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2. Basic Equations

2.1. Fluids

The scales of phenomena that we will be interested in are quite large compared to
those that modern physicists typically concentrate on. This means that quantum effects
and complications such as relativity or Heisenberg’s uncertainty principle are not impor-
tant. Although some of the phenomena that we will discuss have been reasonably well
understood only in the last three decades, thephysics underlying them was well known to
scientists of the 19th century. In fact, many of the key ideas go back to classical time.
This should not be surprising, because early scientists spent most of their time trying to
understand the world they could easily observe around them.

GFD is a branch of continuum mechanics. This is a statement that the scale is large
compared to intermolecular distances. A continuum is a material whose properties such
as density, temperature etc. vary smoothly except at a finite number of discrete bound-
aries. Density (ρ) is the mass per unit volume. In real materials,ρ ceases to be a smooth
function if the test volume becomes too small (see Figure 1). We therefore always con-
sider spatial averages over volumes that are sufficiently large that the average material
properties are indeed continuous. This is not a particularly onerous restriction, because
the minimum volume is very small compared to the scale of most geophysical phenom-
ena. The connection between the molecular and continuum properties of a material is the
science of statistical mechanics, another branch of modern physics that we will not need
to consider in detail.

A fluid is a material which cannot withstand any tendency by applied forces to
deform it in a way which leaves its volume unchanged. Consider forces acting normal to
the surface of a small volume of fluid that is often called a fluid element or a fluid parcel.
The force per unit area is called the stress. The stresses can always be broken down into
an isotropic part which is independent of direction and a deviatoric part (see Figure 2(a)).
The isotropic part squeezes the fluid (i.e. trys to change its volume). A fluid can build up
internal stress that oppose this squeezing and so an isotropic stress (called the hydrostatic
pressure) can exist in a fluid at rest. A fluid will deform forever as long as any deviatoric
stress exists. Stress that acts tangential to the surface of a fluid element is called a shear
stress. Shear stresses are always deviatoric and can be expressed in terms of non-isotropic
normal stresses by a suitable change of coordinate axes (see Figure 2(b)). In fluids, it is
usually easiest to break the stresses acting into the pressure (the isotropic normal stress)
and the shear (the tangential stress).

There are basically two kinds of fluid:

(a) Gas - A loose configuration of molecules which interact only by (com-
pletely elastic) collision. Stresses in a gas are the result of the transfer of
momentum from molecule to molecule when they collide. Gasses can be
held together only by walls or gravity.

(b) Liquid - A much closer configuration of molecules which act on each
other without necessarily colliding. Liquids commonly consist of molecular
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chains and stresses in a liquid involve not only momentum transfer in colli-
sions, but also the breaking and welding of intermolecular bonds.

Gasses are more compressible than liquids. We shall see that compressibility effects are
important only when the fluid velocity is comparable to the sound velocity. Thus the
compressibilities of gasses are still too small to be important in most geophysical con-
texts. The only practical difference between liquids and gasses is the ability of a liquid to
form a free surface. Because of surface tension, a free surface acts like a rubber sheet laid
over the surface of the liquid. This sheet can confine the liquid in the absence of walls.
Because the effects of compressibility can be ignored, the fluid mechanics of the ocean
and atmosphere have many similarities. The ocean, of course is primarily a liquid, while
the atmosphere is primarily a gas. The fact that the ocean sometimes includes solid water
(ice) has dynamical consequences, but they are indirect and generally local. On the other
hand, the presence of liquid droplets and ice particles in the atmosphere and the latent
heat associated with phase transitions between solid, liquid and gaseous water have major
global impacts on the dynamics of the atmosphere and make atmosphere dynamics some-
what more complicated than ocean dynamics..

2.2. Equations of motion

Fluids are governed by the ordinary laws of mechanics: (a) The conservation of
mass and (b) The conservation of momentum. The conservation of mechanical energy
can be derived from the conservation of momentum, so we need to consider energy con-
servation separately only when other forms of energy (thermal or electromagnetic) are
important. To the above two laws, we must also add (c) The equation of state, which
relates the density of the fluid to thermodynamic variables such as pressure and tempera-
ture. In most of this course we will restrict our attention to incompressible fluids whose
density is independent of all thermodynamic variables (but not necessarily independent of
position).

