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Abstract

Although methods to determine optimal Hashin-Shtrikman bounds for polycrystals
of cubic to monoclinic symmetry have been described, the calculation of bounds for
triclinic crystals has not previously been possible. The recent determination of
elastic moduli of common minerals with low symmetry provides motivation to
extend the Hashin-Shtrikman formulation to lower symmetry. Here, Hashin-
Shtrikman moduli, valid for crystals of any symmetry, are calculated as a function of
the properties of a reference isotropic material. Defining the difference between
moduli of the crystal and the moduli of the reference isotropic material as the
residual tensor, the optimal lower (and upper) bounding moduli are found by a
search along the boundary of positive (or negative) definite regimes of the residual
elasticity tensor. The new numerical approach reproduces earlier results for higher
symmetry crystals and successfully provides optimal bounds for triclinic crystals
that have previously not been subject to analysis. The algorithm is sufficiently
compact that implementation is relatively easy within any modern computational
environment. Hashin-Shtrikman bounds for triclinic minerals in the plagioclase
solid solution series are reported. These bounds are significantly narrower than
extremal Voigt-Reuss bounds. The Hill averages moduli lie within the Hashin-
Shtrikman bounds.

Keywords

polycrystal, aggregate, elasticity, Hashin-Shtrikman, Voigt-Reuss-Hill, isotropic-
average

Highlights

* Animproved method to calculate Hashin-Shtrikman bounds for polycrystal
aggregates elasticity is given

* The algorithm is illustrated graphically to improve comprehension of the
underlying theory and numerical methods

* The algorithm, using modern numerical environments, results in compact
code

* The new method works for crystals of any symmetry class

* Results for low symmetry crystals, that could not previously be analyzed, are
reported.
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Introduction

Elastic properties of polycrystals (aggregates of many crystals) are relevant in
engineering and technical applications (see the review by Adams and Olson 1999)
as well as in the geosciences. Since the elasticity of rocks (as polycrystalline
aggregates) controls seismic wave speeds, efforts to understand Earth composition
on the basis of its seismic structure require an ability to predict aggregate
properties from single crystal properties (eg. Hacker et al. 2003).

The pioneering work of Hashin and Shtrikman (1962, 1963) gave derivation of
isotropic elastic properties for crystal aggregates that have no preferred orientation
of the individual grains. In contrast to the unphysical Voigt (uniform strain on all
crystals), Reuss (uniform stress on all crystals), or Hill (average of the two) bounds
(Hill 1952, 1963), Hashin and Shtrikman determined bounds based on limits of
elastic energy deviations from a reference isotropic state. These so-called Hashin-
Shtrikman (H-S) optimal bounds must lie within the Voigt-Reuss (V-R) bounds.
Furthermore, empirical evidence suggests that measurements appropriately lie
within H-S bounds (Watt et al. 1976, Brown et al. 2013). Watt et al. (1976) argued
that the Hashin-Shtrikman optimal bounds are the tightest constraints that can be
determined without a detailed description of the microstructure of a material (the
shape and size distributions of crystals within the aggregate). Thus, H-S optimal
bounds provide a key constraint on the behavior of systems that are otherwise not
well characterized.

Although the generalized theory for bounds as given by Hashin and Shtrikman is
valid for any crystal symmetry, prior implementations (Peselnick and Meister
(1965), Watt (1979, 1980, 1986), Watt and Peselnick (1980)) relied on (symmetry-
dependent) analytical factoring of the residual elastic tensor. This tensor is defined
as the difference between the actual anisotropic moduli and moduli of a reference
isotropic material. As discussed in the next section, the optimal bounds are
extremal values in regimes where the residual elastic tensor is either positive
definite or negative definite. Low symmetry crystals have complicated expressions
for the positive (negative) definite boundaries. In the case of monoclinic crystals,
closed forms could not be determined for all conditions and iterative numerical
solutions were required (eg. Watt 1980). No attempt has been reported to factor
the (more complicated) lower symmetry triclinic tensor. Efforts to realize practical
calculations of optimal H-S bounds culminated with the publication by Watt (1987)
of an algorithm, appropriate for cubic through monoclinic symmetries. That
FORTRAN code required a complex mix of analytic and numerical calculations. Each
symmetry class was handled differently as a result of the changing topology
associated with the positive (negative) definite bounding conditions.

