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6. Surface Wa ves

Wa ves are the inevitable physical consequence of forces that try to restore equilib-
rium after a perturbation. They are tremendously important in the environment, because
they are an efficient way for mechanical energy to be transported from one part of the
system to another. In addition their consequences are often quite easy to see. Further-
more there are many similarities between wav es that have restoring forces arising from
very different physics. Before discussing specific examples, I will review sev eral con-
cepts common to the analysis of all small amplitude wav es.

6.1. Perturbation expansions

In previous chapters, the Navier-Stokes equations became linear because the advec-
tion term was small or identically zero for reasons related to the flow geometry or scale.
This non-linear term can also be negligible when the amplitude is small. Such situations
are often best handled using a perturbation expansion. We assume that we know a solu-
tion to the relevant equations that is close to the situation we are actually interested in.
We can then solve the problem by finding the difference between the known and desired
solutions. This difference will obey a simpler linear partial differential equation.

To illustrate the technique while keeping the algebra to the absolute minimum, I
will first consider the conservation of mass (continuity) equation for the case of an
incompressible fluid

∇ ⋅ u = 0

Let

u = u0 + εu1 + ε2u2 + ε3u3 + . . .

p = p0 + ε p1 + ε2 p2 + ε3 p3 + . . .

where u0(x, t) and p0(x, t) are the solution we know and εu1, ε2u2, ε p1, ε2 p2 etc. are suc-
cessively smaller corrections to the initial solution. The constant ε < 1  serves two pur-
poses. First, it allows us to easily see what happens if we adjust the size of the perturba-
tion. Second, it serves as a convenient book-keeping tool since we expect that terms
involving successively higher powers of ε to get smaller and smaller. Substituting the
expansion for u into the continuity equation gives

∇ ⋅ (u0 + εu1 + ε2u2 + . . .  ) = ∇ ⋅ u0 + ε∇ ⋅ u1 + ε2∇ ⋅ u2 + . . . = 0

Now we hav e assumed that u0 already satisfies the zeroth order equation

∇ ⋅ u0 = 0

Subtracting this equation from the expanded equation and dividing by ε gives
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∇ ⋅ u1 + ε∇ ⋅ u2 + . . . = 0

As ε becomes small, this equation reduces to the first order equation

∇ ⋅ u1 = 0

which (with the other first order equations and boundary conditions) can be solved for u1.
Once u1 is known, we can subtract this last equation from the previous one, divide by
epsilon and derive the second order equation

∇ ⋅ u2 = 0

This process can be continued for as many orders as one desires. The higher the order,
the better the accuracy. Alternatively, the higher the order, the larger ε can be for a speci-
fied accuracy.

The continuity equation is linear so that the expansion process decouples the orders
and each order satisfies the same equation. This is not true for non-linear terms such as
the advection in the Navier-Stokes equation. Substituting the velocity expansion into this
term gives

u ⋅ ∇ u = (u0 + εu1 + ε2u2 + . . .  ) ⋅ ∇ (u0 + εu1 + ε2u2 + . . .  )

= u0 ⋅ ∇ u0

+ ε(u0 ⋅ ∇ u1 + u1 ⋅ ∇ u0)

+ ε2(u0 ⋅ ∇ u2 + u2 ⋅ ∇ u0 + u1 ⋅ ∇ u1)

+ ε3(u0 ⋅ ∇ u3 + u3 ⋅ ∇ u0 + u2 ⋅ ∇ u1 + u1 ⋅ ∇ u2)

Note that the first order term (the one multiplied by ε ) is linear in u1, the second order
term is linear in u2 and the third order term is linear in u3. In general, the zeroth order
term is not linear, but we assume from the start that we know a solution to the zeroth
order equation.

Consider the very important example of a perturbation to the state of rest u0 = 0, ρ
constant. The zeroth order (ε = 0) Navier-Stokes equation becomes

1

ρ
∇ p0 = − gẑ

and as you might expect we simply have hydrostatic pressure. Subtracting this equation
from the full (expanded) Navier-Stokes equation, dividing by ε and then letting ε → 0
gives the first order equation
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∂u1

∂t
+ 2Ω × u1 +

1

ρ
∇ p1 = ν ∇ 2u1

which is independent of gravity because we have assumed ρ constant. This linear equa-
tion can be solved for u1 and then the second order equation is

∂u2

∂t
+ u1 ⋅ ∇ u1 + 2Ω × u2 +

1

ρ
∇ p2 = ν ∇ 2u2

This equation is again linear because u1 is already known.

