operators, 
are well-known. Plugging the second-order operator into equation (1) results in the 
formula of Alterman and Karal (1968), while plugging in the fourth-order operator 
for the two spatial derivatives and the second-order operator for the time derivative 
yields the solution that I and my compatriots have been using. 

With such similar structure for the second- and fourth-order solutions, it is simple 
to compare their efficiencies. Comparing the product of the number of grid points 
required, the number of time steps required and the cost per grid point per time 
step yields the relative efficiency of the two schemes. For the same phase velocity 
error, I find that only one-third the number of samples per wavelength (7.6 versus 
26) are needed for the fourth-order compared to the second-order operator. I have 
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chosen an acceptable error smaller than that of Daudt et al. (1989) that I also use 
as a guide in my finite-difference applications. With a coarser grid but more 
restrictive stability limit (Alford et al., 1974) the time step is 1.15 times larger for 
the fourth-order than the second-order calculation. The cost per grid point per time 
step reduces to applying the finite-difference operator to 11 numbers in the fourth- 
order case (a star five points wide in each of the two spatial dimensions, and a star 
three points wide in the time dimension, with the central point common to all three 
spokes) and applying the star to seven points in the second-order case (an operator 
three points wide in each direction). Each coefficient may be pre-computed and 
stored in a table, and therefore needs be computed only once and costs little 
compared to the computation in the time-stepping part of the solution. 

Multiplying these three factors, the fourth-order scheme uses one-eighth of the 
CPU and one-twelfth of the memory compared to the second-order scheme. Since 
Daudt et al. (1989) show that  the Fourier method runs four times faster than the 
second-order scheme, the fourth-order scheme runs in half the time of Fourier 
method, although it takes twice the memory. I found the same result from writing 
both kinds of computer programs; the acoustic fourth-order scheme runs faster than 
the Fourier scheme in two dimensions for a given level of accuracy. In three 
dimensions, however, the comparison may favor the Fourier scheme. 

These comparisons are complicated by the variations in computers, with some 
relying on vectorization and others relying on concurrency to gain speed. Both 
Fourier and fourth-order methods can be vectorized, but only the fourth-order 
method can easily use concurrent processors. I did not use vector or concurrent 
machines for my comparison. The sides of a Fourier calculation are restricted to 
have a length that can be FFT'ed, usually 2 n, and by the nature of an FFT, the 
wave field is periodic. On the other hand, a truly random media requires the storage 
of a different differencing operator for each spatial grid point in the fourth-order 
scheme, which increases the demand for memory. In addition, adequacy of the free 
surface, the absorbing boundary, and the source region play a role in the choice of 
a numerical wave simulation scheme. I do not think, however, that the Fourier 
method has a clear advantage in the two-dimensional case, as Daudt et al. (1989) 
conclude. 
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