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Abstract 

Methods are evaluated in solution of the inverse problem associated with 
determination of elastic moduli for crystals of arbitrary symmetry from elastic wave 
velocities measured in many crystallographic directions. A package of MATLAB 
functions provides a robust, validated, and flexible environment for analysis of 
ultrasonic, Brillouin, or Impulsive Stimulated Light Scattering datasets. Three 
inverse algorithms are considered: the gradient-based methods of Levenberg-
Marquardt and Backus-Gilbert, and a non-gradient-based (Nelder-Mead) simplex 
approach. Several data types are considered: body wave velocities alone, surface 
wave velocities plus a side constraint on x-ray-diffraction-based axes 
compressibilities, or joint body and surface wave velocities.  The numerical 
algorithms are validated through comparisons with prior published results  and 
through analysis of synthetic datasets. Although all approaches succeed in finding 
low-misfit solutions, the Levenberg-Marquardt method consistently demonstrates 
skill and computational efficiency.  However, linearized gradient-based methods, 
when applied to a strongly non-linear problem, may not adequately converge to the 
global minimum. The simplex method, while slower, is less susceptible to being 
trapped in local misfit minima. A “multi-start” strategy (initiate searches from more 
than one initial guess) provides better assurance that global minima have been 
located. Numerical estimates of parameter uncertainties based on Monte Carlo 
simulations are compared to formal uncertainties based on covariance calculations.   
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Highlights: 

 A convenient numerical framework to determine elastic moduli from 
velocities 

 Three optimization algorithms are provided 
 Results and uncertainties are validated against published and synthetic data.  

 Input data can be body waves, surface acoustic waves, or a combination  



Introduction 1 

Determinations of the elastic moduli for anisotropic crystals figure into several 2 
science and technical agendas including condensed matter physics (evaluating inter-3 
atomic forces), material sciences (determining technical properties of materials), 4 
and the geosciences (interpreting Earth’s seismic velocity structure). In the case of 5 
high symmetry crystals, analytic equations provide relatively simple relationships 6 
between moduli and velocities measured in a small number of specified directions 7 
(Every 1980).  However, both in the case of low symmetry crystals (requiring a large 8 
number of measurements to constrain larger numbers of moduli) and when 9 
measurements are made in arbitrary directions relative to symmetry elements, 10 
numerical inversion of velocities to moduli is necessary.  An interest in low 11 
symmetry crystals (e.g. more than 50% of all minerals are either monoclinic or 12 
triclinic) and the use of surface wave acoustic measurements (Brown et al. 2006) 13 
provides impetuous to develop and document methods that can be applied to the 14 
determination of moduli under a variety of experimental conditions for all crystal 15 

symmetries.  16 

In an early example of computer-aided numerical analysis (Aleksandrov et al. 1974), 17 
all 13 elastic moduli required for monoclinic elasticity of common rock forming 18 
minerals were reported.  As noted in Brown et al. (2006), that work, which was 19 
based on a small number of measurements, did not quantify the large uncertainties 20 
in some of the reported moduli. Weidner and Carleton (1977) ushered in a modern 21 
era of moduli determination for low symmetry minerals using Brillouin 22 
spectroscopy.  They gave details of a specialized numerical method based on 23 
Backus-Gilbert inversion (1968, 1970) to determine elastic moduli.  Motivated by 24 
the need to analyze measurements of body wave and surface wave velocities 25 
obtained by Impulsive Stimulated Light Scattering, several strategies to determine 26 
moduli and to characterize uncertainties have been reported (Brown et al. 1989, 27 
2006, 2016a, 2016b, Brown and Abramson 2016, Abramson et al. 1994, 1997, 1999, 28 
Chai et al. 1997, Collins and Brown 1998, Crowhurst et al. 2001).  Here experience 29 
developed in the course of these studies is documented and a representative set of 30 
algorithms is provided.  Cross-comparisons of the efficiency and success of different 31 
inverse techniques have not previously been reported nor have prior results been 32 
adequately validated through use of a common set of published and synthetic 33 

