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Finite-difference calculation of traveltimes in 
three dimensions 

John E. Vidale* 

ABSTRACT 

The traveltimes of first arriving seismic rays through 
most velocity structures can be computed rapidly on a 
three-dimensional numerical grid by finite-difference 
extrapolation. Head waves are properly treated and 
shadow zones are filled by the appropriate diffractions. 
Differences of less than 0.11 percent are found be- 
tween the results of this technique and ray tracing for 
a complex but smooth model. This scheme has proven 
useful for earthquake location and shows promise as 
an inexpensive, well-behaved substitute for ray tracing 
in forward-modeling and Kirchhoff inversion applica- 
tions. 

INTRODUCTION 

Transit times for seismic waves are computed in a variety 
of ways. Herein, I describe the extension to three dimen- 
sions of the two-dimensional (2-D) finite-difference method 
of Vidale (1988). Currently, there are two classes of solu- 
tions to the problem of ray tracing seismic velocity struc- 
tures, each with different types of difficulties. The simpler 
schemes for computing traveltimes assume a one-dimen- 
sional (1-D) velocity structure, which allows simple and 
inexpensive results. These methods produce errors to the 
extent that the velocity structure deviates from being solely 
depth-dependent, both from incorrect raypaths and from 
integration of incorrect slownesses along the raypath. The 
less simple schemes trace rays through 2-D or three-dimen- 
sional (3-D) velocity structures (terveny et al., 1977; Julian 
and Gubbins, 1977). Ray tracing can produce the correct 
answer but is computationally intensive, frequently encoun- 
ters shadow zones, and sometimes picks the wrong raypath 
as the first arrival. 

Approximations can alleviate these difficulties: Thurber 
(1981) reduces the 3-D problem to two dimensions for 
economy; Thurber (1983) smooths the structures until ray 

tracings are well-behaved; Roecker (1982) finds the raypath 
with 1-D structure but integrates in a 3-D slowness field to 
find the traveltime; and Urn and Thurber (1987) and Prothero 
et al. (1988) use perturbation methods in three dimensions. 

This paper presents a finite-difference method that com- 
putes the first-arrival time with no approximations and few 
potential problems. We are already using this scheme for 
earthquake location (Nelson and Vidale, 1990) and forward 
modeling to determine velocity structure. The procedure is 
similar to but more general than the 2-D finite-difference 
method proposed by Reshef and Koslof [1986, equation (S)] 
and differs from the finite-element scheme of Virieux et al. 
(1988) in that isochrons rather than geometric rays are used. 

METHOD 

The method is formulated for a velocity structure that is 
sampled at discrete points in a 3-D space, with equal 
horizontal and vertical spacing. The question of what con- 
tinuous structure is implied by the sampled structure is more 
complicated; for testing purposes, I compare the results with 
analytic solutions for a uniform medium and with a ray- 
tracing scheme in which the velocity structure is interpolated 
linearly between the sampled points. An array of the same 
dimension as the velocity structure is created to record the 
traveltimes. These two arrays use the bulk of the computer 
memory in this method. 

The calculation begins with the identification of the grid 
point nearest the source location (the source need not 
coincide with a grid point). The traveltime to each grid point 
in the 5 by 5 by 5 point volume surrounding the nearest grid 
point is calculated by integrating the slowness from the 
origin to the point, assuming a straight raypath. (The calcu- 
lation could begin with the 3 by 3 by 3 point volume, but 
errors from the curvature of the wavefront are greater than 
the errors from the assumption of a straight raypath.) The 
next step is to calculate the traveltimes to the 7 by 7 by 7 box 
containing the 5 by 5 by 5 volume with the method outlined 
below. This step is followed by the calculation of the 9 by 9 
by 9 box containing the 7 by 7 by 7 box, and so on until the 
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six faces of the box have encountered the six sides of the 
rectangular prism on which the wave slowness is specified. 
This iterative process is directly analogous to the solution for 
rings of increasing radius in the 2-D method of Vidale (1988). 

In the description of the method. I first show the method 
to extrapolate traveltimes from point to point. then show the 
order in which the grid points are solved. The iterative 
extrapolation is based on the eikonal equation of ray tracing 

where h is the mesh spacing and ti is the traveltime to the ith 
point. The slowness s used is the average of the slownesses 
at the eight corners of the cube. This formula was derived by 
Richard Stead (California Institute of Technology, 1988, 
Pers. comm.). The accuracy of this centered finite-difference 
formula for a uniform velocity case is shown in Figures 2 
and 3. 