2.2.1. Lagrangian and Eulerian descriptions

Before writing down the equations corresponding to the physical laws, we need to
discuss how we are going to describe the motion of a fluid. In ordinary mechanics, we are
used to dealing with the action of forces on individual particles and it is natural to
describe their trajectory as a function of time. We can do the same thing for a fluid if we
describe the positionr of each fluid element as function of time. The situation is compli-
cated, however, by the very large number of fluid elements involved. Thus we need a way
to label each element.

One way is to give the function

r = r(x, t)

where x is the position that the fluid element had at timet = 0. This is called the
Lagrangian description of the motion. Note thatx in the above function is independent of
time. Keepingx fixed is equivalent to following the behavior of a specific fluid element.
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You can imagine the Lagrangian description as painting coordinate lines on the fluid at
time zero and then watching how these lines deform as the fluid moves. You can also
think of the Lagrangian point of view as being what an observer sees when he or she
moves with a fluid element. An example of a Lagrangian measurement in the ocean
would be the position of a float cast adrift in a current. The temperature of the water adja-
cent to the drifting float would also be a Lagrangian measurement. If you take the time
derivative ofr (holdingx fixed), you get

Dr
Dt

= uL(x, t)

This is called the Lagrangian velocity because it is the velocity of the fluid element that

was atx at time 0. I hav e used the symbol
D

Dt
to emphasize the fact that the derivative is

calculated from the point of view of an observer following a specific fluid element.

Instead of considering the velocity to be a function of which fluid element we look
at, it is often more convenient to consider it as a function of the present position. In fact,
we can completely describe the motion of the fluid by giving the velocity everywhere at a
given instant in time. This is the Eulerian description

Dr
Dt

= uE(r, t)

You can think of the Eulerian description as an instantaneous snapshot of the velocity
field. You can also envision the Eulerian point of view as making measurements as a
function of time at fixed points in space. Thus an Eulerian current measurement would
involve observing the rate of flow past a moored buoy or stationary platform.

The Eulerian velocityuE and the Lagrangian velocityuL are numerically equal at
ev ery point. However they depend on different variables. The Lagrangian description
requires knowing the path of each fluid element; the Eulerian description requires know-
ing the velocity of each fluid element at every point in space. Obviously the two descrip-
tions are related. One gets the Lagrangian description from the Eulerian description by
integrating the velocity field with respect to time. The initial position of each fluid ele-
ment element enters as the constant of integration. One gets the Eulerian description from
the Lagrangian description by differentiating with respect to time and inverting the path
r(x, t) to eliminatex in the velocity. You will have the opportunity to do this in a problem.

2.2.2. The substantive derivative

A tricky point that is primarily responsible for making fluid mechanics more com-
plicated than ordinary mechanics is that the conservation laws refer to the fluid inside a
small test volume. The boundary of this volume is attached to the molecules of the fluid
and no mass is ever allowed to cross its surface. Thus the physical laws of mechanics are
from the Lagrangian point of view. We shall often need to know the form the laws take
from an Eulerian point of view. This requires relating the time derivative of a function
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measured by an observer moving with the fluid to that measured by an observer fixed in
space. The total differential of a functionF(x, y, z, t) is

dF =
∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz +

∂F

∂t
dt

Now suppose that an observer moves at a velocityu = ux̂ + vŷ + wẑ relative to another
observer (who we shall define as fixed for this discussion). (Note the naming convention
that I have used for the components ofu; u is the x component and the other components
are in alphabetical order. I will use this convention throughout these notes.) Both
observers make measurements of the changes in F. By the definition of the partial

derivative, the fixed observer measures
∂F

∂t
. The moving observer, howev er, will change

his x position by the amountdx = udt in the time dt and will see a change
∂F

∂x
dx =

∂F

∂x
udt in F due to this x displacement. Considering all three components of

motion, plus the change in F seen by the fixed observer, the total change in F seen by the
moving observer is

dF =




∂F

∂x
u +

∂F

∂y
v +

∂F

∂z
w +

∂F

∂t





dt

Using the definition of the vector dot product and

∇ = x̂
∂

∂x
+ ŷ

∂
∂y

+ ẑ
∂
∂z

the rate of change of F in the time dt seen by the moving observer is

DF

Dt
= (u ⋅ ∇)F +

∂F

∂t

One again, I have used the symbol
D

Dt
to emphasize the fact that this is a derivative mea-

sured by a moving observer. Usually,u will be the velocity of a fluid. Thus
DF

Dt
is the

time derivative measured by an observer moving with the fluid. For this reason it is often
called the substantive or substantial or advective or moving or Lagrangian derivative. If
we rewrite the above relation

