Absence of short-period ULVZ precursors to PcP and ScP from two regions of the CMB

Steven E. Persh, John E. Vidale, and Paul S. Earle

Department of Earth and Space Sciences, University of California, Los Angeles

Abstract. We present results from a study of the core-mantle boundary (CMB) underneath Mexico, Central America, and the northeast Pacific using core-reflected phases PcP and ScP, which provide a direct means of sampling the deep mantle. Precursor arrivals to these phases produced by reflection from the top of an ultra-low velocity layer (ULVZ) at the base of the mantle would contain information about the thickness of such a layer and the velocity reductions within it. Stacks of these phases from 17 earthquakes recorded by the Northern and Southern California Seismographic Networks do not exhibit coherent or incoherent precursor arrivals from a ULVZ. In precursor time windows, ratios of stack amplitudes to those of the CMB-reflected phases fall below predicted values from published ULVZ models. We conclude that ULVZs, if present in these regions, have $V_P$ and $V_S$ reductions less than 10%, are less than five km thick, or have transitions greater than five km wide at their upper boundaries.

Introduction

The core-mantle boundary (CMB) region has long been of interest due to its importance in geodynamical processes [see Lay et al., 1998, for a review]. Recently, several lines of evidence have indicated the existence of a layer at the base of the mantle with large velocity reductions. Seismic arrivals used to identify such ultra-low velocity zones (ULVZs) include precursors to core-reflected phases (PcP [Mori and Helmberger, 1995; Revenaugh and Meyer, 1997] and ScP [Garnero and Vidale, 1999]); delayed core phases (SP$_{dlat}$KS [Garnero and Helmberger, 1996]); and scattered core phases (FPK [Vidale and Hedin, 1998; Wen and Helmberger, 1998a]). ULVZs have been modeled with thicknesses 5-50 km and velocity reductions $\delta \ln(V_P) = -0.1$ to -0.2 and $\delta \ln(V_S) = -0.1$ to -0.5 [Garnero and Jeanloz, 2000], although tradeoffs exist between the thickness and velocity reduction [Garnero and Helmberger, 1998] and the $V_S$ component has not been directly observed.

Proposed explanations for the low velocities in ULVZs include partial melting [Williams and Garnero, 1996], reactions with core material [Manga and Jeanloz, 1996], and partitioning of iron from mantle melt [Knittle, 1998]. Discerning the behavior of $V_P$ and $V_S$ independently will help resolve the roles played by these processes.

Fresnel zones of detected ULVZs cover 12% of the CMB, 44% of which has been sampled by the above phases [Williams et al., 1998]. The zones vary laterally in their thickness and velocity contrast [Garnero et al., 1998], which may account for the lack of observation in some regions. Cataloging the extent of ULVZs and the character of lateral heterogeneity is an important task for integrating them into our understanding of core-mantle interactions, the origin of mantle upwellings and the fate of subducted lithosphere.

We investigate two regions of the CMB using core-reflected phases PcP and ScP. The former is the compressional wave reflected at the CMB, and the latter is the conversion from shear to compressional waves upon CMB reflection. High-frequency stacks from regional arrays reduce incoherent noise and enable a search for precursors to these phases. We are unable to detect precursor arrivals above the noise, suggesting that ULVZs may not exist in these regions, or that their thickness, velocity reduction, or gradual (rather than discrete) velocity change render precursors too faint to observe.

Data

We obtained short-period, vertical-component seismograms of 17 earthquakes for which data was available from the Northern and Southern California Seismographic Networks (NCSN and SCSN, respectively). The PcP and ScP phases sample the CMB underneath the northeast Pacific and the Mexico/Central America/Caribbean region (Table 1 and Figure 1). The search criteria used to select the earthquakes from the Harvard Centroid-Moment Tensor catalog were: $5.9 \leq M_W \leq 6.5$; depth $\leq$50 km; and $30^\circ \leq \Delta \leq 65^\circ$. The lower limit for epicentral distance was chosen because as incidence angle becomes more vertical, the amplitudes of ScP and PcP are reduced, in the latter case as a result of the near match in impedance for $P$ waves between the base of the mantle and the outer core. The upper limit was set lower than that of wide-angle studies [e.g., Weber, 1993] in order to avoid high noise levels present early in the $P$-generated coda and to take advantage of increased sensitivity to fine layering at steeper incidence angles.