6.2. Gravity waves

I will now consider wav es on the surface of a constant density ocean. These are not
covered in Tritton, although he discusses several other types of wav es and the concepts of
phase and group velocity.

The ratio of the magnitudes of the acceleration to Coriolis terms in the first order
Navier-Stokes equations is

|2Ω × u1|

|
∂u1

∂t
|

≈ 2Ωτ

If you have been to an ocean beach, you know that surface wav es are dominated by peri-
ods τ less than 100 seconds Thus 2Ωτ <≈ 10−2 and the Coriolis force is negligible. The
first order equations for surface wav es are therefore

∂u1

∂t
+

1

ρ
∇ p1 = ν ∇ 2u1

and

∇ ⋅ u1 = 0

Taking the divergence of the first equation and using the second immediately implies

∇ 2 p1 = 0

Thus the first order perturbation pressure satisfies the Laplace equation. Alternatively,
taking the curl of the first equation immediately implies that

∂
∂t

∇ × u1 =
∂ω1

∂t
= 0

Thus the first order vorticity of the motion must be constant in time. The only constant
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vorticity consistent with a motion that oscillates around a state of rest is zero. Thus u1 is
irrotational and can be represented as u1 = ∇ φ1. The vanishing of the divergence of u1
then implies that

∇ 2φ1 = 0

This equation further implies that

∇ 2u1 = ∇ 2(∇ φ1) = ∇ (∇ 2φ1) = 0

and hence that the viscous term is zero in the first order equations. This is why small
amplitude surface gravity wav e energy can propagate across entire ocean basins.

To complete the statement of the problem we need to consider the boundary condi-
tions. The ẑ component of the first order Navier-Stokes equation is

∂w1

∂t
+

1

ρ
∂p1

∂z
= ν ∇ 2w1

Where I have retained the viscous term for the moment. The obvious condition on the
vertical velocity at the ocean floor is w1 = 0 (unless it is extremely porous) and therefore
this equation implies that the boundary condition on the pressure at the bottom must be

@ z = − H :
∂p1

∂z
= 0

If the top surface is perturbed vertically a distance h, the pressure change will be
p1 = ρgh (see Figure 31). Taking the time derivative of this gives

∂p1

∂t
= ρg

∂h

∂t
= ρgw1

This relation can be used to eliminate w1 in the ẑ component of the Navier-Stokes equa-
tion to give

@ z = 0:
∂2 p1

∂t2
+ g

∂p1

∂z
= ν

∂
∂t

(∇ 2 p1)

However, because p1 satisfies the Laplace equation, this immediately simplifies to

@ z = 0:
∂2 p1

∂t2
+ g

∂p1

∂z
= 0

This relation is called a kinematic boundary condition and is in fact the only way that
time enters the problem. Note that again viscosity completely drops out of the problem to
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first order.

The condition required to complete the problem is the initial shape of the top sur-
face. A basic theorem due to Fourier states that any arbitrary height variation can be rep-
resented as a sum of cosine and sine wav es. As long as the equations do not involve
products of the solution (i.e. the wav e amplitude is small enough that the first order equa-
tion gives sufficient accuracy), all the individual wav es in the sum are independent of
each other. Furthermore the only difference between a cosine and a sine is a horizontal
shift of one quarter wav elength (see Figure 32(a)). Thus it is sufficient to solve the prob-
lem for a single cosine perturbation of arbitrary wav elength. We shall therefore consider
the time history of an initial two-dimensional surface height perturbation

h(x) = A cos (kx) = A Re[eikx]

where k =
2π
λ

is known as the wav enumber, λ is the wav elength and Re[ ] means ‘‘the

real part of’’. The wav enumber is the spatial frequency and has the units of radians per
meter. Because p = ρgh at z = 0, the above condition obviously implies that

@z = 0; t = 0 p1 = ρgA Re[eikx]

Since we have assumed a two-dimensional initial height perturbation, the subse-
quent motion will also be two-dimensional and be restricted to the x-z plane. The first
order pressure must then satisfy the two-dimensional Laplace equation

∂2 p1

∂x2
+

∂2 p1

∂z2
= 0

This equation is separable in rectangular Cartesian coordinates which means that it can be
written as function which depends only on x times a function which depends only on z.
(This technique was discussed in Chapter 4 and is covered in many texts on electrostatics
or potential theory.) It is then easy to show that

p1 = [F(t)e+kz + G(t)e−kz] eikx

satisfies both the Laplace equation and the x-dependence of the initial surface pressure.
The two functions F(t) and G(t) are the integration ‘‘constants’’ of the solution. They can
depend on t because the Laplace equation is independent of t.