When the source is placed at a distance of ten times the 
grid spacing from the point 0 in Figure la (whose time is to) 
in a uniform velocity structure, the error in the extrapolation 
of traveltime to point 7 reaches a maximum of I percent of 
the difference between traveltimes at points 0 and 7. Figure 
3 shows that the error diminishes rapidly with increasing 
distance or equivalently decreasing curvature of the iso- 
chrons. This formula produces the correct traveltime for any 
plane wave and for spherical waves traveling along the 
diagonal from point 0 to point 7. 

that relates the gradient of the traveltime to the velocity 
structure (see, for example, Officer. 1974. p. 203). t is the 
traveltime, the Cartesian coordinate axes are X. y, and z. and 
s is the slowness (inverse of velocity). 

The method to compute traveltimes in this paper uses 
three different schemes based on equation (I) for three 
diRerent situations described below. The geometries of the 
grid points involved in each of the three methods arc shown 
in Figure I. Scheme A, which is typically used more than 90 
percent of the time is shown in Figure la. Once the travel- 
times for seven of the corners of a cube are known, the 
eighth may be found by applying finite differencing to 
equation (I) to obtain 

Scheme B, which is shown in Figure lb, is used to 
compute more than 90 percent of the traveltimes that are not 
computed with method A. The traveltime to point 5 is 
extrapolated from points 0 through 4 by the formula 

Errors due to scheme A 
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FIG. I. The geometry of the three basic stencils used as the 
building blocks for computing the traveltimes on a uniformly 
spaced 3-D grid. (a) The traveltimes to points 0 through 6 are 
used to compute the traveltime to point 7 with equation (2). 
(b) Points 0 through 4 used to compute point 5 with equation 
(3). (c) Points 0 through 4 used to compute point 5 with 
equation (4). Light circles indicate points that are not used. 

FIG. 2. The error arising from the solution of equation (2) for 
a uniform medium at a range of IO grid points. The error is 
plotted as a function of the dip and the strike of the vector 
connecting the source point and point 7 in Figure la, so the 
plot covers a quarter of a hemisphere. The symmetry re- 
flecting the equivalence of the x-axis (strike of 90”. dip of 
90”). v-axis (strike of o”, dip of 90”), and z-axis (dip of 0”) is 
easily seen. I 
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The slowness s in equation (3) is the average of the slow- 
nesses to the centers of the two cubes shown in Figure lb 
(which are each the average of the slowness to the eight 
corners of its cube). Scheme B does not use centered finite 
differences. A centered scheme can be made by selecting 
points 1, 2, and 4 to be twice as far from point 5 as is shown 
in Figure lb; but compactness is chosen over improved 
accuracy, and a quick check showed little difference be- 
tween the two options. The accuracy of method B for a 
uniform velocity case is shown in Figure 4. 

Scheme C, shown in Figure lc, is used for the calculation 
of the fewest traveltimes. The traveltime to point 5 is 
extrapolated from points 0 through 4 by the formula 

ts = t2 + dh2s2 - 0.25[(t, - t3)2 + (to - Q2]. (4) 

Here I have used the average of the slownesses in each of the 
four cubes shown in Figure lc for slowness s (each slowness 
is the average of the slownesses at the eight corners of its 
cube). The accuracy of method C for a uniform velocity case 
is shown in Figure 5. In equations (2), (3), and (4) most of the 
computational expense is due to the one square root. 
Scheme C also does not use centered finite differences, again 
because a centered scheme would be less compact. Equa- 
tions (3) and (4) are the 3-D equivalents of the 2-D case 
[Vidale, 1988, equation (6)]. 

The solution stems from the ability to calculate the trav- 
eltimes iteratively at any point on a cube from equation (2). 
(3), or (4), whether the point is on a face, a side, or a corner 
of the rectangular prism. The key step I have not yet 
described is how the traveltimes in each shell (at each radius) 
are determined. The simplest schemes that are independent 
of the relative timing of the grid points fail because the 
finite-difference operators sometimes lie across the cusps in 
traveltime. This situation results from the discontinuous 
changes in the first-arrival raypath where there are triplica- 
tions or bow-tie patterns of multiple arrivals. 

Error vs. Range 

10 

Range (grid points) 

FIG. 3. The falloff of the error with increasing range (decreas- 
ing curvature) in a uniform medium. One of the directions 
from Figure 2 (strike of 90”, dip of 90”) with maximum error 
is chosen. The error falls to about 1 percent by a distance of 
ten grid points, as also shown in Figure 2. 