We employed two methods of stacking: (i) coherent stacking, in which normalized seismograms are linearly summed; and (ii) envelope stacking, in which envelope functions of the seismograms are summed. In coherent stacks, only energy arriving coherently across the network will sum constructively, so we use them to search for precursor arrivals resulting from reflections off the top of a ULVZ. In envelope stacks, any arriving energy contributes to the stack amplitude, regardless of whether the waveform is consistent across the network. Envelope stacks can be used to search for energy from scattered waves.

We decimated the seismograms to 10 samples/second and lowpass filtered below 0.8 Hz (chosen by testing different
values to find the range where we could best observe \(P\), \(PcP\) and \(ScP\). Each trace was inspected visually, and noisy or glitch-filled traces were removed. We aligned a common feature on the \(P\)-waves and stacked them. To stack \(PcP\) and \(ScP\), we initially aligned based on their predicted travel time relative to \(P\) from IASP91 [Kennett and Engdahl, 1991]. For some events, the noise was low enough to pick and align \(PcP\) and/or \(ScP\) on a subset of the seismograms. This additional alignment reduces waveform distortion produced by travel time variations of the core-reflected phases, so these stacks were used in place of the moveout-based stacks. For the SCSN data, we average \(~120\) traces per stack; for the NCSN data, we average \(~290\) traces per stack.

**Observations**

From the 17 earthquakes, we produced 21 stacks of \(PcP\) and \(ScP\) (four events were recorded by both arrays). In one case (931120), we were unable to identify \(PcP\) even after stacking; high noise levels made picking \(P\) itself on the original traces difficult, so this event is excluded in subsequent discussion. In addition, noise precludes identifying precursors to \(PcP\) for events 920313, 921219, 940410 (both networks), and 950923 (SCSN only), so these stacks are excluded. We throw out stacks of two events on which we cannot identify \(ScP\): 920713 and 950923 (SCSN only).

Coherent stacks with the best signal-to-noise are shown in Figure 2. The traces are normalized to the amplitude of the core-reflection and overlaid on the \(P\)-wave stack for each event, with predicted amplitudes and arrival times of \(PcP\) and \(ScP\) precursors (\(PdP\) and \(SdP\)) shown for four ULVZ models. There is no indication of coherent arrivals above the noise at the times or amplitudes predicted by the models. Background noise allows us only to find upper bounds of allowable structures. The ratio of the average level of background noise to the theoretical precursor amplitude for \(PdP\) (for a 15 km-thick ULVZ with \(\delta Vp/Vp = -0.1\) and \(\delta Vs/Vs = -0.3\)) ranges from \(~0.2\) to \(~1.9\), with four events exceeding 1.0. The noise-to-(predicted \(SdP\)) ratios for all but one event range between \(~0.1\) and \(~1.7\) (six events above 1.0); one earthquake is recorded at \(~46\) degrees, where \(SdP\)’s theoretical amplitude is near zero, which results in an extremely high noise-to-(predicted \(SdP\)) ratio. However, even the quietest events, in which the predicted