6.2.1. Deep water waves

At this point, we will further simplify the problem by assuming that the water is
deep enough that H → infinity. The boundary condition at the bottom then obviously
requires that G(t) = 0. Substituting the solution into the kinematic boundary condition
gives
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∂2F

∂t2
+ gkF = 0

which has a solution

F(t) = C cos (σ t)

where

σ = ± √ gk

The constant C is determined so as to match the amplitude of the initial pressure variation
at z=0. Pulling everything together, we find

p1(x, z, t) = ρgA ekz Re[ei(kx ± σ t)] = ρgA ekz cos(kx ± σ t)

6.2.2. Phase and group velocity

The argument of the cosine function is called its phase. The phase will be constant
when

kx ± σ t = constant

An observer who moves at the so-called phase velocity

c p ≡ ±
σ
k

will see a constant phase (i.e. wav e height). Thus the phase velocity is the velocity of the
crests and troughs of the wav e. The negative sign of σ is a wav e moving to the right (i.e.
towards +x) while the positive sign is a wav e moving to the left. In the remainder of this
discussion we will concentrate on the case with the negative sign.

The phase velocity is not the full story regarding the propagation of a wav e. Sup-

pose you have two waves h1 =
A

2
sin(k1 x − σ1t) and h2 =

A

2
sin(k2 x − σ2t) with equal

amplitudes, but different spatial and temporal frequencies. Adding these two wav es
together and using the standard trigonometric addition formula

cos(α ) + cos(β) = 2 cos(
α − β

2
) cos(

α + β
2

)

gives

h1 + h2 = A sin[
k1 − k2

2
x −

σ1 − σ2

2
t] sin[

k1 + k2

2
x −

σ1 + σ2

2
t]
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The combined wav e looks like either of the original wav es multiplied by a slowly varying
envelope (see Figure 32(b)). You may be familiar with this phenomenon from the ‘‘beat-
ing’’ of two tuning forks with almost identical frequency. To remain at a fixed amplitude
of the envelope, you need to move at the velocity

cg =
σ1 − σ2

k1 − k2

As the frequencies and wav enumbers of the two wav es approach each other this becomes
the so-called group velocity

cg =
∂σ
∂k

When a spectrum of wav es are present it is possible to have an env elope that is zero
outside some finite region which is called a wave group. The wav e energy is non-zero
only where the envelope is non-zero, i.e. inside the wav e group. Thus the energy of the
waves travels at the envelope or group velocity. An interesting point is that a single sine
wave carries no information other than its frequency. To transmit information, it is neces-
sary to have more than one frequency. If you mix wav es so as to create an envelope that is
not constant you have amplitude modulation (AM, commonly used for low frequency
radio transmission). If you mix wav es so that the frequency fluctuates, you have fre-
quency modulation (FM, commonly used for high frequency radio and television trans-
mission).

For deep water surface wav es

c p =
σ
k

= √ g

k
=

g

σ
and

cg =
∂
∂k √ gk =

1

2 √ g

k
=

1

2
c p

Both the phase and group velocities increase with increasing wav elength (decreasing k).

