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5. Rotating Flow

The general circulation of the ocean (and atmosphere) differs markedly from the
flows we typically observe around us and from the solutions that we have discussed so
far, because large scale geophysical flows are: (1) dominated by the effects of rotation
and (2) are almost inviscid. In this chapter I will introduce a technique to help us decide
what terms in the Navier-Stokes equations are important in a given situation, present
additional basic concepts and finally apply all that we have learned to the problem of the
surface circulation of the oceans.

5.1. Non-dimensionalization

In the last chapter, we saw how approximate analyses of partial differential equa-
tions can provide insight into the behavior of the solution. Scaling the equations with typ-
ical values of the variables also has other uses, most of which begin with the basic con-
cept of non-dimensionalization.

But before I discuss non-dimensionalization, I want to first consider the effect of
variable density on the Navier-Stokes equation. Let

p → pH + p̂ ρ → ρ(z) + ρ̂

where pH and ρ(z) satisfy the hydrostatic equation

∇ pH = − ρ(z)gẑ

If we subtract this equation from the Navier-Stokes equation

(ρ(z) + ρ̂)
Du
Dt

= − ∇ (pH + p̂) − (ρ(z) + ρ̂)gẑ + µ∇ 2u

and divide by ρ(z) + ρ̂ we obtain

Du
Dt

= −
1

ρ + ρ̂
∇ p̂ −

ρ̂
ρ + ρ̂

gẑ + ν ∇ 2u

Note that gravity enters only to the extent that the density deviates from the hydrostatic

situation. In must cases, ρ̂ << ρ(z) and
1

ρ + ρ̂
=

1 − ρ̂
ρ

. Since this term only multiplies

terms that already contain the perturbations p̂ and ρ̂, we can, to first order in the perturba-
tions, write the full Navier-Stokes equations in a rotating system

∂u
∂t

+ (u ⋅ ∇ )u + 2Ω × u = −
1

ρ
∇ p̂ −

ρ̂
ρ

gẑ + ν ∇ 2u

The reduced gravity
ρ̂
ρ

g is often called the buoyancy.
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Now let τ and L be typical time and length scales for the phenomenon that we are
interested in. (I shall keep things simple at this point by assuming that the length scales
are the same in all three coordinate directions.) Also let U, Π and ∆ρ be typical variations
of velocity and pressure and density perturbation. We shall make the following changes
of variables:

t = τ t′

(x, y, z) = L(x′, y′, z′)

u = Uu′

p̂ = Π p′

σ ≡
ρ̂
ρ

g =
∆ρ
ρ

gσ ′

where σ is the buoyancy. Note that all the primed variables are non-dimensional. Substi-
tuting into the Navier-Stokes equation we obtain

U

T

∂u′
∂t′

+
U2

L
u′ ⋅  ∇′ u′ + 2ΩU k̂ × u′ +

Π
ρL

∇′ p′ = −
∆ρ
ρ

gσ ′ẑ +
νU

L2
∇′ 2u′

where I have used Ω = Ωk̂ in order to include the possibility that the direction of Ω is not
the same as the direction of gravity. Historically this equation has been divided by the

coefficient
U2

L
of the advection term. This was motivated by a desire to compare each of

the linear terms to the non-linear one. Doing this division we get




L

UT



∂u′
∂t′

+ u′ ⋅  ∇′ u′ +




2ΩL

U





k̂ × u′ +




Π
ρU2




∇′ p′ = −





∆ρgL

ρU2




σ ′ẑ + 


ν

UL


∇′ 2u′

Each of the terms in this equation is non-dimensional and most of the coefficients in
square brackets have acquired names:

L

UT
= Strouhal number = St

2ΩL

U
=

1

Rossby number
=

1

Ro

∆ρgL

ρU2
=

1

(internal Froude number)2
=

1

Fr2



-38-

ν
LU

=
1

Reynolds number
=

1

Re

The number
Π

ρU2
has no name because its value is commonly determined by the flow

itself. Note that the pressure perturbation has the units of energy per unit volume. Twice
the kinetic energy per unit volume, ρU2 is often called the dynamic pressure. There are
lots of other ‘‘numbers’’ honoring pioneers in the field of fluid mechanics. They are all
non-dimensional ratios. One that you have probably already heard of is the Mach number,
which is the ratio of the fluid velocity to the speed of sound.

5.2. Geostrophic balance

The values of the non-dimensional numbers have at least two uses. First of all,
their relative sizes tell you which terms are important in the Navier-Stokes equation. For
instance, suppose you want to study the large scale, long term circulation of the North
Atlantic Ocean. Figure 18 is a map of the average circulation of the oceans. The basic
feature of the North Atlantic is a clockwise gyre which is much more intense along the
western boundary. This western boundary current in the North Atlantic is called the Gulf
Stream (GS). Its equivalent in the North Pacific is called the Kuroshio by the Japanese
and the Black Current by the Chinese. The Southern Hemisphere oceans have similar
gyres which rotate counterclockwise, but still have western boundary intensification. The
only ocean that differs substantially from this picture is the Antarctic Ocean in which the
eastward flowing Antarctic Circumpolar Current (AACP) flows completely around
Antarctica. The velocities range from about 10 cm/s to more than 1 m/s. The currents are
not entirely steady, but when averaged over many months are reasonably so. In calculat-
ing the non-dimensional numbers we want to use estimated scales that are correct to
about an order of magnitude. We shall therefore take L ≈ 5000 km (the width of an ocean,
although one might also want to ask what would happen if we use the width of the GS,

L ≈ 100 km), τ ≈ 1 year, and U ≈ 30 cm/s. We get St ≈ 0. 5,
1

Ro
≈ 25 0 0, and for molecu-

lar viscosity
1

Re
≈ 10−12. We can conclude that the Coriolis term is much larger than

either the non-linear advection or time derivative and that to the extent that time
derivatives are important, they will overwhelm the non-linear term. Note that time scales
shorter than a year will be even less influenced by the non-linear term, but that we need
time scales of the order of a day before the time derivative term becomes comparable to
the Coriolis term. We can also clearly exclude molecular viscous forces. We would need
an eddy viscosity fifteen orders of magnitude larger than the molecular value for the vis-
cous term to be comparable to the Coriolis term. Thus we seem completely justified in
neglecting friction. I will leave it to you to convince yourself that reducing the length
scale to 100 km does not substantially alter these conclusions.

