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TOMOGRAPHY WITHOUT RAYS 

BY CHARLES J. AMMON AND JOHN E. VIDALE 

ABSTRACT 

We present two new techniques for the inversion of first-arrival times to 
estimate velocity structure. These travel-time inversion techniques are unique 
in that they do not require the calculation of ray paths. First-arrival times are 
calculated using a finite-difference scheme that iteratively solves the eikonal 
equations for the position of the wavefront. The first inversion technique is a 
direct extension of linearized waveform inversion schemes. The nonlinear 
relationship between the observed first-arrival times and the model slowness 
is linearized using a Taylor series expansion and a solution is found by 
iteration. For a series of two-dimensional numerical tests, with and without 
random noise, this travel-time inversion procedure accurately reconstructed 
the synthetic test models. This iterative inversion procedure converges quite 
rapidly and remains stable with further iteration. The second inversion tech- 
nique is an application of simulated annealing to travel-time topography. The 
annealing algorithm is a randomized search through model space that can be 
shown to converge to a global minimum in well-posed problems. Our tests of 
simulated annealing travel-time topography indicate that, in the presence of 
less than ideal ray coverage, significant artifacts may be introduced into the 
solution. The linearized inversion scheme outperforms the nonlinear simulated 
annealing approach and is our choice for travel-time inversion problems. Both 
techniques are applicable to a variety of seismic problems including earth- 
quake travel-time tomography, reflection, refraction/wide-angle reflection, 
borehole, and surface-wave phase-velocity tomography. 

INTRODUCTION 

Seismic methods are perhaps our most valuable tool in the s tudy of in situ 
subsurface geology. From among the many seismic techniques, a particularly 
robust  method for imaging velocity variations is the inversion of first-arrival 
times. First-arrival times are most reliably picked from the seismic records 
since they are not contaminated by signal-generated noise that  can complicate 
the identification and picking of later-arriving phases. Whether the data are 
from an active (reflection or refraction experiment) or passive (earthquake) 
source experiments, the basic inversion techniques are fundamental ly identical. 
Crisscrossing wave paths are used to separate the integrated effects of slowness 
on travel time and construct an image of the underlying velocity structure. 

Tomographic techniques have been applied to travel-time or phase observa- 
tions for most seismic wave types. In a typical tomographic application, the 
inverse problem is linearized and the ray paths through a simple (homogeneous, 
layered, spherically symmetric, etc.) reference model are calculated and the 
anomalies in travel time are projected back along these paths. Fermat 's  princi- 
ple justifies this approximation in mildly heterogeneous media, but  this simpli- 
fication is often motivated by the fact that,  in heterogeneous media, two-point 
raytracing is computationally expensive and difficult. Rays connecting two 
points are often difficult to find and deciding whether  a given ray is the 
least-time path through the model is also difficult. The solution to the eikonal 
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equation we employ (Vidale 1988, 1991) quickly calculates the minimum arrival 
time from a source location to each point in the model. In the presence of 
extreme velocity gradients, solutions of the eikonal equations are not always 
good approximate solutions of the wave equation, and Vidale's (1988, 1991) 
original scheme may be inaccurate. Vidale (1993) addresses the problems with 
large velocity contrasts and outlines a recursive algorithm for the computation 
of first arrival times in two-dimensional, strongly heterogeneous media. This 
recursive algorithm requires more computations, but in our experience the 
increase in computer time is modest. Both of the inversion techniques described 
below are independent of the method used to calculate the travel times. Our 
choice of the finite-difference travel-time calculation scheme was based on 
computational efficiency. This choice contributes the originality of our approach, 
because it does not require a specific knowledge of ray paths. 

We begin with a discussion of an approach to travel-time inversion using a 
linearized least-squares technique. This approach is commonly applied in wave- 
form inversion problems, but it is not the usual approach for tomographic 
problems. The travel-time inversion proceeds by expanding the nonlinear rela- 
tionship between the slowness model and the travel times in a Taylor series and 
i terating to a solution. Smoothness constraints are placed on the solutions by 
minimizing a measure of model roughness. We illustrate the technique using a 
series of synthetic test  inversions without and with noise added to the travel 
times. 

We then compare the results of a linearized inversion with the results of a 
second scheme for modeling travel times, a simulated annealing inversion. 
Simulated annealing is a nonlinear, Monte-Carlo-based optimization scheme in 
which a randomized search for solutions is conducted. The algorithm is compu- 
tationally intensive in tha t  many forward calculations are required during the 
search. For well-posed problems (in the sense tha t  all the model parameters are 
well constrained by the data), a simulated annealing search will converge to the 
global minimum. This is not always the case in geophysical problems where 
features may be added to a model without affecting the observations. In the 
tomographic problem such features are known as ghosts (Berryman, 1990); in 
linear inverse theory, these ghosts are vectors in the null space of the inverse 
operator. 