The relationship between σ and k is called the dispersion relation, because it pre-
dicts that wav es of different wav elength or frequency that are initially at the same place in
space will move at different velocities and thus subsequently disperse. If we have a patch
of ocean that initially contains a spectrum of wav elengths (due to a storm, for instance),
the patch with non-zero envelope (called the wav e group) containing this energy will
change with time as the group propagates. The short wav e energy will lag behind the long
wave energy and will be found near the back of the group (see Figure 33). The long wav e
energy will travel fastest and will be found near the front of the group. As the group prop-
agates, it will stretch (disperse) with time. We also know that the velocity of the crests
and troughs is twice that of the envelope. Thus crests and troughs move faster than the
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envelope and will move through the group. An individual pair of crests comes in the
back of the group with small amplitude and close spacing (short wav elength). Their
amplitude grows and their wav elength increases as they progress through the group.
Finally their amplitude dies and their separation is greatest as they pass out of the front of
the group (see Figure 33). Consequently, a wav e crest has a finite lifetime and you cannot
surf indefinitely on an individual crest! It is wav e groups that propagate across oceans
and not wav e crests. If you observe the arrival of the group at a beach, you will see the
long wav e (low frequency) energy arrive first. By measuring the lag time between the
arrival of the dominant wav e energy at different frequencies (see Figure 34), you can esti-
mate how far back in time (and hence space) you have to go before wav e energy of all
frequencies was coincident in space (i.e. how far away the storm was).

6.2.3. Velocities, particle orbits and linearity

Several other points can be made regarding deep water gravity wav es. To begin
with, substituting the first order pressure into the ẑ component of the Navier-Stokes equa-
tion we have

∂w1

∂t
=

−1

ρ
∂
∂z

[ρgAekz cos(kx − σ t)] = − gkAekz cos(kx − σ t)

Integrating with respect to time and then using the dispersion relation results in the first
order vertical velocity

w1 =
gkA

σ
ekz sin(kx − σ t) = σ A ekz sin(kx − σ t)

The integration constant is zero because the vertical velocity of the water surface time-
av eraged over a complete cycle must be zero.

The first order horizontal velocity can be obtained by substituting p1 into the x̂
component of the Navier-Stokes equation and proceeding as above or, alternatively, sub-
stituting w1 into the two-dimensional continuity equation

∂u1

∂x
+

∂w1

∂z
= 0

and integrating with respect to x giving

u1 = σ A ekz cos(kx − σ t)

Integrating the velocities with respect to time gives the particle displacements

x1 = − A ekz sin(kx − σ t)

z1 = A ekz cos(kx − σ t)
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Again, the integration constants vanish because the time-averaged top surface is at z=0.
These displacements represent circular particle motion which is in the direction of the
phase velocity at the top of the circle (see Figure 35(a)) and is therefore called prograde
motion.

The radius of the circle decreases with depth and will be only 5% of its surface

value at a depth z =
3

k
≈

λ
2

. Thus the deep water solution should be an excellent approxi-

mation in water deeper than half a wav elength. Swell seen in the open ocean with a

period of 10 seconds has σ =
2π
10

= 0. 31 sec−13; k =
σ 2

g
= 0. 040 m−1; and

λ =
2π
k

=
2πg

σ 2
= 16 0 meters. Consequently, to be deep water wav es, swell requires water

of order 80 meters or more depth. Since water of this depth typically involves going well
out on the continental shelves, the longer period ocean wav es that one sees near shore are
almost always significantly affected by finite water depth. Much shorter period wav es
(with periods as short as 1 second) can be seen in areas like Puget Sound or Lake Wash-
ington. A 1 second wav e has a wav enumber of 4 m−1 and a wav elength of only 1.6 meters
and is thus much more likely to be a deep water wav e near shore.

The legitimacy of the first order linearization depends on u1 ⋅ ∇ u1 being much less

than
∂u1

∂t
. We must therefore have

|u1 ⋅ ∇ u1|

|
∂u1

∂t
|

≈
k |u1|

2

σ |u1|
=

|u1|

σ /k
=

|u1|

c p
<< 1

From the results derived above, |u1| ≈ σ A. Thus an alternate form of the linearity condi-
tion is

|u1|

σ /k
= Ak =

2π A

λ
<< 1

which is just the (Strouhal number)−1 evaluated for U ≈ σ A, T ≈
1

σ
and L ≈

1

k
. For

swell with a 10 second period, λ = 16 0 meters, and linearity requires that the crest to
trough height (2A) be substantially smaller than 50 meters. It is easy to show that when

the linearity condition condition fails (i.e. A =
1

k
), the surface acceleration of the wav e

equals gravity. Obviously this wav e amplitude cannot be exceeded under any circum-
stances since gravity is the wav e’s restoring force*. Wa ves with crest to trough height
exceeding 20 meters are extremely rare in the open ocean even in the roughest conditions.
Thus one never approaches this extreme limit. However, for 1 second wav es the critical

*It should be noted that seismic surface wav es can have surface accelerations that exceed
gravity because energy is stored in the elasticity of the material in addition to the gravita-
tional potential energy.
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half-amplitude is only 0.25 meters and non-linear effects such as asymmetry in the lead-
ing and trailing sides of wav e crests (causing the wav es to lean forward in their direction
of propagation), smaller curvature in troughs than at crests and changes in the frequency
spectrum as wav es of different wav enumbers and periods interact are commonly seen.
One can study these effects by going to higher order approximations.