∂F

∂t
=

DF

Dt
− (u ⋅ ∇) F

the left side is now the time derivative seen by the fixed observer. The first term on the
right is the intrinsic change of F in the moving system. The second term is the additional
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change in F due to the fact that spatial variations of F are being swept by the fixed
observer (see Figure 3).

2.2.3. Conservation of mass

Suppose that V is a volume whose boundary moves with the fluid of densityρ. If V
is sufficiently small, we can assume thatρ is constant inside V without loss of generality.
The total mass inside the volume isM = ρV . If M is conserved as the fluid moves,

0 =
DM

Dt
=

D

Dt
(ρV ) =

Dρ
Dt

V + ρ
DV

DT

Dividing by V (which is never 0) we obtain

Dρ
Dt

+
ρ
V

DV

Dt
= 0

Now further suppose that V is a small cube, whose sides are of length X, Y and Z.
If the velocity varies in the x direction, it will have two effects (see Figure 4). If u is
larger by an amountδ u at the right end of the cube than at the left, it will stretch the
length of the cube. After a timeδ t, the length of the cube will be

X + δ X = X + (u + δ u)δ t − uδ t = X + δ uδ t

If X is short, we are justified in approximating the velocity variation by the first two terms

in its Taylor series. Thenδ u =
∂u

∂x
X and

X + δ X = (1 +
∂u

∂X
δ t)X

On the other hand, if v or w vary in the x direction they will result in a rotation of the
cube, but to first order, there will be no change in the length of the side.

If we apply the same reasoning to each side of the cube, the volume of the cube
after a timeδ t is

V + δ V = (X + δ X)(Y + δ Y )(Z + δ Z ) = (1 +
∂u

∂x
δ t)(1 +

∂v

∂y
δ t)(1 +

∂w

∂z
δ t) XYZ

Performing the multiplication on the right and dropping terms multiplied by (δ t)2 (which
are much smaller than those multiplied byδ t, whenδ t is small) gives

V + δ V = [1 + (∇ ⋅ u)δ t] V

where the divergence ofu is defined by
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∇ ⋅ u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z

Finally, for smallδ t

1

V

DV

Dt
= ∇ ⋅ u

and the conservation of mass equation becomes

Dρ
Dt

+ ρ∇ ⋅ u = 0

Using the definition of the substantive derivative ofρ, this can be re-written.

∂ρ
∂t

+ u ⋅ ∇ρ + ρ∇ ⋅ u =
∂ρ
∂t

+ ∇ ⋅ ρu = 0

which is the Eulerian form of the mass conservation equation.

For an incompressible fluid, the density is constant as the fluid moves. This implies
that

Dρ
Dt

= 0

or

∇ ⋅ u = 0

The first relation is the Lagrangian form of the conservation of mass for an incompress-
ible fluid, while the second is the Eulerian form.

2.2.4. Conservation of momentum

The momentum of a particle with mass M is defined to beMu. Newton’s Second
Law simply states that rate of change of momentum is equal to the forces acting on the
particle. When the particle is a volume which always encloses the same mass of fluid we
can write this law

D

Dt
(Mu) = M

Du
Dt

= F

whereF is the vector sum of all forces acting. Dividing by the volume, this can be re-
written

ρ
Du
Dt

= ρ(
∂u
∂t

+ u ⋅ ∇u) = f
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wheref is now the vector sum of all forces per unit volume.