When no side of the shell has encountered a side of the 
computational grid, the shell has six sides, twelve edges, and 
eight corners. Each is dealt with separately. Figure 6 shows 
such a side. Ignoring the points constituting the perimeter of 
the side, there are nine (3 by 3) grid points per side whose 
traveltimes are to be calculated. The nine traveltimes for the 
points just behind the side are known from calculating the 
traveltimes on the previous box, and they are used in the 
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FIG. 4. The error arising from the solution of equation (3) for 
a uniform medium at a range of 10 grid points. The error is 
plotted as a function of the dip and the strike of the vector 
connecting the source point and point 5 in Figure lb, and the 
plot covers a quarter of a hemisphere. This equation applies 
to two quarter-hemispheres, only one of which is shown. 
Reflection across a plane at an azimuth of 0” shows the full 
range of application. The solution is most accurate near this 
azimuth of O”, which is, not coincidentally, the principal 
direction that the seismic energy is traveling when this 
equation is invoked. 
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FIG. 5. The error arising from the solution of equation (4) for 
a uniform medium at a range of 10 grid points. The error is 
plotted as a function of the dip and the strike of the vector 
connecting the source point and point 5 in Figure Ic, and the 
plot covers a quarter of a hemisphere. This equation is 
applied to an entire hemisphere that may be seen by re- 
flectinn across the two olanes at (I) an azimuth of 90” and (2) 
a dip gf 90”. The solutibn is mosi Accurate near the azimuth 
of 90” and the dip of 90”, which is the direction the seismic 
energy is traveling when this eqpation is invoked. 
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FIG. 6. The solution for the traveltime to each point in the 
grid is broken down to the solution for a sequence of cubes 
of increasing radius from the grid point closest to the source. 
This figure illustrates one of the six sides of one cube. The 
small, black dots are outside the cube. The text describes 
how the traveltimes from the source to the points marked by 
hollow circles are first solved on this and the five other sides. 
Second, the traveltimes to the simple. large black dots on the 
four edges shown and the eight edges not shown are calcu- 
lated. Third, the traveltimes to the four corners marked by 
double circles as well as the four corners not shown are 
found. Next. the cube of points just outside the cube 
oictured is considered, and its sides. edges. and corners are 
timed, and so on. 

solution for the times of the points on this side of the current 
box. 

The solution for the traveltimes proceeds as follows: all 
the points on the side to be timed (the hollow circles in 
Figure 6) are sorted in order of increasing traveltime for the 
point just behind them in the previous box. I then consider 
each point in order of increasing traveltime. A point that is at 
a relative minimum in traveltime has none of its four closest 
neighbors on the current box timed, so scheme C is used to 
extrapolate its traveltime from the five traveltimes at points 
just behind it on the previous box. Since, by my choice of 
point 3, the traveltime to point 2 in Figure Ic is less than the 
traveltime to points 0, I. 3. and 4. the seismic raypath is 
nearly normal to the side (azimuth of 90” and dip of 90”) and 
is in the region of high accuracy in Figure 5. 

At a point that has just one of its four closest neighbors 
timed, scheme B estimates the traveltime from the one 
neighbor on the current side and four other neighbors on the 
previous side. This situation arises at the points nearest to 
the point determined by scheme C in the previous paragraph 
(among others). Since the traveltime to point I in Figure lb 
is less than the times to points 0 and 3, the seismic raypath 
lies nearly in the plane containing points 1, 2. 4, and 5. This 
direction (with strike near 0”) has good accuracy, as is shown 
in Figure 4. 

If two adjacent nearest neighbors as well as the diagonal 
neighbor between them on the current side are timed, the 
most accurate extrapolation, scheme A. is used. Most points 
arc timed by scheme A. Occasionally, two arrivals approach 
the point nearly simultaneously. The correct answer is 
obtained by estimating arrival times for both paths and 
adopting the earlier of the two. 

By applying this algorithm to every grid point on the side 
in order of increasing traveltime, the traveltimes for the 
entire side are determined. It does not matter in which order 
the six sides are solved. 

Structure for Ray Tracing Comparison 
-- I 
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FIG. 7. The velocity model used to compare the finite-difference traveltimes with the ray-tracing traveltimes. Filled 
circles represent fast velocity. hollow circles show slow velocity, and larger circles indicate more anomalous 
velocities. The rms velocity variation is 5 percent and the grid has 64 by 128 points. although it is resampled for this 
figure. The correlation length is 20 grid points. I 
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Error in ray trace test 

10 

0 --I 
0 10 20 30 40 50 60 70 80 

Y (grid points) 

FIG. 8. Comparison of finite-difference with ray-tracing trav- 
eltimes for the structure shown in Figure 7. The discrenancv 
between the traveltime computed fir the top layer if grid 
uoints with the 3-D finite-difference algorithm and the 2-D 
;ay tracer is plotted as a function 07 \’ and - the grid 
coordinates. The point (y, z) = (0, 0) lies directly;; the right 
of the source point. The largest error is 0.1 I percent. or 
about one-tenth of a second for a traveltime of 100 s. 