The wind is actually most efficient at generating very short period wav es on the
ocean surface. It is the importance of the non-linear effects for these shorter wav es that
conspires in areas of active wav e generation to cause short wav elength energy to be con-
verted into longer wav elength energy or to be dissipated in turbulence (white capping).
The ‘‘cascading’’ of energy from the short wav es to the long wav es continues until the
waves become long enough that the non-linear effects weaken. This is why the wav e
energy in the open ocean has a spectral peak at a period of order 10 to 30 seconds (see
Figure 34). Detailed consideration of these processes is beyond the scope of this course.

We can also use the calculated scale for the velocity, U ≈ σ A to estimate the size of
other terms in the momentum equation relative to the time-dependent inertia.

|Ω × u1|

|
∂u1

∂t
|

≈
2Ωσ A

σ (σ A)
=

2Ω
σ

=
1

Strouhal number × Rossby number

This is a re-statement of our justification for ignoring the Coriolis term as long as the
wave period is small compared to a day.

|ν ∇ 2u1|

|
∂u1

∂t
|

=
νσ Ak2

σ (σ A)
=

τ −1

σ
=

1

Strouhal number × Reynolds number

where

τ =
1

k2ν
=

L2

ν

is the times scale for diffusion of a disturbance of length scale L =
1

k
in a medium of vis-

cosity ν . Since this diffusion time is always very much longer than the wav e period, we
would be justified in ignoring viscous damping even if the wav e solution did not make the
viscous term identically zero.

6.2.4. Shallow water waves

If the water is much shallower than half a wav elength there will be a major differ-
ence in the solution. The vertical fluid displacement and velocity must go to zero at the
bottom (unless it is very porous) and hence the scale for vertical variations must be the

water depth H rather than
1

k
of the exponential variation in the deep water solution.

There are two ways to approach this problem.
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The first is to consider the effect of finite water depth on the deep water solution.
Keeping both the +kz and -kz exponential terms in the solution to the Laplace equation
and applying the boundary condition

@z = − H :
∂p1

∂z
= 0

leads to the dispersion relation

σ = √gk tanh (kH)

and the solution

p1 = ρgA
cosh k(z + H)

cosh kH
cos(kx − σ t)

w1 = σ A
sinh k(z + H)

sinh kH
sin (kx − σ t)

. sp0. 5z1 = A
sinh k(z + H)

sinh kH
cos(kx − σ t)

u1 = σ A
cosh k(z + H)

sinh kH
cos(kx − σ t)

x1 = − A
cosh k(z + H)

sinh kH
sin(kx − σ t)

We can then use the following asymptotic relations for the hyperbolic functions:

x → infinity: sinh(x) = cosh(x) →
ex

2
tanh(x) → 1

x → 0: sinh(x) = tanh(x) → x cosh(x) → 1

to conclude that, when H >>
1

k
, the above solution reduces to the deep water solution and

when H becomes small (note that H ≥ − z ≥ 0), the dispersion relation reduces to

σ = k√ gH

and the solution to

p1 = ρgA cos(kx − σ t)
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w1 = A
z + H

H
sin(kx − σ t)

z1 = A
z + H

H
cos(kx − σ t)

u1 =
A

kH
cos(kx − σ t)

x1 =
−A

kH
sin(kx − σ t)

The particle trajectories for these shallow water wav es become very flat ellipses
with a horizontal velocity and displacement that are nearly independent of depth (see Fig-
ure 35(b)) and become larger as H decreases.

