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Short Note 

A stable free-surface boundary condition for two-dimensional 

elastic finite-difference wave simulation 

John E. Vidale* and Robert W. Clayton* 

INTRODUCTION 

Two of the persistent problems in finite-difference solutions 
of the elastic wave equation are the limited stability range of 
the free-surface boundary condition and the boundary con- 
dition’s treatment of lateral variations in velocity and density. 
The centered-difference approximation presented by Alterman 
and Karal (1968), for example, remains stable only for P/a 
greater than 0.30, where @ and a are the shear (S) and com- 
pressional (P) wave velocities. The one-sided approximation 
(Alterman and Rotenberg, 1969) and composed approxi- 
mation (Han et al., 1975) have similar restrictions. The revised- 
composed approximation of llan and Loewcnthal (I 976) over- 
comes this restriction, but cannot handle laterally varying 
media properly. 

First we present a free-surface boundary approximation 
that is stable for all physical &‘a ratios and correct for lat- 
erally varying media. The method is implicit, but only requires 
a simple pentadiagonal system solver to implement. When the 
proposed boundary conditions are coupled with second-order 
and fourth-order approximations for the elastic wave equa- 
tion, the overall problem is stable for P/a greater than 0.01 
and P/a greater than 0.02, respectively. A simple numerical 
test of the method and a comparison with other published 
methods are given in the second section. 

FREE-SURFACE BOUNDARY CONDITIONS 

The two-dimensional free-surface boundary conditions of 
zro tangential and normal stress are 

(1) 

and 

,!!+“=o, 
?z (2) 

where u and w are the horizontal and vertical displacements, x 

and z are the horizontal and vertical spatial coordinates, and y 
is (1 - 2P'/a'). To apply finite differences to equations (1) and 
(2), an extra row is introduced above the actual free surface. 
The geometry is shown in Figure I. The standard finite- 
difference approximations to the elastic wave equation (Kelly 
et al.. 1976) can be used to determine the solution on the 
interior of the mesh, up to and including row 1. Previous 
free-surface boundary conditions cited above have used ex- 
plicit finite-difference approximations to determine row 0. This 
approach can cause instability for small values of P/a and Lead 
to problems with laterally varying media due to the difficulty 
in centering the normal and tangential derivatives con- 
currently with averaging laterally varying parameters of the 
media. 

The method proposed here uses an implicit formulation 
which centers both the normal and tangential derivatives at 
the free surface, halfway between row 0 and row 1. The 
scheme is similar in concept to the Crank-Nicholson method 
for the diffusion equation (e.g., Claerbout, 1976, p. 185). As- 
suming the vertical and horizontal grid spacings are equal and 
applying centered second-order differences to equations (I) 
and (?), then 

and 

W0 - ;r&l, = w, + &@I,, (4) 

where the subscripts denote the solution on rows 0 and 1, I_’ is 
a diagonal matrix which contains the values of -r across the 
surface, and @ is a bidiagonal matrix with subdiagonals and 
superdiagonals equal to - 1 and 1, respectively. Note that 
centering of the x derivatives is achieved by averaging esti- 
mates on rows 0 and 1. 

Equations (3) and (4) can be reduced to separate systems for 
the unknown vectors u0 and w,,: 

cr - i$BrB)u, = Q + i$Brg)u, + +?Bw,, (5) 
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The matrices on the left side of equations (5) and (6) are penta- 
diagonal and can be solved rapidly by an algorithm that is a 
simple extension of the standard tridiagonal solver (e.g., Claer- 
bout, 1976, p. 189). The vectors on the right side can be com- 
puted from displacements on row 1. 

To show the basic stability of equations (5) and (6) as ex- 
trapolation operators, we assume y is constant and perform a 
Fourier transform over x. This step leads to the system 

- 

1 w MO 0 l- 1 1 z sin’(kh) 
1 + 1 sin’ 

4 
kh iy sin kh 1 

i sin kh 1 - i sin2(kk) 

(7) 

where u and w now denote the Fourier duals of u and w, k is 
the dual of x, and h is the horizontal mesh spacing. The 
moduli of the eigenvalues of the matrix in equation (7) are 
unity, indicating that the boundary conditions do not amplify 
the wave field. In other words, in the “frozen coefficient” 
problem, the free-surface boundary conditions are stable. To 
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FIG. 1. Free-surface geometry. Row 0 is a fictitious row added 
to allow finite differences of horizontal derivatives. The true 
free surface lies halfway between row 0 and row 1. The open 
circles require special treatment in the boundary conditions. 

show that the combined problem of the boundary conditions 
and the interior solution is stable is beyond the scope of this 
note. In numerical tests, the combined problem remained 
stable for P/a greater than 0.01 for a second-order interior 
method, and for p/a greater than 0.02 for a fourth-order 
method. We suspect that the stability problem lies with our 
interior solutions rather than with the boundary conditions. 