Despite the theoretical advantages of Hashin-Shtrikman bounds, the use of Voigt-
Reuss-Hill bounds has remained ubiquitous in the geosciences. In part this may
represent an implicit judgment that the Hill average of Voigt and Reuss bounds is
adequate. However, Hashin-Shtrikman bounds may have also been avoided as a
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result of a perception that these bounds are too difficult to calculate. Maintaining an
executable version of the older generation FORTRAN code was not an easy task.
Furthermore, the complexity of the algorithm used in that code may have inhibited
more widespread understanding and routine use of H-S bounds.

In this study, the fundamental equations for Hashin-Shtrikman moduli are
implemented in a high-level language (MATLAB) and contemporary numerical
methods are employed to search for the optimal bounds. The size of the code is
dramatically smaller. The method is symmetry class independent. It exactly
reproduces earlier (higher symmetry) results and is extended to applications in the
case of triclinic crystals.

Theory

Key equations of the derivation given by Hashin and Shtrikman (1962, 1963) are
reproduced here in order to identify necessary numerical steps. The elastic energy
of a polycrystal aggregate is

1
UZEIO'ijé'ijdV (1)

Given “effective” isotropic moduli K* and G* (the quantities to be bounded here), the
elastic energy of the aggregate is approximated as

U, 5% [9K*(e°)? + 2G*€lje; (2)

. 1 . . .
where 0;; and €;; are the stress and strain tensors, €° = ge,‘(’k is the isotropic non-

deviatoric strain, and E{’j is the isotropic deviatoric strain. Define the residual stress
tensor as:

Rijii = Cijia — Cli (3)

where C;jy,; is the anisotropic elastic tensor for the crystal of interest and Cj},;is the

elastic tensor of a (variously described in the literature as the “fictive”, “comparison”
or ) “reference” isotropic material:

2
Gkl = (Ko + gGo) 80k + 2Gol;j (4)

where K,and G, are moduli for the “reference” material. Within the variational
framework of the theory, these “reference” moduli are free parameters that can be
adjusted to find the appropriate bounding “effective” elastic moduli.

With the 4th order tensor isotropic operator defined as:
1
Lijia = 5 (BB + 6ubjic) (5)

Hjjj, is determined by:
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Hijmannkl = Iijkl (6)

If the differences between the actual stresses in a polycrystal and stresses in the
“reference” material are defined by

Dij = 0ij — Cliri€ri (7)

Hashin and Shtrikman found that the extremes of elastic deviatoric energy with
respect to p;; required that

[Hijii(Q) = Blijir — V8161 |pir () = €9 — Bllijia — Y661 )Prer) (8)

where (1 is the orientation of a particular crystal relative to the coordinate system,
angle brackets represent averages over all orientations, and

T = i (10)
y =35(a—3p) (1)
Defining
Aijkr = Hijig — Bliji — 601 (12)
and determining Bjj such that:
BiimnAmnia = lijki (13)

Hashin and Shtrikman rewrote Equation 8 in terms of B;j;; and averaged over all
orientations to give:

(Dij) = Bijri)(€nn — Blmnki{Pr1) — ¥ Smn St {Pri)) (14)
where the average of (Bjjy,) is
(Bijk1) = B16;j6k; + 2By 1y (15)
This can be reduced to:
Bijx16ij0x1 = 9B; + 6B, (16)
Biju6u85 = 3By + 12B, (17)

Application of pure dilatational strain in equation 14 gives an “effective” bulk
modulus:

3B1+2B,

K" =K, + 3+a(3B1+2B;)

(18)
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Application of pure shear strain in equation 14 gives an “effective” shear modulus

B,

G* =G, + 14288,

(19)

Within the variational framework of the Hashin-Shtrikman derivation, the “effective”
moduli are maximized or minimized through appropriate choices for K, and G,
subject to whether the tensor of deviatoric stresses R, j, is either positive definite or
negative definite. Such extremal values are the optimal bounding moduli.