<table>
<thead>
<tr>
<th>Date (ymmd)</th>
<th>Lat (°N)</th>
<th>Lon (°E)</th>
<th>Depth (km)</th>
<th>(\Delta) (°)</th>
<th>(MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>910123</td>
<td>52.0</td>
<td>178.9</td>
<td>116</td>
<td>47.8</td>
<td>6.4</td>
</tr>
<tr>
<td>910814</td>
<td>54.3</td>
<td>-169.3</td>
<td>299</td>
<td>40.9</td>
<td>6.0</td>
</tr>
<tr>
<td>920307</td>
<td>10.2</td>
<td>-84.4</td>
<td>73</td>
<td>38.9</td>
<td>6.5</td>
</tr>
<tr>
<td>920313</td>
<td>52.5</td>
<td>-178.9</td>
<td>211</td>
<td>46.5</td>
<td>6.4</td>
</tr>
<tr>
<td>920523</td>
<td>13.4</td>
<td>-90.0</td>
<td>63</td>
<td>32.7</td>
<td>6.0</td>
</tr>
<tr>
<td>920713</td>
<td>-3.9</td>
<td>-76.6</td>
<td>100</td>
<td>54.5</td>
<td>6.3</td>
</tr>
<tr>
<td>920815</td>
<td>5.1</td>
<td>-75.7</td>
<td>127</td>
<td>48.7</td>
<td>5.9</td>
</tr>
<tr>
<td>920928</td>
<td>13.4</td>
<td>-90.7</td>
<td>72</td>
<td>32.2</td>
<td>6.0</td>
</tr>
<tr>
<td>921219</td>
<td>51.9</td>
<td>158.5</td>
<td>56</td>
<td>59.9</td>
<td>6.0</td>
</tr>
<tr>
<td>930912</td>
<td>13.8</td>
<td>-90.5</td>
<td>69</td>
<td>32.1</td>
<td>6.0</td>
</tr>
<tr>
<td>931120</td>
<td>60.0</td>
<td>-153.1</td>
<td>120</td>
<td>34.5</td>
<td>5.9</td>
</tr>
<tr>
<td>931122</td>
<td>11.7</td>
<td>-86.2</td>
<td>108</td>
<td>36.6</td>
<td>5.9</td>
</tr>
<tr>
<td>940410</td>
<td>14.7</td>
<td>-92.0</td>
<td>112</td>
<td>30.4</td>
<td>6.0</td>
</tr>
<tr>
<td>940503</td>
<td>10.3</td>
<td>-60.8</td>
<td>51</td>
<td>60.6</td>
<td>5.9</td>
</tr>
<tr>
<td>950208</td>
<td>4.2</td>
<td>-76.6</td>
<td>69</td>
<td>48.7</td>
<td>5.9</td>
</tr>
<tr>
<td>950819</td>
<td>5.1</td>
<td>-75.7</td>
<td>125</td>
<td>48.7</td>
<td>5.9</td>
</tr>
<tr>
<td>950923</td>
<td>10.5</td>
<td>-78.7</td>
<td>73</td>
<td>58.3</td>
<td>6.4</td>
</tr>
</tbody>
</table>

**Table 1.** Earthquake data

![Figure 1](https://example.com/image1.png)

**Figure 1.** Map showing earthquakes, Northern and Southern California Seismographic Networks (NCSN and SCSN) and core-mantle boundary reflection points for \(PcP\) and \(ScP\). The Fresnel zones are computed for a frequency of 0.8 Hz. “RM” indicates approximate centers of regions studied by Revenaugh and Meyer [1997]. Areas studied by Castle and van der Hilst [2000] coincide with our regions south of the Gulf of Alaska and under eastern Mexico.

![Figure 2](https://example.com/image2.png)

**Figure 2.** (a) Stacks of \(PcP\) for four events overlaid on \(P\)-wave stacks. Arrows indicate predicted amplitudes and arrival times of precursors to \(PcP\), obtained by computing reflection coefficients for an \(P\) wave incident on a simple discontinuity and converted to an upcoming \(P\) wave. The travel time difference from the core-reflection is the time required for the core-reflection to traverse its extra legs within the ULVZ. Both amplitude and time depend on incidence angle, and therefore on epicentral distance range. Model parameters (thickness, \(\delta Vp/Vp\), \(\delta Vs/Vs\), \(\delta p/p\)): 1) \((10\,\text{km}, -0.1, -0.3, 0.0)\); 2) \((40\,\text{km}, -0.1, -0.3, +0.2)\); 3) \((10\,\text{km}, -0.1, -0.3, 0.0)\); and 4) \((20\,\text{km}, -0.1, -0.2, 0.0)\). (b) As in (a), for \(ScP\).
amplitude exceeds the background noise by factors of two or more, do not have precursor arrivals.

Figure 3 shows combined envelopes of three of the cleanest events in a time window around ScP, when the background noise has dropped low enough to allow a sensitive search for a pickup of energy before the core-reflection. In the curve labeled “Coherent”, we have averaged together envelopes of coherent stacks for the three events; we do this because waveforms from different earthquakes will not necessarily sum constructively. This curve provides further evidence for the lack of a precursor arrival from a constant thickness layer. The upper curve (“Envelope”) is an average of the envelope stacks of the three events. In the “Corrected envelope” curve, a power law fit to the decaying coda has been subtracted. No significant increase in energy precedes ScP, indicating that no extra scattered energy is arriving from a ULVZ.

We can compare the P waveforms to those of the core-reflections to investigate the possibility that scattering or reverberations within the ULVZ distorted PcP or ScP. Generally, PcP and P match quite well (Figure 2). The match with ScP is not as consistent: greater attenuation often renders ScP longer period than P, and it is sometimes difficult to identify common peaks in the arrivals. However, for events 910814 and 920313, the match is near-perfect. In two events (931122 and 950819), P exhibits an extended wave-train (~ 5 s) that is significantly reduced in amplitude on the PcP and ScP stacks.