The fact that the shallow water solution predicts a significant horizontal velocity at
the sea floor is a consequence of the fact that we have ignored viscosity. Howev er, the
solution near the sea floor is just the oscillating plate that we considered earlier turned
upside-down and shifted to a coordinate system fixed to the plate. In order to ignore the

effect of the boundary it is necessary that the boundary layer thickness δ = √ 2ν
σ

be

much smaller than the water depth. For 10 second period wav es and molecular viscosity,
δ ≈ 1mm. It would require an eddy viscosity of order 1 m2/s to affect a depth of a meter.
Such high eddy viscosities are conceivable in the surf zone, but not away from the shore.

The phase and group velocities for shallow water wav es are

c p = cg = √ gH

and are independent of frequency or wav elength. Thus these wav es are non-dispersive
because wav es of all frequencies and wav elengths move at the same velocity. Non-dis-
persive wav es are generated when the restoring force depends only on some inherent
physical property of the material and not on the spatial gradients of displacement or
velocity. Classic examples are light and radio wav es in non-conducting media and sound
and seismic body wav es. Shallow water wav es in a tank are a very useful analog for
demonstrating the properties of these other wav es.

An alternate derivation of the dispersion relation for shallow water wav e follows
from consideration of the x̂ component of the Navier-Stokes equation

∂u1

∂t
= −

1

ρ
∂p1

∂x
= − g

∂h

∂x

where h is the vertical displacement and I have left off the viscous term for simplicity.
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This equation is valid at all depths, but in particular is valid at the upper surface. We now
vertically integrate the two-dimensional continuity equation to obtain

0

−H
∫

∂u1

∂x
dz = H

∂u1

∂x
= −

0

−H
∫

∂w1

∂z
dz = − w1(0) = −

∂h

∂t

where I have made use of the bottom boundary condition w1(−H) = 0 and the fact that u1
is independent of depth. The physical situation is simple: A miss-match of horizontal
influx and outflux across the sides of a column of fluid will cause the top surface to rise or
fall. We can now eliminate u1 and get

∂2h

∂t2
− gH

∂2h

∂x2
= 0

The dispersion relation σ = k√ gH falls out immediately when we substitute the two-
dimensional plane wav e h = A cos(kx − σ t) into this equation. One can proceed to
derive the pressure, velocities and displacements, but this approach has the disadvantage
that one cannot connect it to the solution to deep water wav es through an asymptotic
analysis.

Shallow water wav es in the open ocean are generated by storms (where they are
known as storm surges or storm tides) and by earthquakes (where they are known as
tsunamis). Resonant shallow water wav es can be generated in bays and lakes by the same
processes (where they are called sieches). Shallow water wav es in the open ocean, which
is about 4 km deep, travel at 200 m/s (700 km/hr). Their periods range from minutes to
hours. Thus their wav elengths are tens to hundreds of kilometers. Their typical ampli-
tudes in the open ocean are small (less than a meter), so they cannot be seen by eye until
the conservation of energy and momentum result in their amplitudes rising to much larger
values in shallower water.

However, by far the most common form of shallow water wav es are simply deep
water ocean wav es that approach the coast. As we have already noted, a deep water wav e

must have H >
1

k
≈

λ
2

. The equations for the phase velocities of deep and shallow water

waves lead to the conclusion that the phase velocity of a deep water wav e will always be
faster than a shallow water wav e of the same frequency (see Figure 36). Now any propa-
gating wav e must preserve its frequency as it moves into a region with different proper-
ties. You can easily understand this by asking yourself what would happen if the water
surface crossed a sharp change in conditions and the frequency was not preserved. Then
the surface just on either side of the change would oscillate up and down at different rates
and a tear would develop, which is impossible. Thus, as the wav e begins to feel the bot-
tom, its phase velocity and wav elength must decrease. This explains the focusing of wav e
energy on a headland (see Figure 37) and predicts that coastlines will be straight unless
there are regions of rock that are especially hard to erode. Second, since the total kinetic
energy of the wav e will remain constant, but be concentrated in a progressively thinner
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water layer, the fluid velocity and wav e amplitude must increase. At some point, the ris-
ing fluid velocity and falling phase velocity will cause failure of the assumption that the
non-linear terms are negligible. Non-linear waves tend to lean forward in the direction of
propagation (i.e. their front is steeper than their rear). The shape of the crests and troughs
also become asymmetric with the smooth top of the sine or cosine changing to a sharp
peak with an apex angle of about 12 0o (see Figure 38). Eventually the fluid velocity will
attempt to exceed the phase velocity and a completely new kind of disturbance called a
shock wav e forms (i.e. the wav e breaks).