The problem can be graphically understood with reference to Figure 1. Here elastic
moduli for the triclinic plagioclase feldspar, albite, as reported in (Brown et al
2006) are used. However, the topology and trends are similar for all crystals of all
symmetry classes. The horizontal axis is the parameter G, and the vertical axis is the
parameter K,. Domains where R; j, is either positive or negative definite are given
with dark shading. The tensor is always positive definite for small values of K, and
G,. The tensor is always negative definite for large values. Boundary locations
depend on the specific moduli of a particular crystal. As noted by Hill (1963), the
lower positive definite boundary trends to the Reuss bulk modulus as G, goes to
zero. As G, goes to infinity, the negative definite boundary trends to the Voigt
average bulk modulus. Both K* and G* are monotonic functions of K, and G, .
Contours of constant G* (equation 19) are plotted as the light lines in the figure. As
shown, a maximal (optimal) value of G* occurs in the positive definite region and a
minimal (optimal) value for G* occurs in the negative definite region. These points
are marks as B and C and represent the optimal Hashin-Shtrikman bounds on the
shear modulus. Similar contours in K* provide the graphical solution for optimal
bulk moduli. As graphically demonstrated, the optimal bounds always lie on the
boundary of the positive (negative) definite regions.

Implementation

The following MATLAB code fragments illustrate numerical implementation of the
theory described above. All 4th order elastic tensor quantities are mapped, using the
Voigt notation (Nye 1957), into 6x6 elasticity matrixes. There is no loss in generality.

Determination of the Hashin-Shtrikman moduli (equations 18 and 19) can be
accomplished as follows. Given scalar values for the reference material moduli, the
compliance factors (equations 9-11) are calculated:

alpha=-3/(3*kot+4*go);
beta=-3*(ko+2*go)/(5*go* (3*ko+4*go));
gamma=(alpha-3*beta)/9;

The form of the isotropic operator for elastic tensors is defined in equation 5. In the
6x6 matrix representation, the first three diagonal terms are always one while the
last three elements can be either %z or 2, depending on how the operator is invoked.
These two forms are labeled I and Iinv.
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I=eye(6,6);

Iinv=I;
Iinv(4:6,4:6)=2*1(4:6,4:6);
I(4:6,4:6)=.5*%1(4:6,4:6);

The 6x6 isotropic modulus matrix (equation 4) is given by

co=2*go*I;
co(l:3,1:3)=co(1:3,1:3)+(ko-2/3*go)*ones(3,3);

The residual matrix (equation 3) and its inverse (equation 6) are:

R=cij-co;
H=inv(R);

Equations 12 and 13 are implemented as follows (note the use of the inverse
isotropic operator when working with compliances):

A=H-beta*Iinv;
A(1:3,1:3)=A(1l:3,1:3)-gamma*ones(3,3);
B=inv(A);

Orientationally averaged values for the B matrix (equations 16 and 17) are given by:

sumBl=sum(sum(B(1:3,1:3)));
dB=diag(B);
sumB2=sum(dB(1:3))+2*sum(dB(4:6));
Bl=(2*sumBl-sumB2)/15;
B2=(3*sumB2-sumB1)/30;

The Hashin-Shrtikman effective moduli (“khs” and “ghs”) are then determined
(equations 18 and 19):

khs=ko+(3*B1+2%B2)/(3+alpha* (3*B1+2*B2));
ghs=go+B2/(1l+2*beta*B2);

As shown in the previous section, the optimal bounds on the Hashin-Shtrikman
moduli lie on the boundaries of the positive (negative) definite regions of matrix R.
R is positive (negative) definite if and only if all eigenvalues of R are either all
positive or all negative. The following code sets the variable value to 1 if positive
definite and to -1 if negative definite.

[~,D]=eig(R);
s=sum(sign(diag(D)));
value=0;
if s==6,
value=1;
elseif s==-6,
value=-1;
end
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The fragments given above are assembled into the MATLAB function hscalc with
inputs being the reference material moduli (ko and go) and (as a 6x6 matrix ) the
crystal (anisotropic) elastic moduli ci j. Output by this function are the H-S effective
moduli and the variable value (1 for positive definite, -1 for negative definite and 0
otherwise).