We conclude by presenting a linearized inversion of Rayleigh-wave phase 
velocities to estimate the phase-velocity distribution beneath the western United 
States. We make no interpretation of the result  and only use the inversion as an 
illustration of the linearized inversion scheme's performance on realistically 
distributed, noisy earthquake observations. We also discuss a technique for 
rapidly identifying areas of the model tha t  are sensitive to specific travel-time 
observations. This information can lead to significant time savings for the 
linearized inversions tha t  require many travel-time calculations to estimate 
partial derivatives of the travel times with respect to model slowness values. 

Although we do not discuss resolution and uniqueness, these topics are 
critical for applications of any inversion technique. However, the primary goal 
in this paper is to illustrate two new tomographic techniques tha t  do not require 
the calculation of ray paths, not to analyze tomographic resolution and unique- 
ness. For discussions of these issues, we refer the reader to the discussions 
found in the l i terature (Nolet, 1987). 
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THE LINEARIZED LEAST-SQUARES INVERSION OF TRAVEL TIMES 

Several expositions on seismic travel-time tomography are available in the 
literature. We will not discuss the fundamental  theory behind the technique, 
but refer the reader to published reviews (for example, Nolet, 1987; Berryman, 
1989b, 1990). We consider a discrete travel-time inversion problem where 
absolute travel times are available. The slowness model consists of discrete, 
constant slowness cells and the data set consists of a finite number of travel-time 
observations. The relationship between the travel times t and the slowness s 
can be expressed by the matrix equation 

t = L s .  ( 1 )  

L is a matrix containing the lengths of the ray paths through each individual 
slowness cell. This relationship is nonlinear since the ray paths tha t  define the 
matrix L depend on the slowness vector s. Solution of (1) is possible by 
beginning with an initial model and i terating to the correct slownesses and ray 
paths, an approach most often taken in nonlinear travel-time inversion prob- 
lems (e.g., Berryman, 1989b). 

An alternative approach is to deal not with rays but with the functional 
description of the travel-time equation 

t = F [ s ] .  ( 2 )  

The nonlinear function F represents the calculation of travel times through 
the particular slowness model, s. We can expand F[s] about an initial model, So, 
resulting in 

t = F [ s o ]  + D k s  + Ollks2$1. ( 3 )  

The matrix D contains the partial derivatives of the travel times with respect to 
slowness, ks is a slowness correction vector. Neglecting the higher order terms 
in ks and rearranging the equation, we find tha t  

t - F [ s o ]  ~- D k s .  ( 4 )  

The left-hand side of equation (4) is a travel-time residual vector, and the 
right-hand side is a simple matrix multiplication. Bregmen et  al.  (1989) derived 
a similar expression for the inversion for velocity using the partial derivatives of 
travel time with respect to velocity. Equation (4) can be solved using s tandard 
least-squares approaches (Jackson, 1972; Wiggins, 1972). The final estimate is 
approached by i terating (4) and updating the current estimate with the correc- 
tion vector ks. Smoothness or other constraints can be applied to the slowness 
correction vector during the solution of (4) (see, for example, Lees and Crosson, 
1989). A more direct approach is to apply constraints on the model smoothness. 
Following Shaw and Orcutt (1985), we add Ds o to both sides of (4), producing 

t - F [ s o ]  + D s o  = D s .  ( 5 )  

Equation (5) is identical in form to equation (4) but allows easy implementation 
of smoothness or other constraints on the resulting model s. We use equation (5) 
in an iterative fashion to converge to a slowness vector that  minimizes the 
length of the travel-time residual vector, r. 
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To implement the smoothness constraints, we modify (5) to include a set of 
equations tha t  require the Laplacian difference of the model to vanish. We 
weight the smoothness constraint equations relative to the travel-time equa- 
tions to solve for a smooth model tha t  is consistent with the travel-time 
observations. The iterative equations become 

s i is the solution of the i th  iteration of the problem, s i 1 is the solution from the 
previous iteration, and D is calculated using si_l. The weighting factor A 
controls the trade-off between fitting the travel times and smoothing the model. 
The submatrix A constructs the Laplacian of the slowness image, and so we 
have added a system of equations to the original travel-time inversion problem 

4 S x ,  z - S ~ _ d ~ , z  --  S x + d ~ , z  --  S ~ , z _ d z  --  S x , z + d z  = 0. (7) 

For cells along the edges of the image the cell outside the image in (7) is 
replaced by the average Of the three cells adjacent to the edge cell. Similarly, at 
the corners the missing cells are replaced by the average of the two cells 
adjacent to the corner cell. Weighting the edge and corner cells of the model 
equally with the interior cells is important  for a successful implementation of 
the smoothness constraint. The cells in the interior of the image appear in five 
constraining equations. Cells on the edge appear in four equations and the 
corner cells appear in three constraints. To produce equal weighting, simply 
multiply the edge constraint equations by 5 /4  and the corner constraints by 
5/3.  The constraint on the Laplacian is not a lowpass filter in the classical 
sense; not all sharp contrasts in the model are necessarily smoothed. The total 
amount of slowness fluctuation, not individual slowness constrasts, is limited. 