Physically, we see the wav e over-steepen so much in the front that the wav e col-
lapses on itself and forms a concentrated zone of turbulence that is called a breaker or a
bore (see Figure 38). In front of the bore, the water is so shallow that the phase and
group speed is less than the speed of the bore. The water in front of the bore knows noth-
ing about the approaching bore because it is impossible to transmit information faster
than the group velocity. Behind the bore, the water is deep enough that the phase and
group speeds equals or exceed that of the bore. Wa ves coming in can overtake the bore.
The result is that the disturbance created by the bore remains concentrated at the bore.

There is a great deal of dissipation of the wav e energy in the turbulence of the bore,
but note that this dissipation and the original breaking of the wav e are not due to viscous
effects between the water and the bottom. The bottom plays a dominant role only after
the breaker runs up the beach and the fluid starts to penetrate the sand.

Note also that when the wav e breaks, the momentum carried by the wav e (which
involves no net transport of mass - the water in the wav e sloshes back and forth but on the
av erage goes nowhere) is converted into the momentum of the bore which does involve
net mass transport. In fact non-linear wav es (ev en at second order) turn out to involve
some net mass transport, because the term u1 ⋅ ∇ u1 squares the first order velocity and
thus acts like a rectifier in an electronic circuit: Its output is not symmetric with respect to
its input. This mass transport has two consequences. The transport component normal to
the shore line drives water up the beach. This shoreward transport must be balanced by a
return flow, which usually is distributed along the beach and occurs primarily in the time
period between the wav es. Under some circumstances (typically big surf and rising tide)
the return flow can vary along the shore in a process which is unstable. Regions of higher
outflow increase erosion and lower the local beach height. The regions of greater beach
height (i.e. where it is not eroded) make the wav es non-linear at a greater distance from
the coast and thus increase the shoreward transport. Thus the outward flow through the
surf zone becomes concentrated in the lows which increases the local erosion further con-
centrating the outward current. This process sometimes develops what are called beach
cusps which vary rhythmically along the coast. Other times, very strong and narrow out-
flows are generated which are called rip currents and can be dangerous to swimmers who
do not appreciate their fundamentally narrow nature and are swept out to sea. The cur-
rent component along the beach when the wav e energy does not arrive exactly normal to
the shoreline is called longshore drift. On coasts where there is a consistent non-normal
direction to the arrival of wav e energy, such currents can transport a great deal of sand
along the shore. The building of breakwaters at the entrance of rivers has the effect of
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preventing the longshore drift from filling in a dredged channel. However, because it cuts
off the supply of sand to other parts of the coast, these breakwaters can result in major
erosion elsewhere. It is not uncommon for engineers to build breakwaters normal to the
shore every hundred meters or so in an effort to stabilize a shoreline that has had its natu-
ral equilibrium disturbed in this manner.

6.2.5. Kelvin waves and tides

The picture often presented of tides as water bulges associated with the time vary-
ing gravity field due to orbital interaction between the rotating earth and the Moon and
Sun is appropriate only for an Earth completely covered by an ocean of uniform depth. It
is completely inappropriate for the real Earth and its ocean basins. The tides are actually
resonant shallow water wav es excited by the tidal gravity field. However, because their
period is comparable to a day, one cannot neglect the Coriolis term in the momentum
equation. If we consider the simple case of a wav e motion that is still two-dimensional
with motion confined to the x-z plane and propagation in the x̂ direction, the equations for
shallow water wav es become

∂u1

∂t
= − g

∂h

∂x

fu1 = −
1

ρ
∂p1

∂y
= − g

∂h

∂y

H
∂u1

∂x
= −

∂h

∂t

where f is the Coriolis parameter The first and third equations are identical to our previ-
ous equations. Thus h still obeys

∂2h

∂t2
− gH

∂2h

∂x2
= 0

which is satisfied by h = A cos (kx − σ t) and the dispersion relation is still σ = k√ gH .
However, satisfying the second equation requires that h and hence A depend on y. Elimi-
nating u1 using the second and third equations we find