EDGES OF THE FREE SURFACE 

The boundary conditions derived above must be modified 
for the two extreme edge elements on each side of the free 
surface, shown as open circles in Figure 1. For these points, 
we apply the Bl absorbing boundary conditions of Clayton 
and Engquist (1977). For the component u on the left side of 
the grid, the boundary conditions in equation (5) are modified 
to be 

(1 + S)ub + (I - 6)uY= (1 - S)l&’ + (1 + 6)U:_’ (8) 

and 

(1+6)u:+(1-6)u;=(1-?+4:-~+(1+6)u~-’, (9) 

where 6 = aAt/h, h is the mesh spacing, and At is the time
step. Here (uO, u,, u2) are the first three elements of the vector 
II,,, and superscripts t and t - 1 refer to the present and pre- 
vious time steps. Stability of equations (8) and (9) is indepen- 
dent of the P/a ratio. These equations most effectively absorb 
horizontally traveling P-waves. Similar equations are used for 
the vertical component w, except that 6 = (PAt)/h is used to 
absorb horizontally traveling S-waves. Mirror images of these 
conditions are used at the right edge of the free surface. 
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FIG. 2. The analytic result for a half-space with an explosive 
line source is compared to a fourth-order finite-difference (FD) 
solution with the implicit free-surface boundary condition. 
The analytic result is calculated by the generalized ray (CR) 
method of de Hoop (1960). In the half-space, a is 3.5 km/s and 
j3 is 1.5 km,/s. For this calculation, the time step is 0.01 s and 
the grid spacing is 0.05 km. 
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FIG. 3. The vertical component for the one-sided (OSA), 
central-difference (CDA), revised-composed (CA), and implicit 
(IA) approximations of the free-surface boundary conditions 
are shown for the small b/a ratio of 0.2. Traces are not shown 
where they go off scale. Pkak amplitudes are given to the right 
of each trace. In the half-snace. a is 3.5 km/s and fi is 0.7 km/s. 
An explosive line source is used. For this calculation, the time
step is 0.002 5 s and the grid spacing is 0.025 km. 
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FIG. 4. The horizontal and vertical component for the one- 
sided (OSA), central-difference (CDA), revised-composed (CA), 
and implicit (IA) approximations of the free-surface boundary 
conditions are shown for a laterally varying structure. In the 
hatched region, which is 2.0 km wide and 0.1 km deep, a is 1.3 
km/s, b is 0.6 km/s, and p is 1.0 g/cm3. In the rest of the 
half-space, 01 is 3.5, p is 2.0 km/s, and p is 2.6 g/cm3. Peak 
amplitudes are given to the right of each trace. An explosive 
line source is used. For this calculation, the time step is 
0.002 5 and the grid spacing is 0.025 km. 

NUMERICAL EXAMPLES 

OF STABILITY AND ACCURACY 

The accuracy of the proposed implicit scheme is shown in 
Figure 2. The revised-composed scheme and central-difference 
scheme (not shown) are about as accurate as the implicit 
scheme because all three are accurate to second order. The 
one-sided scheme (also not shown) is only accurate to first
order and therefore introduces more error at the shorter wave- 
lengths. Both the direct wave and the Rayleigh wave agree 
with the analytic calculation. The slight difference in sharpness 
between the analytic trace and the finite-difference trace is due 
to grid dispersion in the finite-difference method. The small 
perturbations to the Rayleigh wave are S-wave noise from the 
source region. 

The stability of the proposed free-surface boundary con- 
ditions is illustrated by calculations for the vertical component 
of a half-space problem where p/a is 0.2. Results are shown in 
Figure 3. The revised-composed .scheme and implicit scheme 

are well-behaved, while the one-sided scheme and central- 
difference scheme are not. The slight difference in amplitude 
between the revised-composed scheme and implicit scheme re- 
sults from the slight difference in the free-surface position, 
which is half a mesh spacing farther from the source with the 
revised-composed scheme than with the implicit scheme. The 
results for the stability of the one-sided scheme, central- 
difference scheme. and revised-composed scheme are in agree- 
ment with those found by llan and Loewenthal(l976). 

A test with lateral heterogeneity is shown in Figure 4. The 
velocities within the rectangle under the receiver are a factor 
of 3 less than the velocities in the half-space. The one-sided 
scheme is inaccurate, particularly on the horizontal compo- 
nent. The central-difference scheme is unstable. The revised- 
composed scheme is more gently unstable; however, in our 
experience. structure with more lateral variation causes the 

method to become unstable more rapidly. Part of the dis- 
agreement between the revised-composed scheme and the im- 
plicit scheme in the early part of the record arises from the 
slightly different location of the free surface mentioned above. 
Only the implicit scheme results in energy dying away with 
time We suspect the result is accurate, but we have no 
method for conveniently checking it. 

The only free surface which is stable for both low P/a ratios 
and lateral heterogeneity is the implicit scheme proposed here. 
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