Finding optimal bounds for the effective moduli requires a search along the positive
(negative) definite boundaries. As illustrated in Figure 1, the positive definite
boundary at ko=0 (lower point A) is found with a search along the lower (go) axis
as shown below. The smallest possible reference shear modulus (essentially zero) is
given by gmin and gmax is an upper bound that is pragmatically set large (1000
GPa).

dg=(gmax-gmin)/2;

go=gmin+dg;

dg=dg/2;

[~,vo]l=hscalc(kmin,go,cij);
while du>.01

if vo==0

gn=go-dg;
else

gn=go+dg;
end
[hs,vn]=hscalc(kmin,gn,cij);
dg=abs(gn-go)/2;

go=gn;
vo=vn;
end

With the “reference” shear modulus set to range from zero to point A of Figure 1, the
positive definite boundary is searched to find the point with maximal values of the
H-S moduli (point B). Either the bulk or shear modulus can be tested for the
maximal value with little change in results. The boundary is found for each specified
value of go by searching along ko (using similar coding as given above). The search
is controlled by the standard MATLAB function fminbnd, a bounded search
algorithm for the maximum (minimum) of a function of a single variable. fminbnd
uses the “golden section” method (Brent 1973) with parabolic interpolation. Since
both H-S moduli are monotonically increasing functions of ko and go, a single
extremal value exists along the boundary as shown in Figure 1.

Since one or more eigenvalues of the residual elasticity matrix Rji goes to zero on
the positive (negative) definite boundary, it is necessary to move slightly off the
boundary in order to insure that necessary matrix inversions are adequately scaled.
However, since Hashin-Shtrikman moduli vary relatively slowly (as shown in Figure
1) negligible changes to the calculated bounds result from avoiding the exact
boundary. The search along the negative definite boundary (minimum go found at
upper point A of Figure 1), to find the smallest upper values of the H-S moduli (point
C of Figure 1) proceeds in a similar way.
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The MATLAB function included with this paper, HSBounds, returns the optimal H-S
bounds. This function makes use of “nested” sub-functions within the main function.
In MATLAB, variables defined within HSBounds are locally available to any nested
function. In particular, the elastic moduli matrix cij local can be used by
lowerbound, upperbound, and the functions called by these functions. This
avoids the need to define global variables in order to use the built-in MATLAB
function fminbnd.

Minimal error checking is provided. HSBounds checks that the input matrix is
appropriately 6x6, symmetric, and positive definite. Thus, the user is expected to
construct the correct 6x6 matrix of elastic moduli. Moduli could be passed to
HSBounds as a (more compact) vector. However, problems arise in deciding on the
order of moduli and in tracking the symmetry-differing number of moduli. The
current implementation avoids difficulties (in the sense that conventions to
construct the matrix from a vector can differ) between the user and the function.

Four matrix arrays are returned by HSBounds. The first is a 2x2 array that contains
upper and lower optimal H-S bounds for the bulk modulus and shear modulus. The
second array (3x2) contains the V-R-H bounds. The third array (2x2) is a listing of
the “reference” moduli at the optimal points. The fourth array (1x2) gives values of
the reference shear modulus at the points labeled A in Figure 1. The third and fourth
output arrays are provided in order to confirm that reasonable results have been
obtained. All returned results should be interrelated as shown by the topology
plotted in Figure 1. In all currently tested cases, results have been sensible.

If the m-files HSBounds.m and test. HSBounds.m are in the MATLAB path, invoking
the script test. HSBounds will calculate bounds for the examples used in Watt (1987).
The current code should reproduce his results to 0.01 GPa. Newly reported (Brown
et al. 2013) elastic moduli for triclinic plagioclase feldspars are also included in the
script. H-S bounds based on these data are further discussed below.

Discussion

The current implementation has been tested against the examples provided by Watt
(1987). Results for reported moduli agree to 0.01 GPa, the least significant figure
given in the earlier work. Since the current implementation and the former
implementation used ~0.01 GPa internally as a convergence criteria, this agreement
is acceptable and exceeds experimental uncertainty by about an order of magnitude.