We hav e just concluded that the Coriolis force must dominate the dynamics of the
large scale ocean currents. The only remaining terms in the Navier-Stokes equation that
can balance the Coriolis term are the pressure gradient and gravity. Howev er, the
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horizontal components of the Coriolis term can never be balanced by gravity because it is
vertical. Thus the horizontal Coriolis force must be balanced by the horizontal pressure
gradient. This is called geostrophic balance. We hav e already noted that the vertical com-
ponent of the Coriolis force is always very small compared to gravity, so that the balance
in the vertical must be between gravity and the vertical pressure gradient. We can thus
calculate the internal pressure field from the density distribution using the hydrostatic
approximation. The horizontal gradient of this pressure can be used in the geostrophic
balance to predict the velocity field. Figure 19(a) and (b) illustrate simple examples.
This is called the dynamic method for determining currents.

Assume that the circulation is purely horizontal (a good approximation considering
our extremely tiny estimate for the vertical flow necessary to maintain the permanent
thermocline). In a locally flat right-handed coordinate system with x̂ east, ŷ north and ẑ
up the components of the Navier-Stokes equation are

x̂: f ρv =
∂p

∂x

ŷ: − f ρu =
∂p

∂y

ẑ: − ρg =
∂p

∂z

where f = 2Ω cos θ is called the Coriolis parameter and θ is the colatitude. In writing the
ẑ equation, we have dropped the very small vertical component of the Coriolis term (the
Eotvos effect) relative to the gravity. We can eliminate p by differentiating the first equa-
tion with respect to z and the last with respect to x.

f
∂
∂z

(ρv) =
∂2 p

∂x∂z
= − g

∂ρ
∂x

We can likewise eliminate p using the z derivative of the second equation and the y
derivative of the third.

− f
∂
∂z

(ρu) =
∂2 p

∂y∂z
= − g

∂ρ
∂y

These can be integrated vertically to give

u = −
g

ρ f

z

z0

∫ (
∂ρ
∂y

) dz + u(z0)

and
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v =
g

ρ f

z

z0

∫ (
∂ρ
∂x

) dz + v(z0)

The first term on the right is the velocity due to the internal mass distribution and is called
the baroclinic velocity because it is related to the angle at which the surfaces of constant
pressure are inclined relative to those of constant density. The integration constants u(z0)
and v(z0) are independent of depth and are due to the topography of the ocean surface rel-
ative to the geoid (an equipotential of the gravity field). They are the components of the
barotropic velocity and are independent of depth because the pressure gradient due to the
surface tilt is independent of depth (see Figure 19(b)). Obviously a ship would have a dif-
ficult time determining the topography of the sea surface on the scales required. In princi-
ple, the ocean surface topography could be measured with a satellite equipped with a
laser altimeter. Howev er, no satellite presently exists for the purpose and the barotropic
current remains a major uncertainty in the dynamical determination.

Oceanographers in the past have tried to estimate the integration constants by
assuming that the current goes to zero at some depth (the so-called level of no motion).
Modern measurements of deep currents have shown this assumption to be untenable.
Some information can be extracted from the fact that the the baroclinic current sometimes
does not satisfy conservation of mass (the continuity equation was not used in its
derivation). However the amount of information is small and one still needs an additional
assumption to make the barotropic current unique. This added assumption has typically
constrained the smoothness or size of either the added velocity or the total velocity. Gen-
erally these constraints have little physical basis. Most of our present information about
the barotropic velocity is deduced from the failure of the baroclinic velocity to equal the
measured velocity. Large scale direct measurements of total transport with electromag-
netic methods are likely to help significantly in the near future because they are directly
sensitive to the vertically averaged velocity.

5.3. The Taylor-Proudman theorem

Geostrophic balance has some interesting consequences. One is the Taylor-Proud-
man theorem that says that when ρ is constant, the velocity cannot vary along the direc-
tion of the rotation axis. You can prove this rigorously by taking the curl of the equation
of geostrophic balance.

∇ × 2Ωk̂ × u = −
1

ρ
∇ × ∇ p + ∇  × ∇ φ = 0

Using the vector identity

∇ × A × B = B ⋅ ∇ A − A ⋅ ∇ B + A∇ ⋅ B − B∇ ⋅ A

and noting that ∇ ⋅ u = 0 and that k̂ is a constant vector and therefore has no divergence or
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gradient, the above result reduces to

(k̂ ⋅ ∇ )u = 0

which is mathematical shorthand for the words of the theorem.

Figure 20 (and Figures 16.2 and 16.3 in Tritton) illustrates a remarkable conse-
quence of the Taylor-Proudman theorem. Suppose you try to move a small block across
the bottom of a rotating tank. The vertical velocity at the bottom of the tank and at the top
of the block must be zero and the theorem implies that the vertical velocity must be zero
ev erywhere. As the block moves, the fluid must move sideways to get around the block.
The theorem implies that this horizontal velocity must also be independent of height and
the fluid will move as if the the block extended the entire height of the tank. Exactly what
happens to the fluid inside the so-called Taylor column directly above the block and the
structure of the free shear layers at the outer vertical edge of the Taylor column are not
described by the geostrophic equation because they inv olve other terms such as viscosity.