Note that in the Eulerian form, the scalar expressionu ⋅ ∇ operates on the vectoru.
If u is expressed in a particular coordinate system,u ⋅ ∇ operates on both the components
and the unit vectors. In Cartesian coordinates in which the unit vectors are constant as a
function of position, the result is simply evaluated by applying the operator to each com-
ponent ofu. In curvilinear coordinates in which the unit vectors vary with position (such
as the azimuthal unit vector̂φ of cylindrical coordinates), one must be careful, because
u ⋅ ∇φ̂ is not zero. (See Tritton (2nd Edition) pages 60-61 for expanded versions of
u ⋅ ∇u in several standard coordinate systems.) The added terms arising from the opera-
tion of the advective part of the derivative on the curvilinear unit vectors correspond
physically to the accelerations necessary to keep the fluid element following the curved
coordinate line. Note also thatu ⋅ ∇u involves the product of the velocity with itself.
Therefore this term is non-linear. It is responsible for much of the difficulty of fluid
mechanics.

2.2.5. Body forces

The force per unit volume on the right side of the momentum conservation equa-
tion is the vector sum of all forces acting on the volume. These are of two basic kinds.
Those that act directly throughout the interior of the volume and those that act on the sur-
face and thus on the interior only through molecular interactions. The basic body forces
are those of gravity and electromagnetism.

The gravity term can be written

fgravity = ρg = ρ gẑ = ρ∇φ gravity

whereg is called the acceleration of gravity, which we will almost always define to be in
the ẑ direction. The sign of the potentialφ gravity is often defined to be the negative of the
one I have used.

Electric forces play a negligible role in the ocean. However they can be important
in other geophysical contexts and measurement of the electric field produced when con-
ducting sea water moves through the Earth’s magnetic field is a new frontier in ocean cur-
rent measurement with a great deal of promise. The total electric field measured relative
to a moving conductor is

E = E′ + u × B

whereE′ is the electric field in the absence of the moving conductor andB is the mag-
netic field. It is the second term that can give direct information about ocean currents.
Three applications have been tested. The oldest involved towing an antenna several tens
of meters long behind a ship. Although electric fields were measured, the experiment
failed because the backgroundE′ due to ionospheric and magnetospheric currents was not
removed with sufficient accuracy. Howev er, a cable stretching from Florida to the
Bahamas under the Gulf Stream has been used to make a long time series of the transport
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of this very important ocean current. In this case, the non-oceanic signal is removed by
cross-correlation with a distant magnetic observatory. Recent interest in making long
term transport measurements on a global scale for studying global climatic change com-
bined with the shift of trans-oceanic communication to satellites and fiber optics and the
consequent availability of many cables has greatly increased interest in this technique.
Another recent application involves deployment of instruments with antennas only sev-
eral meters long up to a year on the ocean bottom to make long period measurements of
oceanic motions. A distinct advantage of this electromagnetic technique is that it is an
Eulerian measurement that averages the current over a fairly large volume around the
instrument.

If the fluid contains a positive charge density,ρ e, then the fluid experiences a force

fe = ρ eE′ + j × B

wherej = ρ eu is the electric current density. The second term in this relation is called the
Lorentz force. When the fluid conductivity is very large as it is in the Earth’s core and in
space plasmas,B depends onu and µ0j = ∇  × B, where µ0 is the permeability of free
space. Then the Lorentz force becomes another non-linear term in the conservation of
momentum. It is this non-linearly that makes magneto-hydrodynamics (MHD) more diffi-
cult than GFD. I will not consider these forces further because they are too small to have
dynamical significance in the ocean. I will also ignore the force on a fluid containing a
suspension of magnetic dipoles subject to a magnetic field because I know of only one
remotely geophysical application: the motion of an ooze containing a high concentration
of magnetotatic bacteria.