Hashin-Shrtikman bounds for recently reported triclinic plagioclase feldspars elastic
moduli (Brown et al. 2013) are given in Table 1. The underlying data are listed in
test HSBounds. The seven crystals range in composition in the solid solution
series from albite (NaSi3AlOsg) to anorthite (CaSi2Al20g). Compositions are reported
in terms of anorthite content (Anx where x=0 for albite and x=100 for anorthite). In
all cases, the H-S bounds are significantly tighter that the V-R bounds and the (Hill)
average of the V-R bounds lies between the H-S bounds. There is a decrease in the
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width of all bounds between Ang and Angs as the overall anisotropy of plagioclase
feldspars decrease with increasing anorthite composition.

Conclusions

A new implementation, based on a straightforward and transparent algorithm, for
calculation of isotropic polycrystal aggregate elastic behavior is reported. The
method allows calculation of bounds derived by Hashin and Shtrikman (1962, 1963)
for crystals having any symmetry. The method is given here as a MATLAB function.
However, it is easily transferable to any modern computational environment that
has access to standard numerical algorithms. For the first time Hashin- Shtrikman
bounds have been calculated and reported for crystals of triclinic symmetry. In all
cases examined, the Hill average of Voigt and Reuss bounds lies between the upper
and lower Hashin-Shtrikman bounds.

Although Watt et al. (1976) argued compellingly that Hashin-Shtrikman bounds are
preferable in situations where the shape and size distributions of grains are not
constrained, the use of Voigt-Reuss-Hill bounds has remained ubiquitous in the
geosciences. In part this represents an implicit judgment that, within uncertainties,
the Hill average of Voigt-Reuss bounds may be adequate. However, Hashin-
Shtrikman bounds may have also been avoided as a result of prior calculational
difficulties. Maintaining an executable version of the older generation FORTRAN
code was not an easy task. Furthermore, the complexity of the previous algorithm
may have inhibited more widespread understanding and use of Hashin-Shtrikman
bounds. The current implementation is accomplished with a compact code that will
hopefully be more routinely used by the community.
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Composition | Modulus (GPa) | Voigt | +HS Hill -HS Reuss
Ang K 63.1 | 60.3 | 586 | 57.1 54.1
G 414 | 36.7 | 35.6 | 329 29.8

Angs K 69.2 | 67.5 | 66.7 | 66.0 64.3
G 39.5 | 36.2 | 353 | 33.7 31.1

Ansy K 73.0 | 716 | 709 | 70.3 68.8
G 42.3 | 388 | 379 | 36.2 33.6

Angg K 77.6 | 764 | 758 | 75.3 74.1
G 429 | 393 | 384 | 36.6 33.9

Aneo K 77.0 | 76.1 | 75.4 | 75.2 73.9
G 41.2 | 384 | 37.6 | 36.3 33.9

Anzg K 82.3 | 81.1 | 80.3 | 80.0 78.3
G 411 | 384 | 37.7 | 36.5 34.3

Anoe K 88.7 | 87.3 | 86.4 | 86.1 84.1
G 42.5 | 399 | 39.1 | 38.0 35.7

386

387 Table 1. Isotropic average moduli for plagioclase feldspars based on the triclinic
388 elastic moduli reported by Brown et al. 2013.
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Figure 1. Isotropic averaging of elastic moduli for albite (Ano) as a function of the
reference isotropic moduli. In the lower left corner (dark shade) the residual
elastic tensor Rjj is positive definite. In the upper corner (shaded black) Rju is
negative definite. The Voigt average bulk modulus is plotted at G, = 0 and the
Reuss average bulk modulus is plotted on the right side. The contours (intervals
of about 0.4 GPa) are values of the Hashin Shtrikman shear modulus (function of
Ko and Go) that increase from left to right. Two points labeled A define the limits
of the positive (negative) boundaries with respect to Go. Point B marks the
location on the boundary where the optimal maximum lower limit Hashin
Shtrikman moduli are found. Point C is the location on the boundary where the
optimal minimum upper limit Hashin Shtrikman moduli are found.
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