SYNTHETIC TESTS 

We performed several synthetic tests using the linearized travel-time inver- 
sion technique described above. The tests are designed to examine convergence 
and stability properties. Each test  model consisted of a rectangular image twice 
as tall as it is wide. In each example, 128 (8 by 16) velocity values are sought, 
and, unless otherwise noted, 320 travel-time observations are inverted. The 
finite-difference travel-time calculations are performed for a model defined by 
velocity nodes. To provide sufficient accuracy in the travel time calculations, we 
magnify the 8 by 16 velocity models to a dimension of 32 by 64 nodes before 
calculating the travel times. Magnification produces a model in which groups of 
adjacent velocity nodes have equal velocity. For example, the first four nodes in 
the first four rows in the upper left of our synthetic models will have the same 
velocity. We will refer to groups of constant velocity nodes as cells. Thus, our 
models contain 32 by 64 nodes, but only 8 by 16 cells. The appropriate magnifi- 
cation factor will depend on the accuracy necessary in the travel times. A simple 
method to estimate the appropriate magnification is to calculate travel times 
through a model with increasing levels of magnification. When little change in 
travel time is observed for successively larger magnifications, the approapriate 
magnification factor has been reached. For two-dimensional models, the travel- 
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time computation requirements for a larger magnification increase as the 
square of the magnification factor linearly in each spatial dimension. 

To calculate the partial derivatives for the matrix D of equation (6), we 
perturb each velocity cell individually (with a perturbation amplitude of + 0.5% 
slowness) and use a one-sided finite-difference approximation to the derivative. 
Thus to construct the partial derivative matrix, we require one plus the number 
of cells forward calculations. For 128 cells and 320 observations, 41,280 cell 
arrival times are calculated for each iteration (129 forward calculations). The 
smoothness constraints add an additional 128 equations to the inversion. We 
solve the matrix equation by inverting the 448 by 128 matrix using singular 
value decomposition. The smoothness constraints provide stability for the inver- 
sions described below, and no singular value truncation is necessary. This may 
not always be the case, some smooth components of the model may be poorly 
constrained and additional constrants or damping may be necessary. 

Figure 1 shows the first test model, which is similar to a model constructed by 
Berryman (1989a) to test a ray-based inversion scheme. The model consists of a 
constant velocity medium with both 20% low- and 20% high-velocity anomalies. 
The slowness anomalies associated with these velocity anomalies are different 
(25% for the slow anomaly and 17% for the fast anomaly). The accurate imaging 
of such large velocity anomalies requires an approach tha t  includes the effects 
of wave refraction. Figure 1 also contains the source and receiver locations used 
in all the synthetic tests. Each source located along the top of the model 
t ransmits  energy to each receiver placed along the bottom of the image, and 
each source along the left of the model t ransmits  energy to each receiver along 
the right side of the model. 

Source 
Receiver v 

FIG. 1. "Cross Model" and the source-receiver distr ibution for the  first synthetic test. The 
per turbat ions  are in velocity. The top sources radia te  to receivers along the bottom of the model, 
while the  sources along the  left side of the  image radia te  energy to the receivers along the r ight  side 
of the model. The per turbat ion  positions and  shapes are pa t te rned  after Ber ryman (1989a). 
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The travel-time residuals between the heterogeneous model shown in Figure 
1 and a model with a velocity equal to the background velocity of the heteroge- 
neous model range between 4% and 10%. Figure 2 presents the travel-time 
residual curves for two sources. The receiver order is from left to right for the 
upper diagram and from top to bottom for the lower diagram. In a scaled 
problem, the amplitude of the residuals depends on the problem scale factor, the 
numbers shown correspond to a unit  background velocity and a physical cell 
dimension of 4 units. To put these residuals in perspective, if we assume a 
background velocity of 1 km/sec ,  the minimum and maximum travel times 
through this model are about 30 and 70 sec, respectively. We mention tha t  the 
source-receiver distribution is nearly, but not exactly, symmetric with respect to 
the model bounds and the position of the heterogeneities. 