2.2.6. Surface forces

Consider first the normal force acting over the surface area A of a small fluid vol-
ume V (see Figure 5). Letn̂ be a unit vector normal to the surface and pointing outwards.
By convention, pressure is defined to be positive when it points inwards. Thus thex̂ com-
ponent of the normal force per unit area at each point on the surface isx̂ ⋅ − pn̂. Integrat-
ing over the entire surface A, the total force on V in thex̂ direction is

Fx = ∫ x̂ ⋅ − pn̂ dA

Now Gauss’ Theorem states that for any vector fieldQ and any closed surface A with
outward unit normal̂n,

∫ n̂ ⋅ Q dA = ∫ ∇ ⋅ Q dV

where V is the volume enclosed by A. LettingQ = − px̂, we then immediately have

Fx = − ∫ ∇ ⋅ px̂ dV = − ∫
∂p

∂x
dV
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The force per unit volume as the volume shrinks in size is just the integrand−
∂p

∂x
. If we

apply the same argument to the other two coordinate directions we finally conclude that
the total pressure force per unit volume must be

f = −
∂p

∂x
x̂ −

∂p

∂y
ŷ −

∂p

∂z
ẑ = − ∇ p

The physics of this result is not at all surprising. It simply states that there is a force on
the fluid from regions of high pressure to those of low.

Turning now to the tangential force. Consider the following simple experiment: A
layer of fluid is confined between two horizontal parallel plates (see Figure 6). A force
per unit areaτ xz (called a shear stress) in thex̂ direction is applied tangential to the top
plate. The bottom plate is held fixed. For a wide variety of fluids, it is empirically
observed that the velocity in the fluid will decrease linearly from the its maximum at the
top plate to zero at the bottom plate. This is called Couette flow. The relation

τ xz = µ
∂u

∂z

definesµ, the dynamic viscosity of the fluid.
∂u

∂z
is called the strain rate and those famil-

iar with elasticity will note the strong similarity between this relation and Hooke’s Law
for shearing of an elastic solid. For so-called Newtonian fluids such as liquid water and
air, µ is independent of the the shear stress or the strain rate. However many fluids of geo-
physical interest such as ice and rocks below their melting temperature are non-Newto-
nian and have viscosities that depend on stress and strain rate. Most of these materials
become softer as the strain rate increases. Note that the linear velocity gradient of Cou-
ette flow does not depend on the fluid being Newtonian. It is simply sufficient that there
be a unique relation between stress and strain rate because the stress, strain rate and hence
viscosity are all constant within the flow. It should be pointed out, however, that Couette
flow is not a unique solution to the problem when the fluid is non-Newtonian and the
transients associated with getting the top plate moving may result in a different flow pat-
tern. Ocean water is Newtonian to very high accuracy and we will ignore non-Newtonian
effects in this course.

In order to incorporate the shear (which henceforth we will call viscous) force into
the conservation of momentum, we need to to find the equivalent force per unit volume.
To do this, consider a horizontal tabular region within a shearing fluid (see Figure 7). If
the tablet is thin compared to its horizontal dimensions, the contributions from the verti-
cal edges are negligible and the force on the tablet in thex̂ direction is

Fx =
top
∫ (τ xz)top dA +

bottom
∫ (τ xz)bottom dA
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Since the shear force acting on the fluid inside the tablet and the outward unit normal are
both of opposite signs on the top and bottom faces, this can be written

Fx = ∫ τ xzn̂ ⋅ n̂ dA

where now the integral is over both horizontal surfaces of the tablet andn̂ = ẑ or −ẑ is the
appropriate outward unit normal. If we now letQ = τ xzn̂ and apply Gauss’ Theorem, we
obtain

Fx = = ∫ ∇ ⋅ τ xzn̂ dV = ∫
∂τ xz

∂z
dV

In the limit as the tablet becomes very small, the force per unit volume for a Newtonian
fluid becomes

f x =
∂τ xz

∂z
= µ

∂2u

∂z2

Repeating the argument for all possible orientation of forces and tablets within a shear
flow, the total viscous term becomes

fviscous = µ∇2u

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is the Laplacian operator. Note that, just as for the advective term in the fluid acceleration,
when this scalar operator is applied to a vector expressed in curvilinear coordinates, it
operates on the unit vectors as well as the components. (See Tritton, pages 60-61 for the
expanded viscous terms in cylindrical an spherical coordinates.)