You might suppose that Taylor columns are not relevant to the oceans because the
density is not constant. The equation of geostrophic balance can be written

2Ωk̂ × u =
1

ρ
∇ p + ∇ φ

If ρ is not constant, the curl of this equation becomes

2Ω∇ × k̂ × u = ∇
1

ρ
× ∇ p

which can be reduced to

k̂ ⋅ u =
−1

2Ωρ2
∇ ρ × ∇ p

This is the Taylor-Proudman theorem for a variable density fluid. The existence of Taylor
columns requires that the term on the right is small. We note that

∇ ρ = ∇ H ρ +
∂ρ
∂z

ẑ

and

∇ p = ∇ H p +
∂p

∂z
ẑ = ∇ H p + ρgẑ

where ∇ H is the horizontal components of ∇ . Thus

∇ ρ × ∇ p =
∂ρ
∂z

ẑ × ∇ H p − ρgẑ × ∇ H ρ
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Now suppose that the flow is purely horizontal (i.e. u = uH ). Then we know that

2ρΩk̂ × uH = − ∇ H p

and the first term contributing to the right side of the Taylor-Proudman theorem is

−1

2Ωρ2

∂ρ
∂z

ẑ × 2ρΩk̂ × uH ≈
uH

L

where L =
1

ρ
∂ρ
∂z

is the scale length for the vertical variation of ρ. Since L is much larger

than the depth of the ocean, this term is negligible. The surfaces of constant density in
the ocean are typically tilted through a very small angle α with respect to horizontal and

hence |∇ H ρ| ≈ sin α
∂ρ
∂z

. Thus the magnitude of the second term contributing to the right

side of the Taylor-Proudman theorem is

1

2Ωρ2
ρg sin α

∂ρ
∂z

≈
1

L

g sin α
2Ω

Since
g tan α

2Ω
is the magnitude of the geostrophic velocity due to the tilt of the ocean-air

interface, tan α = sin α for small α and the geostrophic velocity associated with internal
density variations is always much smaller than that due to the tilt of the upper surface, the
second term is also negligible.

We conclude that the Taylor-Proudman theorem in the ocean takes the same form
as in the uniform density fluid with the single caveat that the fluid velocity must be hori-
zontal. Experimental work in rotating, strongly stratified fluids has demonstrated that
Taylor columns still exist. However, they do not extend through the entire depth of the
fluid, but are limited by the scale depth of the density variation as one might expect.
While not important in the oceanic context, this limited length may be important in the
deep planetary atmospheres of the gas giants such as Jupiter and in stars.

5.4. Modeling

Another important use of non-dimensional numbers comes from the fact that the
equations governing the flow will be identical if the numbers are identical even though
the values of the individual scales are very different. Thus we can model ocean currents
in the laboratory by making Ω large and U small. We can then achieve a small Rossby
number (dominant Coriolis term) with a modest value of L. We must, however, make sure
when we do this that the Reynolds number remains very large or our experiment will
have viscous effects not seen in the real ocean. For instance, suppose we want to demon-
strate the Taylor column effect. It is not too difficult to make a rotating tank with Ω = 2π
(1 revolution per second). Much faster than this and the plastic or glass outer sides may
crack and fail. If we want the block to be 1 cm in diameter and the flow to be geostrophic,
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we require that

Ro =
U

2ΩL
≈

U

2π ⋅ 0. 01
<< 1

which implies U << 2π ≈ 6 cm/s. For the same length scale, The neglect of the viscous
term requires

Re =
UL

ν
≈

U ⋅ 0. 01

10−6
>> 1

which implies U >> 10−4 cm/s. There is a reasonably wide range of U which can satisfy
both these conditions.

5.5. Angular momentum and vorticity

The physics behind the Taylor-Proudman theorem is essentially the conservation of
angular momentum. If u varies in the direction of Ω, it will result in stretching or twisting
of small small cylinders of fluid parallel to the rotation axis. If the velocity is perpendicu-
lar to the rotation axis and it varies along the rotation axis, it will cause the small cylinder
to tilt and change the direction of Ω (see Figure 21(a)). I am sure you are familiar with a
gyroscope and know that torque (rotational force) is required to twist the direction of the
rotation axis. If the velocity varies along the rotation axis, it will stretch (or compress) the
cylinder (see Figure 21(b)). If you stretch a cylinder of radius R1 and length L1 to a new
length L2, conservation of volume (i.e. mass when ρ is constant) implies that
πR2

1 L1 = πR2
2 L2 and conservation of angular momentum implies that R2

1Ω1 = R2
2Ω2.

Thus

Ω1

Ω2
=

L1

L2
=





R2

R1





2

Thus stretching the cylinder increases its rotation rate. The ratio of the rotational kinetic
energies before and after is

KE1

KE2
=

R2
1Ω2

1

R2
2Ω2

2

=




R1

R2





2




Ω1

Ω2





2

=
Ω2

Ω1





Ω1

Ω2





2

=
Ω1

Ω2
=

L1

L2

and stretching the cylinder increases its rotational kinetic energy. You can duplicate the
physics of this effect by tying a small weight to the center of a piece of string. Then hold-
ing the ends of the string, spin the weight in a circle. When you pull on the string the
weight will circle faster. Notice that you must exert a force to move your hands apart. In
geostrophic balance, the kinetic energy of the fluid is very small compared to the rota-
tional kinetic energy. (The Rossby number squared is the ratio of these energies.) Thus
the fluid does not have enough energy to spontaneously do any stretching or twisting of
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the cylinders of fluid. The fluid therefore moves in such a way as to avoid stretching and
twisting.

