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INTRODUCTION 

The ability to calculate traveltimes and amplitutdes of 
seismic waves is useful for many reflection seismology 
applications such as migration and tomography. Tradition- 
ally, ray tracing (cerveny et al., 1977; Julian, 1977), paraxial 
methods (Claerbout, 1971), or full-wave methods (Alterman 
and Karal, 1968) are used for such calculations. These 
methods have in common considerable computational ex- 
pense. Recently, Vidale (1988, 1990a) presented two-dimen- 
sional and three-dimensional methods to efficiently compute 
traveltimes of the first arrivals to every point in a regularly 
spaced grid of points, given an arbitrary velocity field 
sampled at these points. The computational cost of finding 
each traveltime is roughly one square root operation. 

This note describes how the amplitudes of the first arrivals 
can be calculated in two dimensions without explicit knowl- 
edge of the raypaths. The traveltimes for a set of four closely 
spaced sources are sufficient to determine the geometric 
amplitudes for each point in the grid in the case of a 
smoothly varying velocity structure. The computation cost 
for each amplitude is six square roots and an arctangent. 
This low cost allows the computation of many more ampli- 
tudes than is possible with ray tracing or waveform methods. 
Alternatively, this method of amplitude estimation can be 
done using other less efficient but more accurate traveltime 
calculations, such as ray tracing or ray bending (Prothero et 
al., 1988; Thurber, 1983) and needs four to sixteen travel- 
times per amplitude. 

METHOD 

The method is described in two dimensions for simplicity, 
although the extension to three dimensions is straightfor- 
ward. Conceptually, the amplitudes are inversely related to 
the degree of spreading of a small cone of rays emanating 
from the source. The calculation has two steps: first, the 
takeoff angle from the source to each grid point is found; 
then, the variation in takeoff angle between adjacent points 

around a receiver is used to estimate the geometric spreading 
and thus the amplitude. 

Once a velocity structure has been specified, the travei- 
times to all points in a two-dimensional (2-D) grid are found 
by the method of Vidale (1988) for four sources located at SO, 
sl , s2, and s3 around the source point s shown in Figure 1. 
The grid points are assumed to be regularly spaced. 

For each grid point, then, the traveltimes from the four 
sources are known. In laterally varying structure, the ray 
parameter is not invariant and can no longer be used to find 
the takeoff angle and its derivatives from only the horizontal 
derivatives of traveltime. Since, by reciprocity, the travel- 
time from a source to a receiver is the same as the traveltime 
from the receiver back to the source, the four raypaths in 
Figure 1 can also be considered to be from a single source to 
four receivers. The difference between the traveltimes for 
points sl and s3 measures the apparent velocity of the 
raypath projected on the horizontal axis near the source, and 
the difference between SO and s2 measures the vertical 
apparent velocity. The four traveltimes, taken together with 
the assumption of an incident plane wave, yield an estimate 
of the propagation direction of the reciprocal “first arrival” 
to point s. Thus the takeoff angle of the first arrival from s to 
the receiver is given by 

Short Note 

Rapid calculation of seismic amplitudes 

t3 - tl 
i = arctan ( i to - t2 ) 

where i is the takeoff angle from the central point s between 
SO, sl , s2, and s3, Measured from the vertical, and tj are the 
traveltimes from source sj for j equals 0, 1, 2, and 3. This 
takeoff angle can be calculated to all points on the grid. 

The concept of three-dimensional (3-D) geometric ray 
tubes is that at sufficiently high frequencies, seismic energy 
stays in a tube whose sides are all geometric raypaths 
(cerveny et al., 1977). The 2-D analog is that seismic energy 
is contained by a wedge-shaped region whose boundary is 
two geometric rays. In Figure 2, for example, energy trans- 
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mitted from the source into the region between the rays from 
the source to points r0 and r2 stays in that region; this is a 
high-frequency approximation. Since the wedge-shaped re- 
gion grows wider as the energy travels farther from the 
source, the energy density diminishes with time this is the 
phenomenon of geometric spreading. With the common 
assumption that the source radiation is isotropic very near 
the source, the width of the wedge as a function of space is 
the only information required to find the geometric spreading 
factor. 

The amount of energy incident on the receiver is propor- 
tional to the angle Ai subtended at the source of the wedge 
(shown in Figure 3) that illuminates a line through the 
receiver normal to the raypath (in three dimensions this line 
would be a surface) with a width of twice the grid spacing. 
This angle hi is equivalent to the ratio J(O)&) that measures 
geometric spreading in ray-tracing calculations [equation 
(39), eerveny and Hron, 1980, for example]. 