Modeling

In the absence of observed ULVZ reflections, we attempt to place constraints on the properties of ULVZs in the regions of the CMB sampled here. Since the space of possible models is too large to test exhaustively, we chose three representative models for velocity and density changes. For each model, we calculated predicted amplitudes for PdP and SdP at a range of distances by computing reflection coefficients at a simple discontinuity, representing the top of the ULVZ. We assume that effects of attenuation and geometrical spread-

Figure 3. Combined coherent and envelope stacks of ScP from events 910123, 910814 and 920313. The curve labeled “coherent” is an average of an envelope functions of the three coherent stacks. The “envelope” curve is an average of envelope stacks, and “corrected envelope” has had a power law fit to the decaying coda subtracted. The amplitude of the ScP pulse at around 300 s is set to 1.0. We do not see a pickup of energy preceding ScP.

Figure 4. (a) Ratios of stack amplitudes at expected times for precursors to PcP. Data points are maximum measured amplitudes of stacks in expected precursor arrival windows. Squares: northeast Pacific reflection points. Circles: Mexico/Central America/Caribbean reflection points. Curves show predicted amplitudes for three ULVZ models with velocity and density variations indicated. Models: A: Garnero and Helmberger [1998] and Wen and Helmberger [1988b]; B: Revenaugh and Meyer [1997]; C: Garnero and Vidale [1999]. (b) As in (a), for ScP.
the predicted amplitudes. The $PdP/PcP$ ratios at greater $\Delta$ are less restrictive because of the $P$-coda noise. The $SdP/ScP$ ratios are generally higher, but also indicate that all models overpredict some observed amplitudes.

**Discussion**

We do not observe short-period precursors to ULVZs under the northeast Pacific or the Mexico/Central America/Caribbean region. Stacks of $PcP$ and $ScP$ do not contain either coherent arrivals or incoherent scattered energy as precursors, and the good agreement of $PcP$ and $ScP$ waveforms with $P$ suggest that ULVZs in our areas are likely not present, or do not possess the extreme velocity reductions found elsewhere.

At 0.8 Hz, the Fresnel zone for each $PcP$ reflection point spans $\sim$400 km in diameter; $ScP$ Fresnel zones are about 300 km in diameter. This study primarily samples two regions of the CMB spanning $\sim$1500-2000 km. We see a consistent absence of ULVZ-generated precursors in both regions, in agreement with the extent of previously reported large-scale regions without ULVZs [Williams et al., 1998].

Alternatively, ULVZs might be present but with diffuse upper boundaries rather than sharp discontinuities. We repeated our calculations of theoretical precursor amplitudes for a ULVZ with a gradational velocity reduction. If the velocity reduction occurs over a vertical scale of 5-10 km (depending on epicentral distance), the amplitude of the precursor is reduced by about half. Another possibility is that the layer is less than a few km thick, in which case it may be too thin for the precursor to be distinguished from the main core-reflection.

Using $PcP$, Revenaugh and Meyer [1997] detect a 8 + 3 km thick ULVZ south of our southern study area (Figure 1). This can be reconciled with our non-detection if the ULVZ thins to less than 5 km to the north, since we did not allow for thicknesses less than that in our search windows. *Castle and van der Hilst* [2000] found a PREM-like CMB in a region coinciding with our southern study area.

A similar argument can be made for the northern region, where Revenaugh and Meyer [1997] find a 11 + 6 km thick ULVZ slightly west of our study area (Figure 1). *SP$_{off}$KS* studies also support a ULVZ there [Garnero and Helmberger, 1996]. However, this and other $ScP$ studies have not detected one [Castle and van der Hilst, 2000; Vidale and Benz, 1992].

If ULVZs with $V_P$ reductions around 10% exist in regions where $ScP$ does not detect them, perhaps the common assumption that $V_S$ reductions are three times those of $V_P$ should be reconsidered. There may exist regions in which $V_P$ is sharply reduced but $V_S$ is not. More investigation into the shear wave velocity reductions at the base of the mantle is clearly required.

**Acknowledgments.** Figure 1 was created using GMT version 3.0 [Wessel and Smith, 1995]. We thank Katrin Hafner at SCEC and Rick Lester of USGS for retrieving the network data. Most of this work was supported by NSF grant EAR99-02995, with additional support from EAR00-01126. The manuscript was improved thanks to reviews from John Castle and Ed Garnero.

**References**