The quantity ω = ∇  × u is called the vorticity of the flow. The vorticity of uniform
rotation, u = ΩRφ̂ is 2Ωẑ. Howev er rotation is not the only way for a fluid to have vortic-

ity. The vorticity of uniform shear (i.e. Couette flow) u =
U

D
zx̂ is ω =

U

D
ŷ. All shear

flows have vorticity and since shear and the effects of viscosity are almost inseparable, all
viscous flows have vorticity. Vorticity can also be generated when gravity acts on a hori-
zontal density gradient. The total gravitational force on a heavier blob of fluid will exceed
that on a neighboring lighter element and the the fluid will twist. However, in the rest of
this chapter, we will ignore gravitationally generated vorticity by assuming that ρ is con-
stant. We will return to variable density later.

Using the vector identity

∇ (A ⋅ B) = A ⋅ ∇ B + B ⋅ ∇ A + A × ∇  × B + B × ∇  × A

with A = B = u, we can express the non-linear advection term in the Navier-Stokes equa-
tion in its invariant form

u ⋅ ∇ u = ω × u +
1

2
∇ (u ⋅ u)

which involves vector differential operators that do not require spatial derivatives of the
unit vectors and is thus quite useful for figuring out the correct form of this term in curvi-
linear coordinate systems. We also see that it involves the Coriolis force due to the vortic-
ity plus the gradient of the the kinetic energy per unit mass. This latter is called the
dynamic pressure for obvious reasons.

Substituting the above into the Navier-Stokes equation and taking its curl, we
obtain the vorticity equation

∂ω
∂t

+ u ⋅ ∇ ω = ω ⋅ ∇ u + ν ∇ 2ω

where we have made use of the vector identity given earlier to conclude that

∇ × ω × u = u ⋅ ∇ ω − ω ⋅ ∇ u + ω(∇ ⋅ u) − u(∇ ⋅ ω)

Note that both ∇ ⋅ ω and ∇ ⋅ u are zero. The left side of the vorticity equation is clearly
Dω
Dt

, the rate of change of vorticity seen by an observer moving with the fluid. The term

ω ⋅ ∇ u on the right has a simple physical interpretation illustrated in Figure 22. A line
which is everywhere parallel to ω is called a vortex line. When u is parallel to ω and
increases in the direction of ω, it will stretch the vortex lines. We know from our earlier
discussion that such stretching will increase the local rotation rate. On the other hand, if u
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is perpendicular to ω and varies along a vortex line, it will tilt (or twist) the vortex line
and hence change the direction of ω. Thus ω ⋅ ∇ u is the change in vorticity due to stretch-
ing or twisting of vortex lines by the velocity field.

The final term on the left expresses what we already know: viscosity can result in
shear which implies vorticity. We also see that viscosity can be thought of as a diffusion
coefficient for vorticity as well as momentum. If ν = 0, the vorticity equation reduces to
the mathematical expression of the Helmholtz vorticity theorem

Dω
Dt

= ω ⋅ ∇ u

which states that in the absence of density variations or viscosity, vorticity can only be
changed by stretching or twisting of the vortex lines. This theorem has two interesting
corollaries:

(1) If the vorticity of a constant density inviscid fluid is zero at any instant it subse-
quently will always be zero.

(2) A two-dimensional flow of a constant density inviscid fluid must have constant vor-
ticity.

The first follows from the fact that if ω = 0, the time derivative of ω becomes zero and
therefore the vorticity must remain zero. The second is true because the vorticity of a
two-dimensional flow is perpendicular to the plane of the flow and thus the ω ⋅ ∇ u is
always zero.

5.6. The velocity potential and the stream function

A flow without vorticity is called irrotational. Any vector field u = ∇ χ is automati-
cally irrotational. The scalar χ is called the velocity potential. If the fluid is also incom-
pressible

∇ ⋅ u = ∇ ⋅ ∇ χ = ∇ 2 χ = 0

Thus the velocity potential satisfies the Laplace equation. This equation is known to have
a unique solution in three cases:

(1) The gradient of χ perpendicular to a boundary enclosing the fluid is known. This
is called a Neumann boundary condition. It is obvious from the definition of the
velocity potential that this implies knowing the velocity component perpendicular
to the boundary.

(2) The value of χ is known on the closed boundary. This is called a Dirichlet bound-
ary condition. Since knowing χ permits calculation of its derivative parallel to the
boundary, this implies knowing the velocity components tangential to the boundary.

(3) A linear combination of the the last two conditions. This is called a Cauchy bound-
ary condition.
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The important point from a physical point of view is that one cannot specify both the nor-
mal and tangential velocity at the boundary of an irrotational, incompressible fluid. Since
irrotational is essentially synonymous with an inviscid fluid (a viscous fluid can never be
ev erywhere irrotational if there are boundaries), the practical consequence is that inviscid
flow can rarely satisfy the requirement that all components of the velocity go to zero at a
rigid boundary. Another way to look at this is to note that dropping the viscous term in
the Navier-Stokes equation reduces the order of the differential equation and thus the
number of boundary conditions that can be simultaneously satisfied. Thus in the real
world, high Reynolds number flows (which are not necessarily irrotational) cannot satisfy
the physically necessary boundary conditions at a rigid boundary. This problem is dealt
with in thin transition layers called boundary layers in which viscosity is important and
the the full boundary conditions can be met.