The angle Ai may be found from the takeoff angles to the 
four points surrounding the receiver shown in Figure 2 by 
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FIG. 1. Diagram of the four raypaths connecting the receiver 
and the four grid points SO, sl. ~2, and s3 closest to the 
source s. 
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Ai = v(iO - i2)’ + (il - i3)‘, (2) 

where i0 is the takeoff angle of the ray from the source to the 
point t-0, and similarly for points rl, r2, and r3. This 
finite-difference formula assumes that the variation in takeoff 
angle across the points near the receiver is a linear function, 
which is equivalent to assuming the amplitude is constant to 
the four points. 

The amplitude of the acoustic wave at the receiver also 
depends on the velocity and density at the receiver (see Hall, 
1987, for example), and thus the formula for relative pres- 
sure amplitude across the grid is 

A,(x, z) = vAi(x, Z)U(X, z)p(x, z), (3) 

where u is acoustic wave speed and p is density. This 
formula may be used to compute the amplitude at any grid 
point once given the amplitude at one point. The equivalent 
formula for motion such as displacement, velocity, or accel- 
eration is 

Ai(x, z) 
&,(x, z) = 

J U(S, z)p(x, z)’ 
(4) 

The equation for a cylindrical geometry would also have 
terms that are trigonometric functions of the takeoff angle 
and the angle of incidence. These formulas are most accurate 
for small velocity contrasts, smooth velocity variations, and 
high frequencies. Sharp velocity contrasts will not be prop- 
erly included since equation (3) assumes no loss of energy 
through reflection. More exotic radiation patterns can be 
inserted without difficulty by scaling the angle i (see below) 
by the radiation pattern appropriate for the source. Sources 
or receivers on the surface may be buried one level down in 
the grid with little change in the geometric spreading. 

The amplitude calculation, when used with the traveltime 
calculation of Vidale (1988), will only compute the amplitude 
of first arrivals. Amplitudes that are computed by finite- 
differencing across points separated by a cusp in the travel- 
time isocron, which is equivalent to a discontinuous jump in 
the raypath where the intermediate raypaths have folded 
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FIG. 2. Diagram of the four raypaths connecting the source s 
and the four points closest to the receiver. 

FIG. 3. The angles subtended at the source by the pair of 
points r0 and r2 (angle iO-i2), the points rl and r3 (angle 
il-i3), and a line with a width of two grid spaces (angle hi). 
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back into secondary arrivals, will show large amplitudes. 
The amplitudes are due to the relatively large change in 
takeoff angle to points across the cusp, combined with the 
inability of the method of Vidale (1988) as it is currently 
formulated to follow secondary arrivals. Diffractions are 
correctly treated; each point in the neighborhood finite- 
differenced has a seismic ray that left the source with the 
same takeoff angle, so no energy is in the ray tube and the 
geometric amplitude of the diffraction is zero. 

A NUMERICAL EXAMPLE 

Here we compare our new amplitude calculation with 
amplitudes determined by finite-differencing of the full-wave 
equation. The velocity model (in Figure 4a) may be consid- 
ered to resemble a cross-borehole survey. The calculation of 
amplitude from a surface source to a reflector at depth would 
have a similar geometry. 

The traveltime method of Vidale (1988) has been slightly 
modified to compute the times to points within three grid 
points of the source more accurately, since high precision is 
necessary to compute amplitudes. Any traveltime calcula- 
tion method may be used; if amplitudes at isolated points are 
required, 16 traveltimes are needed (four for each of the four 
measurements of takeoff angle). If a sufficiently dense set of 
amplitudes is desired, only four traveltimes need be com- 
puted for each grid point since each time may be shared 
between four neighboring grid points. The spherical and 
cylindrical equivalents of equations (1) through (4) may be 
derived easily. Only one representative example is presented 
because the errors and artifacts are predominantly due to the 
traveltime scheme, which is documented in Vidale (1988). 

Broad but strong velocity variations are required to com- 
pare this geometric amplitude calculation with full-wave 
methods. The 10 percent rms velocity variations shown in 
Figure 4 predominantly have wavelengths of 50 grid points 
or longer on the 128 by 128 point grid. Density is kept 
constant in the test; properly accounting for velocity varia- 
tions is the more demanding task. Figure 4 also shows the 
isochrons of traveltime. The isochrons show the expected 
pattern: rays passing through the slow regions are retarded 
and rays passing through the fast regions are advanced. 
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FIG. 4. (left) Map of the velocity field across the 128 by 128 
point grid. (right) 25, 50, 75, 100, and 125 s contours of 
traveltime. 