The first step in the inversion of the travel times is to estimate an appropriate 
value of the smoothness control parameter  A. The magnitude of A necessary for 
a specified amount of smoothing depends on the magnitude of the partial 
derivatives corresponding to the problem. The simplest technique for estimating 
A is to perform at least one iteration of the inversion for a range of A values and 
choose the A value tha t  produces best trade-off between travel-time fit and 
model smoothness. In Figure 3 we present the trade-off curve between the L 2 
Error and the model roughness. The L 2 Error is explicitly 

1 N ( ti°bs _ t calc~2 
L 2 -  N ~ ~ ] , (8) 

i=l 

where N is the number of observed times, t TM is the observed travel time, and 
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FIG. 2. Example of the traveltime residuals between the "Cross Model" and a constant velocity 
model. Corresponding source receiver geometry is shown to the right. Receiver ordering is from 
left-to-right (upper) and from top-to-bottom (lower). 
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FIG. 3. Travel-t ime residual  versus  model roughness  trade-off curve for seven inversions of the  
"Cross Model" travel t imes.  The smoothness  control pa ramete r  1 varies from 1 to 7 in the direction 
indicated by the arrow. The travel-t ime residual  for a constant  velocity model is 1.69. 

t~ alc is the calculated travel time. The roughness is defined as 

1 M 
2 2 

R = ~ c  E-l(V/sc) . (9) 

The discrete Laplacian operator is defined in equation (7), M is the number  of 
slowness cells, and s c is the slowness. Each point represents the result  of a 
five-iteration inversion beginning with a constant velocity initial model (con- 
stant  velocity equal to the background velocity of the "target" model). The 
corresponding A values vary from 1 to 7 in steps of 1, from right to left. For 
reference, the L z travel-time residual for the constant velocity model is 1.69. 
Figure 4 contains four of the solutions. The fit for all A is acceptable, and 
choosing the preferred value is somewhat  subjective. From Figure 3, the solu- 
tion for A = 2 provides the lowest error and a smoother model than A = 1. For 
this reason and because of other empirical tests, we have chosen the value of 
A = 2 for the remainder of the synthetic tests. 

All the reconstructions are acceptable. The inversions image the high-velocity 
anomaly well, although minor blurring of the feature occurs. As expected, 
imaging the low-velocity heterogeneity is more difficult (a larger slowness 
anomaly) and the reconstructions underest imate  the overall size and amplitude 
of this perturbation. However, each image has significantly low velocities in the 
region of the true low velocities so the feature would certainly not be missed. 
The maximum velocity est imated by the inversions is within 1% of the target  
high velocity and the lowest velocity est imated is within 4% of the target  low 
velocity. 

Figure 5 presents the results of an inversion in the presence of various levels 
of uniformly distributed random travel-time errors. The number  at the top of 
each image identifies the maximum amplitude of the added error. The effects of 
the errors only become significant when the error amplitude equals approxi- 
mately half  the amplitude of the inverted travel-time residuals (Fig. 2), which is 
about 2% of a typical travel time. The smoothness control parameter  was equal 
to 2 for each of the inversions in Figure 5. Figure 6 presents the results of an 
inversion with + 1.0 noise with increasing A. Table I contains the corresponding 
errors and roughnesses. 
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FIG. 4. Reconstructions of the "Cross Model" for a suite of smoothness control parameter values. 
The smoothness control parameter value is indicated above each image. 

The re  is not  a ve ry  la rge  dependence  of t r ave l  t ime  e r ro r  on A. The  roughe r  
models  fit  s l ight ly  be t te r ,  bu t  clearly,  in the  p resence  of noise, smoo thnes s  
should  be  an  i m p o r t a n t  cr i ter ion in the  select ion of a p r e f e r r ed  model .  The  t e s t s  
show tha t ,  w h e n  noise m a y  be a problem,  inc reas ing  the  we igh t ing  for a smooth  
model  is more  des i rab le  t h a n  f i t t ing  all the  deta i l s  in the  noisy t r ave l  t imes.  

To d e m o n s t r a t e  the  s tab i l i ty  and  convergence  p rope r t i e s  of the  invers ion  
scheme,  we g e n e r a t e d  " syn the t i c  da t a"  for more  compl ica ted,  bu t  also s m o o t h e r  
veloci ty  s t ruc tu res .  F igu re  7 conta ins  the  invers ion  r e su l t s  for t h r ee  such  
veloci ty  s t ruc tu res .  The  t a r g e t  veloci ty  s t r u c t u r e s  a re  shown  above the  recon- 
s t ruct ions .  The  model  on the  left  will be  r e fe r r ed  to as smoo th  model  1, the  
cen te r  model  as smoo th  model  2, and  the  model  on the  r igh t  as smooth  model  3. 
The  veloci ty  s t r u c t u r e s  were  g e n e r a t e d  by  beg inn ing  wi th  a cons t an t  veloci ty 
b a c k g r o u n d  and  add ing  a p e r t u r b a t i o n  funct ion to the  image.  The  p e r t u r b a t i o n  
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F;G. 5. Reconstructions of the "Cross Model" with varying levels of uniformly distributed random 
noise added to the travel-time residuals. The maximum absolute amplitude of the random noise is 
shown above each image. The smoothness control parameter for each reconstruction was 2.0. 