When flow is two-dimensional, the velocity components

u =
∂ψ
∂y

v = −
∂ψ
∂x

automatically satisfy the incompressibility condition ∇ ⋅ u = 0. The scalar ψ is called the
stream function. Note that its sign is arbitrary. One can show that the lines of constant ψ
are everywhere parallel to u and are called streamlines. For steady flow, the streamlines
are the paths of fluid particles, but this may not be true for time varying flow. Unlike the
velocity potential, utility of the stream function is not limited to irrotational flow. The
vorticity is easily shown to be

ω = − ∇ 2ψ

If the flow is irrotational, however, ψ also satisfies the Laplace equation and the
lines of constant ψ and χ are orthogonal to each other. We also must have that

u =
∂χ
∂x

=
∂ψ
∂y

and

v =
∂χ
∂y

= −
∂ψ
∂x

If the two-dimensional velocity field is replaced with the complex function U = u + iv,
the above relations are known as the Cauchy-Reiman conditions and they imply that U is
an analytic function. This opens up the very powerful tools of conformal mapping for
finding solutions for complicated boundary geometry. Howev er, since two-dimensional,
irrotational flow is of little interest in this course we will not consider such techniques
further.
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5.7. Bernoulli’s theorem

The invariant form of the Navier-Stokes equation for a constant density fluid can be
written

∂u
∂t

+ ω × u = ∇ (φ +
p

ρ
+

1

2
u ⋅ u) + ν ∇ 2u

For steady, inviscid flow, this becomes

ω × u = ∇ (φ +
p

ρ
+

1

2
u ⋅ u)

The vector ω × u is perpendicular to both ω and u. Thus the gradient of the quantity

H = φ +
p

ρ
+

1

2
u ⋅ u is also perpendicular to both u and ω and we can conclude that H

must be constant along both stream lines and vortex lines. This result is known as
Bernoulli’s theorem. Note that H is the sum of three terms related to fluid energy and is
the Hamiltonian of the flow.

When the flow is irrotational, we have a special form of Bernoulli’s theorem

φ +
p

ρ
+

1

2
u ⋅ u = constant

An immediate consequence is that the non-hydrostatic pressure varies inversely with
velocity. Where the velocity is high the pressure must be low and vice versa. This has
variety of important predictions for high Reynolds number flow. For instance the pressure
above an airfoil will be lower than below resulting in lift; the pressure inside a constric-
tion in a pipe will be lower (the Venturi effect) and the pressure above the highs of a cor-
rugated surface will be lower than in the troughs. If the corrugation is a water wav e, this
pressure field would cause the wav e to grow*. These examples are all illustrated in Fig-
ure 23.

A final example shown in Figure 24 is the adverse pressure gradient in the down-
stream part of the flow near a cylinder. This pressure gradient can actually reverse the
flow in the boundary layer near the cylinder and result in the phenomenon known as flow
separation.

*A more important mechanism for causing a surface wav e to grow is the wav e-like pres-
sure distribution associated with shear flow instability within the boundary layer in the air
above the surface. Shear flows (including Couette and Poiseuille flow) are notoriously
unstable. The generic shear flow instability is the Kelvin-Helmholtz instability described
in Tritton, section 16.7.
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5.8. The Ekman boundary layer

Although geostrophic balance is observed to hold very accurately in the oceans
(and the atmosphere), it cannot be the entire story. For one thing, the forces are perpen-
dicular to the motion, so that they cannot be responsible for getting the motion going.
Furthermore, there is ultimately a physical requirement that the velocity go to zero when
it meets a horizontal boundary. At some small scale near the boundary, viscosity must
become important. The boundary layer that forms at the top and bottom of the ocean can
actually be observed at the bottom of a tea cup which has been stirred (see Figure 25).
Tea leaves on the bottom spiral in towards the center and gather in a pile. This is contrary
to one’s intuition that particles heavier than water ought to be thrown outwards by the
centrifugal force. One view of the physics is that the circular motion of the water in the
cup requires a balance between centrifugal force and a pressure gradient force caused by
a tilt of the top surface. Since the required force (which is proportional to the slope of the
surface) must increase linearly with distance from the rotation axis, the shape of the top
surface is parabolic. This pressure gradient force is uniform throughout the depth range.
Near the bottom boundary, howev er, viscous effects slow the fluid so that the centrifugal
force is no longer sufficient to balance the pressure gradient force. There is therefore a net
force which pushes the tea leaves tow ards the center. Since the water near the boundary
is still rotating (albeit slower than the water above) the tea leaves follow a spiral path to
the center. What would an observer moving with the rotating fluid see? (Answer: Since he
is going around the center faster than the fluid near the boundary, he would see the tea
leaves spiral towards the center but the sense of the spiral would be reversed.)

An important consequence of the radial flow near the boundary is that the water
stops rotating much more quickly than it would if viscous diffusion had to act over the
radius or depth of the cup. For a cup with a 5 cm radius, the time scale estimated by the

methods of the previous chapter would be τ =
R2

ν
≈ 25 0 0 seconds. You would expect it to

take almost an hour for the tea to come to rest. However, you can easily verify by obser-
vation that it stops in more like 100 seconds. This is primarily due to continually pump-
ing fluid through the boundary layer where viscosity can act. If you look very closely,
you may see that some of the smallest leaves get lifted up right at the center due to the
upflow required by the converging flow in the boundary layer. If this happens you will
see them suddenly be flung radially outwards by the centrifugal force when they get
above the region where viscosity is important.