The 2-D full-wave amplitudes may be directly compared 
with geometric ray results. Although full-wave line sources 
disperse somewhat near the source region and finite fre- 
quency waves can diffract, use of the derivative of a Gaus- 
sian as the source time function minimizes dispersion and 
use of long-wavelength velocity variations minimizes diffrac- 
tion. 

The results of the new scheme are plotted next to the 
results of a full-wave finite-difference calculation in Figure 5. 
Figure 5a shows the traveltime amplitudes from a 128 by 128 
point grid. The 128 by 128 grid is averaged over 8 by 8 
squares (to form a 16 by 16 grid point image) since the results 
must be legible in publication. Only the first-arrival ampli- 
tudes are recovered. The full-wave amplitudes shown in 
Figure 5b are taken from the peak value of synthetic seis- 
mograms. For this comparison, the source should have a 
relatively short duration so that amplitude is well defined and 
also a relatively narrow bandwidth to limit the line-source 
dispersion. To meet these requirements, we chose as our 
time function the derivative of a Gaussian pulse (te **, where 
t is time). 

The full-wave calculation is done with an acoustic fourth- 
order finite-difference algorithm (Vidale, 1990b) and is accu- 
rate for the frequencies and distances used in this case. The 
grid has been interpolated from 128 by 128 to 512 by 512 to 
allow simulation of higher frequencies. Incidentally, the 
full-wave calculation is reduced from 10 hours to 1 hour by 
using the traveltime calculation (Vidale, 1988) to window the 
area over which the full-wave calculation is active; that 
traveltime calculation takes 2 minutes for a 512 by 512 grid. 
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FIG. 5. (a) Amplitudes calculated for the velocity model 
shown in Figure 4 with our new method. Amplitudes are 
normalized to remove geometric spreading in a whole space. 
(b) Amplitudes from full-wave finite-difference calculation. 
(c) Ratios of the amplitudes from our new method to those 
from the full-wave calculation. 
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The ratio of the two results is plotted in Figure 5c. Note 
that most of the points are within 10 percent of perfect 
agreement, while the amplitudes vary by a factor of four. 
Experiments with several test cases indicate that averaging 
over a 2 by 2 point square is necessary to avoid fine-scale 
oscillations. Alternatively, the four sources shown in Figure 
1 and the four receivers shown in Figure 2 could have radii 
of two grid points rather than one. With the larger radii, 
there is little reason to determine the amplitude at every grid 
point since some smoothing has been applied. An efficient 
calculation would compute the traveltimes on a fine grid, 
then resample the traveltimes to a grid a factor of two 
coarser, and finally find takeoff angle and amplitudes only for 
the coarse grid with source and receiver arrays of radius of 
one grid point. With this procedure, the set of four travel- 
times on the coarse grid would require no more computer 
memory than each of the four traveltime calculations on the 
fine grid. 

Good agreement is seen in Figure 5. The agreement 
degrades slightly where a caustic forms to the bottom right of 
the low-velocity zone in the middle of the grid. This is 
expected because the full-wave calculation propagates finite- 
frequency waves rather than the infinite-frequency waves 
assumed by ray theory. Minor artifacts in the traveltime 
amplitudes that appear when the method of Vidale (1988) is 
used to compute traveltime may be seen in the ratio. Energy 
propagating parallel to the rows and columns of the grid is 
slightly amplified and energy traveling diagonally is slightly 
diminished. 

The accuracy of the traveltimes produced by the method 
of Vidale (1988) increases as the grid spacing is made finer. 
Stencils for the finite-difference operators that span more 
grid points in equations (1) and (2) produce a smoother, more 
numerically noise-free estimate of the amplitude. Thus for 
more accuracy at the cost of more computation to find the 
amplitudes at a given number of grid points, one would 
compute the traveltimes on a grid a factor of two finer, then 
compute the amplitudes with stencils that are a factor of two 
wider. 

CONCLUSIONS 

This new method of computing amplitudes has several 
advantages over existing schemes. The foremost advantage 
is the great efficiency: only six square roots and an arctan- 
gent give the traveltime and amplitude for each point. The 
e’rror in the method is about 10 percent in several test cases 

against full-wave methods. Caustics and diffractions may 
readily be seen in amplitude maps. Knowledge of the ray- 
paths is not necessary. A limitation of this method is that it 
yields geometric amplitudes. The extension to three dimen- 
sions is straightforward. This method promises to be useful 
for economical prestack migration, tomographic inversion, 
and other operations in which rapid forward modeling of 
seismic amplitudes would be advantageous. 
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