funct ions  a re  cons t ruc ted  by  g e n e r a t i n g  a spa t i a l ly  r a n d o m  image  a n d  lowpass  
f i l te r ing in the  w a v e n u m b e r  domain .  The  r e su l t i ng  p e r t u r b a t i o n  funct ions  a re  
t h e n  scaled to a m a x i m u m  veloci ty  f luc tua t ion  and  added  to the  cons tan t  
veloci ty  models .  The  t a r g e t  or "solut ion" models  conta in  a four-fold f iner  spa t i a l  
s a m p l i n g  t h a n  the  r econs t ruc t ions  a n d  are  t hus  32 by  64 in d imension.  The  
source- rece iver  d i s t r ibu t ion  is ident ica l  to t h a t  used  in the  ea r l i e r  test .  Each  
invers ion  b e g a n  wi th  the  s a m e  cons t an t  veloci ty  ini t ia l  model  a n d  the  r e su l t s  
a re  p r e s e n t e d  a f t e r  five i t e ra t ions .  The  s m o o t h n e s s  control  p a r a m e t e r ,  A, was  
equa l  to 2.0 for each  of the  invers ions ,  and  the  syn the t i c  t r ave l  t imes  are  
noise-free.  Inspec t ion  of F igu re  7 r evea l s  t h a t  the  invers ion  scheme  recons t ruc t s  
even  the  m i n o r  de ta i l s  of  each  i m a g e  qui te  well  and  is free of  a r t i fac ts .  The  
ra t ios  of  the  f inal  L 2 e r ro r  to the  cons t an t  va loci ty  model  e r ro r  for the  t h r ee  
invers ions  a re  3 x 10 -4, 3 × 10 4, and  1 x 10 -4, respect ively .  The  invers ions  
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FIG. 6. Inversion resul ts  for the "Cross Model" in the presence of t ravel t ime noise for a range of 
smoothness  control parameters .  The m a x i m u m  ampli tude of the random time noise is +_ 1.0. The 
smoothness  control pa ramete r  is shown above each image. 

TABLE 1 

RESULTS FROM INVERSIONS WITH UNIFORMLY DISTRIBUTED 
RANDOM NOISE TEST WITH -- 1.0 _< AT _< 1.0 

Roughness  
h L 2 Error ( × 1 0  3) 

2 0.266 11.3 
3 0.264 8.2 
4 0.280 6.2 
5 0.288 5.2 
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FIG. 7. Inversion results for three smooth models. (Top) Target models for the inversion tests. 
(Bottom) Inversion results (after five iterations). Smoothness control parameter for the inversions 
was 2.0. 

converge quickly and are stable as is i l lustrated in Figure 8, a plot of the 
travel-t ime residual versus i terat ion for the smooth model 1. 

SIMULATED ANNEALING INVERSIONS 

We also investigated the application of simulated annealing to the travel-t ime 
inversion problem. Simulated annealing is a randomized search procedure 
designed by analogy with the cooling of a melt  into a crystal (Kirkpatrick et al., 
1983; Aarts and Korst, 1989). Rothman (1985) introduced the simulate anneal- 
ing to geophysics and along with other researchers has investigated optimiza- 
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FIG. 8. Travel-time residual as a function of iteration for the smooth velocity model 1. Note the 
quick convergence and the stability of the solution upon successive interactions. 

tion techniques constructed by analogy with optimizing systems found in nature 
(Landa et al., 1989; Frazer, 1990). For a detailed discussion of simulated 
annealing, see Rothman (1985, 1986) or Tarantola (1987). We present a brief 
review similar to the discussion in Press et al. (1988). 

For a simulated annealing inversion, the travel-time error is analogous to the 
energy of a cooling melt. We search for the slownesses model that  produces a 
minimum travel-time error; a melt seeks an atomic arrangement  tha t  produces 
a minimum energy configuration. A melt, if allowed to cool slowly, will find a 
global energy minimum. Our assumption is that,  if our search mimics the 
cooling of a melt, our final slowness configuration will also be a global mini- 
mum. Thus we construct the rules for our search using the physical laws 
governing the cooling melt. 