This boundary layer can be thought of as a velocity which is zero at some height
above the boundary and reaches its maximum at the boundary, where it is equal in magni-
tude and opposite in direction to the basic rotation. This is the velocity that the observer
discussed above fixed to the basic rotation would see. From his point of view, the ten-
dency of the tea leaf to go towards the center is the action of a Coriolis force due to the
motion of the boundary relative to the fluid far away from the boundary. He would con-
clude that the basic balance of force in the boundary layer is between this Coriolis force
and the viscous force associated with the velocity shear near the boundary.
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We shall make this more precise by considering the boundary layer at the surface
of a deep ocean at rest acted on by a steady wind stress τ xz = µSx̂. Since the main stream
velocity is assumed to be zero, there is no horizontal pressure gradient in either the main
stream or the boundary layer. Furthermore, since the flow in the boundary layer will be
horizontal and vary only in the ẑ direction, the non-linear advection term will also be
zero. The Navier-Stokes equation reduces to

2Ω × u +
1

ρ
∂p

∂z
ẑ = − gẑ + ν ∇ 2u

Assuming that the boundary layer is thin and that we can ignore the horizontal relative to
vertical gradients (i.e the usual boundary layer assumptions). the components at colati-
tude θ become

x̂: − fv = ν
d2u

dz2

ŷ: fu = ν
d2v

dz2

ẑ:
∂p

∂z
= − ρg

where f = 2Ω cos θ is the Coriolis parameter. Note that the first two equations inextrica-
bly couple the two horizontal velocity components together. Neither can be zero without
the other also being zero. Thus the boundary layer flow is fundamentally two dimen-
sional. The third equation is decoupled from the other two and simply states that the fluid
pressure is hydrostatic. We want to find a solution to the first two equations subject to the
boundary conditions:

@z = 0:
du

dz
= S

dv

dz
= 0

@z → infinity: u = v → 0

A trick which simplifies the algebra is to let U = u + iv. If we multiply the ŷ equation by i
and add it to the x̂ equation we obtain the single equation

ifU = ν
d2U

dz2

which has a general solution

U = Aeα z
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where

α = ± √ if

ν
= ± √ f

2ν
(1 + i) = ±

(1 + i)

δ

and δ =√ 2ν
f

= √ νΩ cosθ is the Ekman thickness that we met earlier in considering

the cone-plate viscometer., To satisfy the boundary conditions as z → − infinity we must
clearly take only the solution with Re[α ] >  0. The two boundary conditions at z = 0

become
dU

dz
= S (because S is real). Therefore

A =
Sδ

1 + i
=

Sδ(1 − i)

2

and finally

U =
Sδ

1 + i
e

(1 + i)
z

δ

The velocity components are

u = Re[U] =
Sδ

√ 2
e

z

δ cos (
z

δ
−

π
4

)

and

v = Im[U] =
Sδ

√ 2
e

z

δ sin (
z

δ
−

π
4

)

We hav e thus found a boundary layer solution for the rotating case which is quite
different than in the absence of rotation. The non-rotating (Blasius) boundary layer grows
with time and would effect the entire ocean over geologic time. The rotating boundary
layer has a constant thickness. At 45o latitude, δ = 10 cm for the molecular viscosity of
water. Increasing the viscosity by a factor of 1000 to to account for turbulent eddy diffu-
sion increases δ to only 3 meters. Obviously the ocean does not have to be very deep for
the above theory assuming infinite depth to be correct! We can also conclude that bound-
ary friction will have little influence on the interior of the ocean and that an assumption of
geostrophic balance in the interior is quite reasonable.

In a tea cup with Ω = 1 radian per second and molecular viscosity, δ ≈ 1 mm, which
is much less than the radius of the cup as required. The atmospheric layer can be thicker
than in the ocean (about 1 km) due to the more vigorous mixing associated with thermals
and the shedding of eddies from surface roughness.

Taking the ratio of the velocity components at the surface we obtain
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u

v
=

cos (
−π
4

)

sin (
−π
4

)
= −1

Thus the surface velocity in the Northern Hemisphere is rotated 45o to the right with
respect to the surface shear stress. Intuitively you can think of the boundary applying
applying shear stress to the adjacent fluid which is then deflected by the Coriolis force.
The deflected flow applies shear stress to fluid further from the boundary, which is
deflected even more by the Coriolis force. The result is that the direction of u spirals as its
magnitude decays away from the boundary (see Figure 26(a)). If we integrate the com-
plex velocity U from the surface to a depth sufficient that the velocity has effectively
fallen to zero, we obtain

U =
0

−D
∫

Sδ
1 + i

e
(1 + i)

z

δ dz = −
Sδ2i

2

Since this is negative and purely imaginary, it is in the negative ŷ direction. Thus the mass
transport by the boundary layer is rotated clockwise 90o with respect to the surface stress
and 45o with respect to the surface velocity.

Observations of the discrepancy between the drift of thin sea ice and the wind
direction were reported by Nansen and investigated by Ekman. This boundary layer is
therefore called the Ekman layer, and the spiral with depth the Ekman spiral. What one
actually see depends on whether one views the velocity from a frame fixed to the bound-
ary or fixed to the main stream far away from the boundary. At the surface of an ocean
acted on by surface shear stress due to the wind, it is appropriate to think of the deep
water as having no velocity (see Figure 26(b)). On the other hand, for the teacup experi-
ment or watching pollution drifting from a smokestack you are viewing the Ekman layer
from a frame moving with the boundary. Since the main stream velocity is much larger
than the boundary layer velocity except right at the boundary, the flow does not reverse at
any depth. The total velocity simple swings as it moves away from the boundary and
then oscillates around the direction of the main stream (see Figure 26(c)).

Although both the atmosphere and ocean have boundary layers which look strik-
ingly like the classical Ekman layer just described. The actual situation is more compli-
cated. One of the complications is that the Ekman layer is weakly unstable. This is dis-
cussed in more detail by Tritton in Section 16.5. The instabilities are the result of the cur-
vature of the shear and are quite unusual because their growth rate is only polynomial in
time rather than exponential. Thus the instabilities do not run away in a catastrophic man-
ner and do not destroy the main structure of the layer. Org anized lines of clouds some-
times seen within the atmospheric pseudo-Ekman layer are attributed to these weak insta-
bilities.
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5.9. Ocean Currents

We now hav e all the pieces necessary to explain the basic features of the general
circulation of the oceans.

5.9.1. Average wind stress over the oceans

A thorough discussion of the general circulation of the atmosphere is beyond the
scope of this course (it will be considered in more detail in Geophysics 406). However,
since the ultimate source of energy for the surface currents in the oceans is the Sun, and
its thermal energy is transferred to kinetic energy in the ocean through the action of the
winds on the surface, we do need to say something about this process.