∂2h

∂x∂y
=

f

gH

∂h

∂t

Substituting the plane wav e and using the dispersion relations gives

∂A

∂y
+

f

√ gH
A = 0
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Thus

A = A0 e
−(

f

c p
)y

The solution decays in a direction to the left hand of the phase velocity and grows
in the opposite direction (see Figure 39). It thus cannot exist in an ocean of infinite hori-
zontal extent. However, if the ocean has a coast at which the wav e amplitude is maxi-
mum, it can decay into the basin. At a latitude of 45o the horizontal scale for this decay
is about 2000 km. This wav e is known as a Kelvin wav e and sometimes as an edge wav e
for obvious reasons. Kelvin wav es will circulate in a counter-clockwise sense inside the
circumference of a Northern Hemisphere basin with their maximum amplitude at the
outer edge (see Figure 40(a)). If the time for this circulation corresponds to one day (as it
does in the North Atlantic) then you expect one rotating crest and one trough (see Figure
40(c)). The actual amplitude at the coastline is much larger than in the open ocean due to
the conservation of mass flux as the wav e moves into the much shallower continental
shelf water (see Figure 40(b)). If the time for propagation around the outer circumfer-
ence is much longer than a day (as it is in the Pacific) one might expect multiple crests
and troughs. In actuality, howev er, the ocean breaks up into multiple regions each of
which has a single rotating crest and trough circulating about a nodal point called an
amphidrome (see Figure 40(c)).

6.3. Capillary waves

The effect of surface tension at the free water surface is to add a restoring force that
is proportional to the curvature of the surface. Thus, for the two-dimensional case, the
total restoring force due to gravity and surface tension is well-approximated by

@z = 0: p1 = ρgAh − T
∂2h

∂x2

where T is an empirical constant. Following the steps for deep water wav es, this leads to
a kinematic boundary condition

@ z = 0:
∂2 p1

∂t2
+ g

∂p1

∂z
+

T

ρ
∂3 p1

∂z∂x2
= 0

The pressure still satisfies Laplace’s equation and we can easily show that the dispersion
relation becomes

σ = ±√ gk +
T

ρ
k3

We see that the surface tension term will always dominate the gravity term for sufficiently
large k (small wav elength). Furthermore, if we ignore gravity, the phase and group
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velocities can easily be shown to be

c p =
2

3
cg =√  T

ρ
k

These so-called ‘‘capillary’’ wav es differ in two important ways from deep water
surface wav es: their phase and group velocities decrease as the wav elength increases and
the group velocity exceeds the phase velocity. Thus you expect to find short wav es at the
leading edge of a wav e group and the group will continuously overtake individual crests.
The ripples that are generated when a droplet falls into still water are capillary wav es and
it is the fact that the short wav es propagate faster than long wav es that gives a spreading
circular ripple its distinctive character. You should actually be able to see the long wav es
behind the initial ripple if you look closely.

In water, there is a transition between the decreasing phase speed of the capillary
waves and the increasing phase speed of gravity wav es which results in a minimum phase
speed of 23 cm/s at a wav elength of 1.7 cm (see Figure 41)). This observation can be
used to determine T.

Shallow water capillary wav es are theoretically possible, but the necessary water
depth becomes comparable to the viscous boundary thickness due to the higher frequency
of capillary wav es. You may have noticed what appear to be wav es in thin sheets of water
flowing down inclines. These are actually shear flow instabilities in the Poiseuille flow.
Their small scale means that they are heavily influenced by surface tension and are not
quite the same as the Kelvin-Helmholtz shear flow instabilities seen at larger scales (see
Tritton, section 16.7).

Capillary wav es play a very important role in the growth of gravity wav es when
wind blows over water. The ‘‘cat’s paws’’ seen when a puff of wind effects the surface of
calm water are capillary wav es. The ripples initially grow due to the Venturi and Kelvin-
Helmholtz instabilities (mentioned in Chapter 5) until they become non-linear. As dis-
cussed earlier, non-linearity results in the velocity field being multiplied by itself. This
squares and hence ‘‘rectifies’’ the velocity field which results in transferring energy into
longer wav elengths. This process is a cascade. Each progressively larger scale grows both
by the non-linear rectification process and by the Kelvin-Helmholtz instability. The cas-
cade of energy from smaller to larger scales is most rapid when each scale actually breaks
(forming whitecaps) as any sailor can tell you from experience. As noted earlier, the
energy cascade stops when the wav elengths become long enough that non-linear effects
are no longer significant.