At any particular instant,  the melt will make changes in its atomic configura- 
tion and an associated change in energy takes place. For a melt at thermody- 
namic equilibrium, the energy is distributed with the Boltzmann probability 
function 

P ( E ) a e x p ( ~ T  ). (,10) 

P(E) is the probability distribution of the melt's energy, E is the energy, k is 
Boltzmann's constant, and T is temperature.  Even at very low temperatures,  
there is a small possibility tha t  the melt will be at a high state of energy. 
Occasional transitions from a lower to higher energy state enables the melt to 
avoid local energy minima. The probability of an "up-hill" transition depends on 
the crystal temperature.  At high temperatures,  the melt is hot and many 
transitions to higher states of energy occur. As the crystal cools the up-hill 
transitions are accepted less frequency. Metropolis et al. (1953) modeled ther- 
modynamic systems using these principles and developed the scheme where the 
transition from one configuration to another obeyed a Boltzmann probability 
distribution for the change in energy 

-AE) 
P(E  A -* EB)a e x p ( ~  . (,11) 
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A E is the change in energy between configurations A and B. The Metropolis 
algorithm proceeds as follows: A random change is made to the current configu- 
ration and the energy of this perturbed model is evaluated. If the energy of the 
perturbed model is less than  the initial model, the proposed transition is 
accepted. If  the model perturbation results in a higher energy state, the 
transition is accepted with the probability (11). 

To mimic the cooling melt in a randomized search for an optimal slowness 
model, we construct model perturbations and test  them to see if they improve or 
degrade the fit to the observed travel times. If  the travel-time residual de- 
creases, we unconditionally accept the perturbation and our model completes a 
transition. If  the perturbation causes the travel-time misfit to increase, we still 
allow the possibility for the acceptance of this model. Specifically, we accept an 
increase in error if the right-hand side of (11) (AE represents the change in 
travel-time residual) is greater than  a selection from a uniform distribution of 
random numbers. 

We have ignored a very important  parameter  in (11), the product kT. No 
physical analog exists for this number in the travel-time optimization problem, 
although Tarantola (1987) has compared it to the data variance. This quanti ty 
is related to the rate at which the melt cools and thus will be related to the rate 
at which the search for a travel-time minimum converges to a minimum. We 
combine kT  into a single parameter  called the control parameter.  We specify a 
cooling schedule for the search using the control parameter. In problems involv- 
ing local minima, the results of our search can depend greatly on this choice. 
Two desirable properties of the temperature function are the following: (1) early 
in the search, it produces an acceptance probability near unity; (2) it decreases 
slowly enough to allow an escape from local minima during the search. Condi- 
tion (1) reduces the dependence of the search on the initial model. Meeting the 
second requirement is more difficult since a practical consideration is that  
convergence to a model occurs within a reasonable amount  of computing time. A 
simple choice for the control parameter,  C, is (Aarts and Korst, 1989) 

Ck+l = YCk. (12) 

y is a number very near, but less than 1, and k is the number of the current 
transition in the search. 

We construct our velocity perturbations with the same procedure used to 
generate the smooth velocity models tested above. First, we generate a random 
perturbation velocity field and then lowpass filter the perturbation with a 
Gaussian filter. The width of the lowpass filter is allowed to vary randomly 
during the search, but the maximum absolute amplitude of any perturbation 
image is fixed to 1% of the background velocity model. 

Figure 9 contains the results of three different simulated annealing inver- 
sions of the first arrival times calculated through the velocity model shown in 
Figure 1. The value of y for these inversions was 0.998318, and the initial value 
of the control parameter  was 0.25. Each search contained a total of 2000 
proposed transitions. The sharp features of the Cross Model are not recon- 
structed since the perturbations are always smooth functions with a Gaussian 
correlation. The travel-time errors associated with each model are 0.16, 0.18, 
0.19, from left to right, respectively. All three reconstructions are reasonable, 
the low- and high-velocity regions are both imaged. Additional artifacts of the 
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FIG. 9. Simulated annealing inversion results for three different searches. Each search consisted 
of 2000 perturbations starting from a constant background initial model. 

perturbation scheme are also present. Note tha t  the spurious features in each 
reconstruction are for the most part  uncorrelated between the models. This 
suggests tha t  averaging the three models may reduce unconstrained aspects of 
each solution and produce a model tha t  fits the travel times better. The average 
of the three models in Figure 9 is presented in Figure 10 along with the result 
from the linearized inversion and a result from a straight ray tomography 
solution of the same tomographic problem. The travel-time residual for the 
linearized inversion result  is 0.02, and the travel-time residual for the straight 
ray backprojection is 0.39. 