The main fact is that the incident solar energy exceeds infra-red radiation to space
in the tropics, while the opposite is true near the poles. There is therefore a net rising of
light warm air near the equator and sinking of cold dense air near the poles. One might
therefore expect a single Hadley cell in each hemisphere with a net equator-ward flow.
This flow would be influenced by Coriolis forces so that the flow would gain a westward
component (see Figure 27(a)) and one would expect to see easterly winds at all latitudes.
In actuality the Hadley cells are subject to a variety of instabilities. One of most signifi-
cant breaks each cell into three globe-encircling cells (and an even larger number of cells
on the gas giants such as Jupiter; see Figure 27(b)). (The surface flow is still equator-ward
near the poles and the equator and one sees polar easterlies at high latitudes and the east-
erly trade winds at low latitudes. At mid-latitudes, however, the surface flow is pole-ward
and one sees predominantly westerly winds.

Most of the world’s oceans do not extend into the region influenced by the polar
easterlies, thus the wind stress on the North Atlantic or Pacific Oceans is on average a
clockwise torque. The trades blow from east to west in the lower latitudes and the wester-
lies blow from west to east at mid-latitudes. Since the continents block circulation of
water along lines of latitude around the globe, the surface circulation due to the clockwise
torque is likely to be a clockwise gyre. This surface current will be limited in depth extent
because of the Ekman layer.

The situation in the Antarctic is different. There the ocean does circle the globe and
is acted on primarily by the westerlies. A slow (10 cm/s) globe-circling current parallel to
the wind is observed. One can imagine northward transport in the Ekman layer building
up a tilt of the sea surface (down to the south). This tilt produces a pressure gradient force
that is the same at all depths and a hence a geostrophic current that is very deep and pri-
marily barotropic. The great depth extent of the Antarctic Circumpolar Current means it
carries more volume than any other current.

5.9.2. Stommel’s theory of westward intensification

We might expect the surface torque to accelerate the surface water to speeds com-
parable to the average atmospheric wind speeds. The fact that this is not observed (1 m/s
is a fast ocean current while wind speeds exceeding 10 m/s are common) indicates that
some form of frictional force is partially balancing the wind torque. Because the Ekman
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layer isolates the friction applied to the surface from the deep water, friction can only act
from the side. Clearly molecular diffusion and even the enhanced vertical diffusion dis-
cussed in the context of the seasonal thermocline are too slow to be useful in this context.
However, satellite images of sea surface temperature and color clearly demonstrate the
existence of oceanic eddies (particularly near boundaries) whose scales go up to hundreds
of km. (They can be big enough to be geostrophic themselves and in many respects
resemble weather systems in the atmosphere.) Although a complete theory of horizontal
mixing does not yet exist for the ocean, it almost certainly can be approximated by a the-
ory with a diffusivity orders of magnitude larger than those already discussed. For our
purposes it is only necessary to convince ourselves that frictional forces can act from the
side. These friction forces must oppose the wind forcing and thus necessarily be a
counter-clockwise torque in the Northern Hemisphere.

The wind torque is fairly uniform and in the absence of some other kind of physics,
one might expect uniform viscous dissipation and hence uniform velocity gradients. This
would imply a uniform gyre. Specifically, we would not expect a profound asymmetry in
the structure of the northward currents in the west and the southward currents in the east.
However, as we hav e already noted in Figure 18, observation shows that the western and
eastern boundaries are profoundly different with a narrow, warm current in the west and a
much slower cold current in the east. Henry Stommel (probably the only full professor in
a Harvard science department in modern times without a Ph.D.) developed a simple the-
ory that can account for this asymmetry.

He started, by modifying the Ekman layer equations to include the possibility of
frictional influence from the sides. The horizontal components become

x̂: − ρ fv +
∂p

∂x
=

∂
∂z

µV
∂u

∂z
+

∂
∂y

µ H
∂u

∂y

ŷ: ρ fu +
∂p

∂y
=

∂
∂z

µV
∂v

∂z
+

∂
∂x

µ H
∂v

∂x

where he included only the horizontal stresses associated with gradients perpendicular to
the velocity. This is clearly unreasonable in corners but reasonable where the flow is par-
allel to a boundary. Then he averaged these equations vertically over a distance D much
larger than the Ekman thickness. Term by term we get

0

−D
∫ ρ fu dz ≡ fMx

0

−D
∫ ρ fy dz ≡ fMy

0

−D
∫ p dz ≡ P
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0

−D
∫

∂
∂z

µV
∂u

∂z
= µV

∂u

∂z
|z=0 ≡ Tx

0

−D
∫

∂
∂z

µV
∂v

∂z
= µV

∂v

∂z
|z=0 ≡ Ty

0

−D
∫

∂
∂x

µV
∂v

∂x
≡ Fx

0

−D
∫

∂
∂y

µV
∂u

∂y
≡ Fy

where Mx and My are the components of mass transport per unit width, Tx and Ty are the
components of the wind stress and Fx and Fy are the components of the shear stresses
acting from the sides. The vertically averaged equations are

− fMy +
∂P

∂x
= Tx + Fx

fMx +
∂P

∂y
= Ty + Fy

The averaged geostrophic pressure can be eliminated by cross-differentiating these two
equations and subtracting giving

f (
∂Mx

∂x
+

∂My

∂y
) +

∂ f

∂y
My = (

∂Ty

∂x
−

∂Ty

∂y
) + (

∂Fy

∂x
−

∂Fy

∂y
)

where we have included the possibility that the Coriolis parameter may depend on lati-
tude (although it does not depend on longitude). The vertical averaged conservation of
mass equation becomes