This derivation of the viscous term is neither complete nor rigorous and in fact does
not even giv e quite the correct answer. A more rigorous derivation discussed in the
Appendix to Chapter 5 in Tritton (2nd Ed.) concludes that thex̂ component of the viscous
force is

∂
∂x




2µ

∂u

∂x
+ λ∇ ⋅ u





+
∂

∂y





µ(
∂u

∂y
+

∂v

∂x
)




+
∂
∂z





µ(
∂w

∂x
+

∂u

∂z
)




Note that this involves a second viscosity coefficientλ associated with compression. For-
tunately, as already noted, we are justified in assuming that the fluids we are considering
are incompressible and that∇ ⋅ u = 0. It is then easily shown that this result reduces to
the simpler one above. Even in supersonic flow, it is only the gradient of the compression
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that comes into the viscous dissipation. This is significant only within a shock wav e.

2.2.7. Effects of rotation

The final topic that we need to consider is the fact that we commonly make mea-
surements of oceanic or atmospheric flow from the surface of the Earth. Because the
Earth rotates, a point on the surface is being continuously accelerated as it follows a
curved path around the pole of rotation. Letu be the velocity of the fluid observed from
the surface of the Earth and letΩ be a vector which points along the rotation axis towards
the star Polaris and has a length equal to the angular rotation rate of the Earth. The veloc-
ity of the observer due to the Earth’s rotation isur = Ω  × r, wherer is a vector form the
center of the Earth to the observer (see Figure 8(a)). Thus the velocity of the fluid mea-
sured by an observer who is outside the Earth and does not rotate with it is

u′ = u + Ω  × r

which we can write

D′r
Dt

=
Dr
Dt

+ Ω  × r

Noting that the vectorr is the same for both observers, we see that

D′
Dt

=
D

Dt
+ Ω  ×

allows us to calculate time derivatives in the non-rotating frame given time derivatives in
the rotating one. We now apply this result to the fluid acceleration observed in the iner-
tial (non-rotating) frame:

D′u
Dt

=
D′2r
Dt2

= (
D

Dt
+ Ω  × )(

D

Dt
+ Ω  × )r

=
D2r
Dt2

+ Ω  ×
Dr
Dt

+
DΩ
Dt

× r + Ω  ×
Dr
Dt

+ Ω  × Ω  × r

Assuming that
DΩ
Dt

= 0 (a very good approximation for the Earth), this reduces to

D′u
Dt

=
Du
Dt

+ 2Ω × u + Ω  × Ω  × r

The term 2Ω × u is is often shifted to the force side of the equation. The component
of this Coriolis ‘‘force’’ tangential to the surface of the Earth is perpendicular to and to
the right of the velocity in the Northern Hemisphere, to the left in the Southern Hemi-
sphere. It is responsible for many of the interesting phenomena of GFD. It is not widely
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appreciated that there is also a component of the Coriolis force perpendicular to the sur-
face of the Earth, whose magnitude is 2Ωv sinθ , where v is the magnitude of the velocity
in the eastward direction andθ is the colatitude. This vertical force is called the Eotvos
effect and is so small compared to the acceleration of gravity that it is generally ignored.
However, it can be significant compared to the anomalous gravity field associated with
local mass variations, so that one needs to account for it when making a gravity survey
from a moving vehicle such as a ship or airplane.

When the termΩ × Ω × r is shifted to the force side of the equation, it is called the
centrifugal ‘‘force’’. It depends only on the geometry of the observer’s position relative
to the rotation axis. In cylindrical coordinates R,φ , z (see Figure 8(b)), the centrifugal
force becomes

fcentrifugal = ρΩ2RR̂ = ρ∇(
1

2
Ω2R2) = ρ∇φ centrifugal

Thus the centrifugal force and the gravitational force are both gradients of scalars. By
defining a new potential

φ total = φ gravity + φ centrifugal

and a new effective gravity

geffective = ∇φ total

we need no longer specifically consider the centrifugal force. You should note that a
gravity meter on the surface of the Earth actually measuresgeffective, so that standard grav-
ity formulas already include the effect of the centrifugal force.

2.2.8. The Navier-Stokes Equation

Pulling all parts of the conservation of momentum equation together, and dividing
by ρ we finally obtain

∂u
∂t

+ (u ⋅ ∇)u + 2Ω × u = −
1

ρ
∇p − gẑ + ν∇2u

whereν =
µ
ρ

is called the kinematic viscosity andg is the total effective gravity.