examples.  34 

A set of utilities and a suite of inverse techniques are assembled into a package of 35 
MATLAB® functions that are transportable to all common computer platforms.  A 36 
small set of command line instructions allows flexible optimizatio n and visualization 37 
of results. The underlying approaches to the inverse problem are articulated and 38 
sets of actual and synthetic velocities are assembled to test and explore the 39 
capabilities of the functions. Also included are functions to create graphical 40 

representations of fits and model predictions. 41 

  42 



Methods 43 

Forward Problem 44 

All inverse techniques require a well-defined forward calculation. The 45 
determination of acoustic phase velocities as a function of elastic moduli, density, 46 
and propagation direction is straightforward.  Given the 4th order tensor elastic 47 
moduli, Cijkl, and the material density , with velocities, v (equal to k/ where k is 48 
the wave vector and  is the frequency), elastic wave propagation is governed (e.g. 49 
Auld 1973) by: 50 

𝜌
𝜕2𝑢𝑟

𝜕𝑡2
= 𝐶𝑙𝑟𝑚𝑠

𝜕2𝑢𝑠

𝜕𝑥𝑙𝜕𝑥𝑚
                  1 51 

where subscripts refer to the three Cartesian coordinates and ui are displacements. 52 
For body waves, a trial solution in the form of a plane wave 𝑢𝑟 = 𝑈𝑜exp(𝑖(𝑘𝑖𝑥𝑖 −53 
𝜔𝑡)) when substituted into equation 1, leads to a secular equation that can be solved 54 

for velocities: 55 

𝑑𝑒𝑡|𝐴𝑟𝑠 − 𝜌𝑣2𝛿𝑟𝑠| = 0      2 56 

where Ars (the Christoffel matrix) is defined in terms of the elastic moduli tensor and 57 
direction cosine components, ni, as Crlsm nl nm (using the Einstein summation 58 

convention). The three eigenvalues of the matrix defined in equation 2 give v2 for 59 
the three (quassi) longitudinal and (quasi) transverse modes while the eigenvectors 60 

define wave polarizations. 61 

In the case of wave propagation on surfaces of anisotropic materials, Rayleigh-like 62 
surface acoustic waves (SAW) exist for all propagation directions and pseudo-63 
surface waves (PSAW) (waves that leak acoustic energy into the sample interior) 64 
can propagate under more restrictive conditions (Maznev et al. 1999). Equation 1 65 
can be numerically solved by application of appropriate boundary conditions 66 
(Farnell 1970).  The computational procedure developed by Every et al. (1998) is 67 
used in the current analysis. An elastic Greens function Gij solution is found for a 68 
line-source forcing function. The procedure is general and can be applied to any 69 

combination of crystal symmetries and orientations.  70 

Using impulsive stimulated light scattering, (Chai et al. 1997; Abramson et al. 1999; 71 
Crowhurst et al. 2001) SAW and PSAW have been observed at 1 bar and in high 72 
pressure experiments. Crowhurst and Zaug (2004) note additional surface 73 
skimming quassi-longitudinal modes. Brown et al. (2006) determined all elastic 74 
moduli of a triclinic mineral from observations of SAW and PSAW.  As recommended 75 
by Maznev et al. (1999) and further tested in Crowhurst and Zaug (2004) and 76 
Brown et al. (2006), the intensities of observed signals correlate best with the off-77 

diagonal elastic Greens function tensor element |G13|2. 78 

  79 



Inverse Problem 80 

The inverse process of determining elastic moduli from measured elastic wave 81 
velocities is undertaken within the framework of non-linear least-square parameter 82 
estimation (Aster et al. 2012). Generally, increments of parameters relative to an 83 
initial guess are found that reduces the misfit as measured by the sum of the squares 84 
of deviations between data and model prediction. The process is repeated until 85 
misfit ceases to decrease. If experimental uncertainty and size of the misfit are in 86 
accord, parameters that provide the smallest value of misfit are taken to be the 87 
solution. Regularization (the use of additional constraints) can help optimization by 88 
steering solutions in appropriate direction and/or by stabilizing an ill-conditioned 89 
numerical problems.  Three methods, described below in greater detail, have shown 90 
skill in solving the current problem. Additional methods and ideas are briefly 91 
mentioned.  92 