∂Mx

∂x
+

∂My

∂y
= 0

Thus we can reduce the above equation to

∂ f

∂y
My = τ + η

where we have defined

τ ≡
∂Ty

∂x
−

∂Ty

∂y
η ≡

∂Fy

∂x
−

∂Fy

∂y

This equation is actually the vertically averaged ẑ component of the vorticity equa-
tion (cross-differentiation and subtraction is equivalent to taking the curl). Each term has
a simple physical meaning: τ is the torque applied to the top surface by the wind and by
the right hand rule is negative in the Northern Hemisphere. η is the torque applied to the
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side by the friction. It will always be positive because it basically balances τ . In fact, in

the simplest approximation in which we assume
∂ f

∂y
= 0, we have a strict balance of the

two torques and the uniformity of the wind torque implies a uniform gyre with no west-
ern intensification. The final term represents the conservation of angular momentum for

vortex tubes (i.e. Taylor columns). Since
∂ f

∂y
> 0  in the Northern Hemisphere, this angu-

lar momentum term will always be positive on the western side of a Northern Hemisphere
ocean basin (where the flow is northward and hence My > 0) and negative on the eastern
side. Since τ is fixed, the averaged vorticity equation requires that η be larger on the west
than the east. Larger friction implies larger velocity gradients. Finally, since the mass
flux north in the west must equal the mass flux south in the east, we are forced to con-
clude that the western boundary current must be narrower and more intense than the east-
ern boundary current.

One can come to the same conclusion from purely physical considerations. Taylor
columns in the ocean are parallel to the rotation axis and therefore not vertical. They will
be shortened as they move north in the Northern Hemisphere ocean (see Figure 28(a))
and stretched as they move south (except in very narrow region around the equator).
Those moving north develop a clockwise rotation relative their surroundings, those mov-
ing south develop a counterclockwise rotation (see Figure 28(b)). The northward moving
columns appear to be under the influence of a torque which is in the same sense as the
wind torque and the balance of torques on the west side of the ocean requires an
enhanced frictional torque. The southward moving columns experience a torque opposite
to the wind torque and thus the east side of an ocean requires less frictional torque to
keep the forces in balance.

Figure 29(a) shows Stommel’s result for the simplified case of a constant uniform
wind torque and f = f0 + β y. Figure 29(b) shows a calculation by Munk using a more
realistic latitudinal dependence of the wind torque. The polar easterlies generate a second
clockwise gyre with western intensification in the northern part of the ocean that is repre-
sented by the Labrador Current in the Atlantic ocean. The equator-ward flow declines as
one approaches the equator as the flow is converted to net upward flux, thus the trades
have a maximum north and south of the equator and the region of of very low winds near
the equator is called the doldrums. The minimum (but not reversal) of the wind stress
near the equator results in clockwise torque and another gyre entirely confined to the
region near the Equator. This gyre is also observed and its components North of the equa-
tor are called the North Equatorial Current and the North Equatorial Counter Current.

5.9.3. Deep Currents

We hav e already discussed deep currents in the context of the maintenance of the
permanent thermocline. However, because their scale is large they are also affected by
Coriolis forces and are not simply a uniform equator-ward flow. There are only two
sources of deep water: off Greenland and in the Wedell Sea of Antarctica both during
local winter. In each case, the dense water flowing towards the equator curves to the
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western side of the ocean basin. Figure 30(a) shows a simplified east-west cross-section
of the South Atlantic. The top surface of the northward flowing current tilts down to the
east in accordance with geostrophic balance. As the deep western water flows north, the
Coriolis force weakens so that there is an excess pressure gradient to drive a flow east-
ward normal to the boundary. If this did not happen, the current would eventually meet
the southward flowing current from Greenland and cause a pile-up at the equator which
would result in a pole-ward pressure gradient in both hemispheres. This pressure gradi-
ent would be in geostrophic equilibrium with an eastward current and one again predicts
outflow from the western boundary current. The outward flow curves pole-ward. If the
flow curved equator-ward as one might expect from consideration of the direct effect of
Coriolis force, it would pile up dense water at the equator resulting in a pole-ward pres-
sure gradient that would strengthen the eastward geostrophic flow. If the flow continued
directly across the ocean basin it would pile up dense water on the eastern side resulting
in a westward pressure gradient which would be in geostrophic equilibrium with pole-
ward flow. It is this pole-ward flow that is observed. The approximate pattern of the deep
flow is shown in Figure 30(b). Remember that this flow does not close on itself, but
instead continually diminishes due to the net upward flux. The actual pattern is disturbed
by the blocking effect of the mid-ocean ridges. This blocking is not absolute because the
deep currents extend to depths above the tops of the ridges (see Figure 30(c) and there are
gaps in the ridges at fracture zones. These deep currents are orders of magnitude slower
than tidal flows and so cannot be measured directly. Howev er, tidal flows have no net
transport when averaged over the tidal period. Thus the pattern of the very slow deep cir-
culation has been verified using methods such as the decay of carbon14 to measure the
time since the water was last in contact with the atmosphere. The Pacific differs some-
what from the Atlantic because there is no source of deep water in the North Pacific.

Finally there are subsurface currents coincident with the the equator. Although very
weak or non-existence at the surface, they hav e a strong maximum near the largest verti-
cal density gradient (about 100 meters). They extend approximately two degrees north
and south of the equator and flow from east to west. These currents were first observed in
the Pacific where it is called the Cromwell Current in honor of its discoverer who died
shortly thereafter. They hav e volume transports comparable to the Gulf Stream and must
be considered among the oceans’ major flows. Nevertheless their origin remains contro-
versial with non-linear rectification of large scale, quasi-geostrophic wav es at the singu-
larity where the Coriolis force goes to zero at the equator among the leading candidates.