Overall, both the simulated annealing and the linearized travel-time inver- 
sion results are superior to the straight-ray backprojection in reconstructing the 
velocity structure. The improvement is due to the inclusion of wave refraction 
effects in the inversions. The 20% velocity variations are too large for the 
straight ray approximation. However, even the straight ray result produces 
useful information on the structure. The linearized inversion scheme has the 
advantage in this test  of containing the ideal parameterization to match the 
target model. The major problem with the annealing results appears to be the 
effects resulting from the velocity perturbation scheme used in the search. 
Larger artifacts would be expected in tomographic problems with a less ideal 
source-receiver distribution. 
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FIG. 10. A comparison of "Cross Model" inversions. The simulated annealing inversion result is 
on the left, the linearized traveltime inversion is in the center, and a straight-ray backprojection 
result is on the right. The observations used in these inversions are without noise. 

SURFACE-WAVE INVERSION 

As a f inal  i l lus t ra t ion  of the  l inear ized  invers ion technique ,  we have  inver ted  
a subse t  of the  Rayle igh-wave phase-veloci ty  m e a s u r e m e n t s  used in the  
surface-wave reg ional iza t ion  s tudy  of the  wes t e rn  Uni t ed  S ta tes  pe r fo rmed  by 
Tay lor  and  P a t t o n  (1986). Our  purpose  here  is to p re sen t  an  example  of the  
invers ion  scheme appl ied to actual  seismic data ,  not  a deta i led analysis  of these  
da ta  or the  resu l t ing  model.  Only p re l imina ry  resu l t s  a re  shown since f u r t h e r  
s tudy  of the  wes t e rn  Un i t ed  S ta tes  is p l anned  us ing  an  expanded  phase-veloci ty  
da t a  set. F igure  11 presen ts  the  great-circle  pa ths  connect ing  the  source- 
rece iver  pai rs  used  in the  inversion.  As seen f rom Figure  11, the  region of best  
coverage is in the  cen t ra l  and  n o r t h e r n  Bas in  and  Range  province of the  
wes t e rn  Un i t ed  Sta tes .  A leas t - squares  fit  of  a cons tan t  phase  veloci ty model  to 
66 phase  t rave l  t imes  m e a s u r e d  a t  10-sec-period produces  a phase  velocity 
e s t ima te  of 3.16 k m / s e c  and  an  overall  m e a n - s q u a r e  e r ro r  of 19.2 sec 2. The  
10-sec Rayle igh waves  are  mos t  sensi t ive  to the  uppe r  c rus ta l  depths.  In F igure  
12 we p re sen t  the  resu l t s  of an  invers ion of the  10-sec per iod phase  measu re -  
ments .  The  model  shown resu l t s  f rom a th ree  i t e ra t ion  inversion.  The  conver- 
gence of the  invers ion  was rapid;  mos t  of the  major  fea tu res  in the  model  are  
p re sen t  a f te r  the  f irs t  i tera t ion.  The  m e a n  square  e r ror  for this  model  is 4.36 
sec 2. Severa l  i n t e res t ing  fea tu res  are  p re sen t  in this  recons t ruc t ion .  Par t icu-  
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FIG. 11. Great-circle pa ths  for the  10-sec-period Rayleigh-wave phase observations used in the 
travel-t ime inversion. 

larly, the high velocities in the Idaho region and the ridge of relatively fast 
velocities beneath central Utah. These preliminary results agree with the 
original work of Taylor and Pat ton (1986) and also agree well with the recent 
modeling efforts of Yah (1990), who used a great-circle inversion for Fourier 
coefficients of the phase-velocity variation throughout the western United States. 

DISCUSSION 

The numerical tests  demonstrate that  the linearized travel-time inversion 
technique performs best  on smooth models but  is also successful on the rougher, 
constructed models typically used to test  other travel-time inversion techniques. 
The influence of noise is minimal on the stability of the technique, and the 
ability to require smooth resulting models allows one to limit the effect of 
approximately random travel-time fluctuations. The convergence is quick and 
stable, and no divergence has been observed. The simulated annealing approach 
also performed well in the test  inversion. Although the random perturbations 
scheme utilized here introduces minor artifacts into the model, averaging the 
results of several searches reduces the importance of these artifacts on the final 
slowness estimate. At present, because of its slightly bet ter  performance, com- 
putational speed, and the wealth of information and understanding on lin- 
earized least-squares approaches, the linearized inversion is the preferable 
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F~c. 12. Inversion results after three iterations of the Rayleigh-wave phase measurements.  Cells 

marked with an X were held constant during the inversion. Stations are identified by triangles and 
sources are identified by circles. 

technique. Implementation of the annealing algorithm on parallel processors 
will make tha t  scheme more promising. Also, when wave paths travel large 
distances in strongly heterogeneous media, the linearized approach may fail due 
to an inadequate start ing model. Although we have not investigated these 
circumstances, we suspect tha t  in these cases the nonlinear approach of simu- 
lated annealing may prove more effective. 