A local solution may exist that has larger misfit than the true global minimum. In 93 
such cases, a priori knowledge of experimental uncertainty may be invoked to reject 94 
the solution. Finding the smallest misfit is possible using any method that 95 
successfully increments parameters to reduce misfit. A grid search of the entire 96 
hyper-surface of misfit vs parameters while computationally tedious would also 97 
locate the global minimum.  Gradient methods (based on a local determination of 98 
misfit derivatives) are computationally more efficient. However, such methods can 99 
be trapped in regions with low gradients of misfit or in local minima.  Differences in 100 
numerical strategies to find global minima in misfit can be characterized, as 101 
illustrated in figure 1, from “exploitive” (following a gradient defined path to achieve 102 
smaller misfit) to “exploratory” (brute force grid search). Gradient methods, lying 103 
near the exploitive axis, while typically requiring the fewest calculations, are most 104 

susceptible to being trapped in local minima.   105 

The framework of gradient-based approaches is to either calculate local derivatives 106 
of misfit and move in the direction of smaller misfit (steepest descent method) or to 107 
undertake a parabolic expansion of the misfit hypersurface and thus locate the 108 
minimum in a single step (Gauss-Newton method). The hybridization of these 109 
approaches that underlies the numerical algorithm of Levenberg-Marquardt 110 
(Marquardt 1963) is described below. A modification of this that includes an 111 
additional layer of regularization based on the Backus-Gilbert (1968, 1970) 112 

approach is also described.  113 

Key concepts of gradient-based least-square solutions are noted here.  A model f(m) 114 
with discrete parameters m is adjusted to best represent data yobs. Adjustments to 115 
the model can be determined by expanding f relative to initial parameters mo: 116 

𝑓𝑖(𝑚) = 𝑓𝑖(𝑚𝑜)+ 
𝜕𝑓𝑖

𝜕𝑚𝑘
𝛿𝑚𝑘+ ⋯     3 117 

where higher order derivatives are ignored and subscript i is the index relating to 118 
the ith data point and k is the index for the kth discrete model parameter. The matrix 119 



of partial derivatives  𝜕𝑓𝑖 𝜕𝑚𝑘
⁄  of the model with respect to model parameters, the 120 

Jacobian, is represented as J.  The Jacobian determines the steepest descent 121 
direction and the simplest estimation of model increments in the direction of 122 

smaller misfit is given by: 123 

𝛿𝑚 = 𝑱𝒕[𝑦𝑜𝑏𝑠 −𝑓(𝑚𝑜)]      4 124 

where yobs, f(mo) and m are vectors and J is a matrix and superscript t is the 125 
transpose operation.  126 

In order to derive the Gauss-Newton method, the least-square problem is expressed 127 

as the minimization of misfit S where: 128 

𝑆 = ‖𝑦𝑜𝑏𝑠 −𝑓(𝑚𝑜) − 𝑱𝛿𝑚‖2      5 129 

Double brackets with superscript 2 imply summation of squared differences. Setting 130 
the derivative of equation 5 to zero with respect to model parameters m and 131 
neglecting derivatives of f beyond the first, leads to the linearized least-square 132 

solution for increments of model parameters: 133 

𝛿𝑚 = (𝑱𝒕𝑱)−1𝑱𝒕[𝑦𝑜𝑏𝑠 −𝑓(𝑚𝑜)]     6 134 

If mo is linearly close to the minimum in misfit and if the neglected higher-order 135 
derivatives of f(m) with respect to m are small, then equation 6 should allow 136 

convergence to the true minimum in one step.  137 

The insight provided in the Levenberg-Marquardt method (Marquardt 1963) is that 138 
a gradient-based descent path is preferred far from the misfit minimum and that the 139 
step size should be scaled by the local curvature (i.e., larger steps for the smaller 140 
curvature expected far from the minimum).  The linearized Gauss-Newton solution 141 
and a modified steepest descent method are then combined in a single increment 142 
estimator as: 143 

