Today:

- Continue Bounce motion
- Longitudinal Drift
- Radiation Belt Organization:
	- –Shielding layer
	- –L-shell
- •Field Line Equation: $r=LR_{e}cos^{2}\lambda$
- Loss Cone
- Begin Large Scale Current

Single Particle Motion (cont'd)

• $\mu = \frac{1}{2}mv_+^2/B$ = Magnetic Moment = constant gave us gyration and drift.

Now:

- Pitch angle analysis gives us B_m $_{\rm m} = B_o/sin^2$ α _o
- Then add: Dipole field $B(r,\lambda) = (M/r^3)^*(1 + 3\sin^2\lambda)^{1/2}$ (where λ is latitude)
- We will Find :

Gyro period << Bounce period << Drift Period

 $\label{eq:2.1} \mathcal{L}_{\mathcal{A}}(x) = \mathcal{L}_{\mathcal{A}}(x) \mathcal{L}_{\mathcal{A}}(x) \mathcal{L}_{\mathcal{A}}(x)$

11.2 (a)
$$
1.3
$$
 (b) 1.4 (c) 1.4 (d) 1.4 (e) 1.4 (f) 1.4 (g) 1.4 (h) 1.4 (i) 1.4 (j) 1.4 (k) 1.4 (l) 1.4 (m) 1.4 (n) 1.4 (n)

$$
47 \text{ Bowce} \quad \text{Bowce} \quad \text{Bowce} \quad \text{Sowce} \quad \
$$

$$
\begin{array}{ll}\n\text{[Equation 1]} & \text{[equation 2]} & \text{[equation 3]} & \text{[equation 4]} & \text{[equation 5]} & \text{[equation 6]} & \text{[equation 7]} & \text{[equation 7
$$

Radius
$$
Be|f
$$
 0 span's data with
\n $\overline{p}_{\alpha} \circledast \alpha$ $|\alpha \downarrow \alpha|$ α in a each
\n $\overline{p}_{\alpha} \circledast \alpha$ $|\alpha \uparrow \alpha|$ α α in a each
\n $\overline{p}_{\alpha} \circledast \alpha$ $|\alpha \uparrow \alpha|$ α α in a each
\n $\overline{p}_{\alpha} \circledast \alpha$ $|\beta \circledast \alpha|$ $\overline{p}_{\alpha} \circledast \alpha$ α α

of returned at $f \neq r_1, \quad f \neq 4$ start fram note B=B; the drift motion organoy, neturns scinding L defives a closed shell to proper dipplo chooned then β_1 with $M=const$, if so M & Constant Anouron: if energy is - Shell thit is can you tell $x = \frac{2}{3}$ conter to Starting point? Man $\varepsilon = \varepsilon_1$ alway eguatorally minioning $\begin{array}{c}\n\mathbb{Z} \\
\mathbb{Z} \\
\mathbb{Z}\n\end{array}$ ζ 200 00 0 \sim assume

Ah! But the field is not a perfect dipole:

 $Drift$ loss cone Drift last come ß Drift loss cone = largest de That is all partides in the <u>bounce</u> loss cone are lost while particles in the drift has cone $dr + \frac{1}{2}$ Namely, somewhere in drift period
Troy set The Smallest Earths field so their mirror point to lowest.

So, there is a rendem diffusion wayer are constantly, anylor. inile Tre low cone, or drift loss come. s,

Contours of constant Magnetic field Strength

Figure 4-11. Contours of constant total field B at the surface of the earth from the model IGRF 1980.0.

٠,

Figure 3. TOPEX SEE geographical distribution.

Advanced subject

For details see adiabatic invariants, pdf

\n
$$
\int (\frac{1}{3})s^{2} = \oint d\theta \vec{p}(3,0,s) = \frac{2\pi(3,0,5)}{3\theta}
$$
\nUsing abrevated

\n
$$
f(x) = \oint f(x)dy = \frac{2\pi(3,0,5)}{3\theta}
$$
\n
$$
f(x) = \oint f(x)dy = \frac{2\pi(3,0,5)}{3\theta}
$$
\nFor details, see adiabatic invariants, pdf

\n
$$
f(x) = \oint f(x)dy = \frac{2\pi(3,0,5)}{3\theta}
$$
\n
$$
f(x) = \oint f(x)dy = \frac{2\pi(3,0,5)}{3\theta}
$$
\nFor details, see adiabatic invariants, pdf

\n
$$
f(x) = \oint f(x)dy = \
$$

- Now, lets look at magnetotail Tail curents
- Then combine cold and hot plasma drifts
- Cold:
	- Sunward convection on closed field lines
	- Plasmasphere co-rotatation
- Hot
	- Ring current
	- Partial ring current/Alfven layer
- Then: Aurora and ionosphere

How can there be a current

Like this: charge moving ACROSS the B –field?

 $\bar{\otimes}$