The edges are simpler. Consider the left edge in Figure 6, 
which has three grid points. Remember that the traveltimes 
to the sides of the current box have already been deter- 
mined. As with the ordering of the sides. the points on the 
edge are ordered with respect to increasing traveltime on the 
edge of the previous box. The traveltimes are calculated in 
order. Each grid point on the current edge has two neighbors 
that are also on the current edge. If neither neighbor has yet 
been computed, the traveltime is extrapolated from two 
neighbors on the current sides and three points from the 
previous edge by scheme B. If one neighbor has already 
been calculated, that neighbor, four points on the current 
sides, and two points from the previous edge are used in the 
extrapolation with scheme A. If both neighbors have been 
computed. each is used with equation (2) to estimate a 
traveltime and the earlier of the two is adopted as the true 
traveltime. The order of solution for the edges does not 
matter. 

.Each current corner has three points on the current sides. 
three points on the current edges, and one point on the 
previous corner that are already timed in the geometry of 
Figure la. Scheme A is then used to compute the time to the 
corner from these seven known traveltimes. 

COMPARISON OF FINITE DIFFERENCES 
WITH RAY TRACING 

Although uniform media are useful for checking the accu- 
racy of computational techniques, computing accurate trav- 
eltimes for uniform media is not of great practical use. The 
finite-difference traveltime algorithm may be tested against a 
2-D ray-tracing technique as follows: The 2-D random me- 
dium shown in Figure 7 is constructed with an rms velocity 
variation of 5 percent. 

The traveltimes through this structure have been com- 
puted by ray tracing with the method of Stork (1988) in 
Vidale‘s (1988) paper. A 3-D velocity structure with cylin- 
drical symmetry is constructed by spinning the 2-D structure 
in Figure 7 around its lower edge. Since the source is on the 
axis of the cylindrical symmetry, the raypaths through the 
structure remain in the plane containing the axis and the 
receiver. The traveltimes computed with the finite-difference 
algorithm through the 3-D structure may be compared with 
those from the ray tracer. This procedure tests the ability of 
the finite-difference algorithm to track wavefronts accurately 
in many directions. 

The finite-difference and the ray-tracing traveltimes agree 
to within 0. I I percent for all grid points on the right surface, 
as shown in Figure 8. The variations in traveltime for this 
model compared to a model with a uniform velocity struc- 
ture range up to 5 percent. This model is complex enough to 
cause difficulties for the ray tracer such as losing rays 
(shadow zones) and picking a secondary arrival as the first 
arrival (multipathing combined with a shadow zone). Al- 
though it is not clear from this test, the finite-difference 
scheme is formulated to treat head waves and diffractions 
properly. and we have tested this claim in several earth- 
quake location applications (Nelson and Vidale, 1990). 

Rules of thumb for usage are few. The attempt to follow a 
ray which flows in a direction counter to the order of solution 
leads to trouble. More explicitly, if a velocity contrast is 
more than a factor of two. a raypath, if correctly determined, 
might well progress from the region outside one of the boxes 
back inside the box. Clearly. with the method outlined, this 
ray is not timed accurately. since the area outside the box 
currently being solved has not yet been timed. This problem 
appears numerically as the square roots in equations (2) 
through (4) containing negative numbers. The most robust 
fix is to set the square roots to zero. which simulates rays 
traveling parallel to the boundary. but the answer in general 
is not correct. 

The numbers quoted in this paper come from propagating 
about 100 grid points: better performance can be expected 
from finer grids. worse from coarser grids. A finer grid leads 
to more accurate traveltimes. In the case of velocity varia- 
tions that are smooth enough that the errors shown in 
Figures 2 and 3 arc negligible far from the source, doubling 
the number of grid points traversed halves the error. 

The traveltime fields of numbers can be converted to 
amplitudes by consideration of takeoff angles and geometri- 
cal spreading (see Vidale and Houston, 1990). 

CONCLUSIONS 

Traveltimes may be computed accurately through arbi- 
trary 3-D velocity fields by finite-difference techniques. 
Comparisons with a ray-tracing method show that travel- 
times computed across grids with dimensions of the order of 
100 by 100 by 100 grid points have errors of less than 0. I I 
percent for smooth models. This technique, which is useful 
for a variety of applications. including iterative velocity 
inversion and Kirchhoff migration methods. promises to 
make computation of large numbers of traveltimes routine. 
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