𝛿𝑚 = [𝑱𝒕𝑱+ 𝜆𝑑𝑖𝑎𝑔(𝑱𝒕𝑱)]−1𝑱𝒕[𝑦𝑜𝑏𝑠 − 𝑓(𝑚𝑜)]                7 144 

where the factor  is adjusted.  Large values of  are used when far from the 145 
minimum emphasizing the gradient estimator of equation 4 and small values are 146 
used near the minimum such that equation 7 tends towards equation 6. The 147 

schedule for changing  is arbitrary and can be “tuned” to provide better 148 
performance for specific problem classes. 149 

Weidner and Carleton (1977) determined moduli increments through an 150 
implementation of Backus-Gilbert (1968, 1970) regularization of equation 7.  151 
Backus-Gilbert regularization was originally formulated for ill-posed inverse 152 
problems consisting of continuous model functions rather than for models 153 
consisting of discrete parameters.  The power of the Backus-Gilbert approach lay in 154 
its determination of model resolution at arbitrary points rather than for any special 155 
ability to estimate discrete parameters. “Resolving power” is not a well-defined 156 



concept in the case of discrete parameters. The basic idea of Backus-Gilbert 157 
regularization is that some linear combination of observations and model 158 
derivatives should better determine increments of a specified model parameter 159 
while having little or no influence on other model parameters. The increment 160 
equation is given as: 161 

𝛿𝑚 = 𝛼[𝑦𝑜𝑏𝑠 −𝑓(𝑚𝑜)]      8 162 

where each row of the matrix  is constructed independently for each parameter. To 163 

determine , a matrix consisting of components of the Jacobian and model misfit is 164 
inverted separately for each model parameter. The matrix for each parameter 165 
follows equation 7 with additional rows and columns to implement the 166 
regularization constraint.  167 

Nothing unique to elasticity is found in the application of Backus-Gilbert 168 
regularization to fitting velocity data.  Aster et al. (2012) note that Backus-Gilbert 169 
techniques are not commonly adopted as a result of their numerical complexity and 170 
a perception that the method has no clear advantage over other approaches. In 171 
examples discussed below, the Backus-Gilbert method, while adjusting parameters 172 
to achieve smaller data misfit, shows less skill than the standard Levenberg-173 
Marquardt method. Since it has been widely used in the determination of elastic 174 

moduli, it is included in the current library.  175 

Expanding the repertoire of available methods, a non-gradient approach, the 176 
simplex algorithm of Nelder-Mead (1965), is also included in the current collection 177 
of algorithms. This algorithm tends to sample a larger portion of the misfit 178 
hypersurface and is colloquially called an “amoeba” fitter.  Rather than calculating 179 
local gradients of misfit, a collection of models is used to define a volume in the 180 
misfit hyperspace (with as many dimensions as parameters). Each model in a 181 
current set of models forms a vertex of a multidimensional shape. “Pseudopods” 182 
(based on symmetry operations such as reflection and contractions of a current 183 
vertex) are extended in various directions to see if a smaller misfit can be found. 184 
When smaller misfit is found, the largest misfit in the current collection of models is 185 
discarded, thus moving the set of models in a direction of smaller misfit. The volume 186 
enclosed by the model set expands or contracts as it moves and, if successful, 187 
eventually centers and shrinks around the misfit minimum.  Simplex methods are 188 
generally less susceptible to being trapped in local minima. Even if the starting point 189 
is a local minimum, the expanded search region represented by the 190 
multidimensional collection of vertexes provides an opportunity to move into a 191 

region with a gradient adequate to steer the iterative process to a better minimum.   192 