The linearized inversion calculations presented above were performed on a 
Sun Sparc Station. Each iteration required approximately 10 minutes of com- 
puter time. The singular value decomposition of the partial derivative matrix 
expended about one half  of the computation time. For larger-scale problems, 
faster methods (Nolet, 1987) for solving the algebraic system can be employed. 
The travel-time derivative calculations are the second largest computer expense 
during the inversion. Of course, these computation costs are problem dependent. 
For all the tests presented here, a travel-time derivative is calculated at each 
cell for each observation. Obviously it is inefficient to calculate the derivatives 
for each cell when we know a limited number of cells affect the travel time of a 
given wave. For example, the cells near the top of the model have no influence 
on the travel times between a source and receiver near the bottom of the model. 

The finite-difference travel-time calculation scheme provides a simple ap- 
proach to identifying those cells tha t  influence a specific travel-time observa- 
tion. If  we sum the travel time from the source to each point in a travel-time 
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grid and the travel time from the receiver to each point in the slowness image, 
we can identify the region surrounding the wave's travel path. Roughly, we can 
map the "ray width" (Nolet, 1987) for the wave. The area of nonzero partial  
derivatives is directly related to the Fresnel  zone and is of interest  in itself. 
However, for our purposes we only desire  to define the region of nonzero partial  
derivatives. The addition of source and receiver time images has been used in a 
similar way to calculate ray paths using the finite-difference travel-time scheme 
(Pullammanappall i l  et al., 1991). A sample ray width is presented in Figure 13. 
The gray shading is used to contour the sum of the source and the receiver 
travel-time images. This sum has a minimum value equal to the wave travel  
time (43.1 sec). For comparison, the part ial  derivatives of travel time with 
respect to slowness for this observation a r e  also displayed. The partial  deriva- 
tives have been clipped at a maximum amplitude of 1.0 for plotting purposes. 
The t rue maximum partial  derivative value is approximately 4.0; the true 
minimum is shown in the figure. For our purposes, we could calculate partial  
derivatives for those cells tha t  contain travel times less than  45 sec. This 
conservative est imate would require partial  derivatives for 33 cells. As illus- 
t ra ted by the extent  of the ray sensitivity, the reliance on rays of infinitesimal 
width is not always a very good approximation for seismic observations. Our 
calculation of part ial  derivatives using a finite-difference approach includes the 
effects of ray-path  changes, since we recalculate the travel times through a 
per turbed model to construct the derivative. However, our choice of a one-sided 

Partial Derivatives Ray Width 

0.0 0.2 0.4 0.6 0.8 1.0 44 46 48 50 52 
Length Time 

FIG. 13. Partial derivatives (left) and the ray width (right) calculated through the model shown 
to the left in Figure 7 (smooth model 1). 
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difference still limits our derivative accuracy to first-order in slowness. The 
result  is that  our region of sensitivity is somewhat  wider than a typical ray path 
but  still may be less than the Fresnel zone of band-limited data. Usually, 
allowance for errors in the ray width are made during the selection of the cell 
dimensions or a combination of cell dimension and smoothness constraints. 

The total number  of calculations needed to identify the ray width is one for 
the source and one for each receiver. The partial derivatives would then be 
calculated for each node in the region of ray sensitivity. For well-distributed 
receivers, many cells will require partial derivatives and the ray width calcula- 
tion would not save much computing time. If, however, a source radiates to a 
group of receiver in a limited par t  of the model, the ray width calculations could 
result  in significant time savings. The computational savings derived from the 
use of ray widths to define the area of ray sensitivity would be most dramatic in 
three-dimensional problems. We note also that  the calculations necessary for 
the ray widths are identical to those necessary for an iterative inversion of local 
ear thquake arrival times with a relocation of the events between iterations 
(using the location scheme of Nelson and Vidale (1990)). 

CONCLUSION 

We have presented a new method for inverting seismic travel times to 
est imate subsurface geologic structure. The technique is based on a linearized 
least-squares inversion of the travel-time residuals. The iterative procedure 
includes the effects of ray bending. Additionally, the inversion scheme allows 
smoothness constraints to be placed on the resulting solutions converges quickly, 
and is stable. A simulated annealing search also performs reasonably well in 
the travel-time inversion problem. The models resulting from these inversions 
may contain poorly constrained artifacts of the perturbation procedure and a 
careful analysis of the results is necessary prior to interpretation of the model, 
particularly in studies with inadequate ray coverage. Potential applications of 
eikonal-equation based inversions are numerous. Most obvious are the borehole 
transmission tomography and surface-wave phase velocity problems il lustrated 
here. Other possibilities include the inversion of reflection data (Pullammanap- 
pallil et al., 1991), refraction studies, and regional-scale mantle studies. 
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