Multi-start strategies are characterized by initiating optimization at more than one 193 
location. In situations with a finite number of local minima, a properly designed 194 
algorithm can be implemented that recognizes when a particular search is trending 195 
to a previously discovered minimum.  Thus, not all searches need be followed to 196 
completion.  Here, with each search requiring relatively little computer time, mult-197 



start is implemented simply by restarting optimization from a new and randomly 198 

generated location until a satisfactory solution is identified.  199 

Other methods such as genetic (Gallagher and Sambridge 1994) and simulated 200 
annealing (Kirkpatrick et al. 1983) illustrated in Figure 1 have the ability to locate a 201 
global minimum in cases where misfit surfaces are complex and may have many 202 
local minima.  The cost is typically in the need to evaluate the misfit of more possible 203 
solutions and thus these algorithms extend towards the exploratory side of the 204 
figure where computational effort is larger. The generally exploitive approaches 205 
used in the current application have demonstrated an ability to find elastic moduli 206 
in all test cases. Thus, the more computational intensive methods do not appear to 207 

be necessary. 208 

A number of situations can cause the process of incrementing moduli to stall at an 209 
unacceptable solution.  Reasons for this can be identified.  (1) Large experimental 210 
scatter provides an opportunity for “non-linear” scatter in estimated parameters 211 
because several local minima may adequately fit the data. The curvature of the 212 
misfit surface about each local minimum may underestimate the true uncertainty of 213 
moduli. Calculated gradients in misfit may not point in the direction of better 214 
solutions.  (2) The set of experimentally determined velocities might not include 215 
data that are adequately sensitive to one or more of the moduli (thus, data do not 216 
adequately span the parameter space).  (3) The data may be sensitive to a particular 217 
linear combination of parameters such that the combination is better constrained 218 
than are individual values.  (4) measured velocities can be accidentally assigned to 219 
incorrect acoustic branches. This is a common problem when associating measured 220 
transverse wave velocities with particular calculated phases.  In the case of surface 221 
waves, differentiating between Rayleigh waves and pseudo surface waves may 222 
require some trial and error experimentation. 223 

Uncertainties are typically estimated on the basis of the curvature of the misfit 224 
where JtJ is taken to adequately represent the second derivative of the model with 225 
respect to model parameters.  The inverse of  JtJ is the covariance matrix and the 226 
diagonal of the covariance matrix when appropriately weighted by experimental 227 
uncertainties gives the estimates of moduli variances.  An alternate approach is to 228 
undertake Monte Carlo simulations (Aster et al. 2012).  An ensemble of alternate 229 
synthetic data sets, each with a distribution of propagation directions equivalent to 230 
experiment, is created.  Velocities calculated from a reference set of moduli are 231 
perturbed with random error having the same statistical distribution as observed in 232 
experiments.  Each member of the ensemble is inverted and provides an 233 
independent estimate of the model as if an entirely independent data set had been 234 
collected.  In well-determined systems, the standard deviations of the ensemble of 235 
synthetic moduli should agree with the error estimates based on the covariance 236 

matix.  237 

 238 



Implementation 239 

The inverse algorithms described in the previous section have been implemented 240 
within the numerical environment of MATLAB. An analysis workflow is 241 
accomplished at the command line by invoking a small number of functions.  The 242 
analysis steps are: (1) load experimental data into the workspace as a structure 243 
containing heterogeneous information (both text and numerical) associated with 244 
the experimental measurements, (2) execute the fitting function (once or multiple 245 
times), (3) graphically examine the quality of the fits and re-run the analysis if 246 
necessary. Once data are appropriately organized (wave polarizations are correctly 247 
identified and problem data are appropriately weighted by their experimental 248 
uncertainty), the process of optimization is nearly instantaneous on modern 249 

desktop computers. 250 

Data Organization 251 

All data and fitting options for a particular example are contained in a single 252 
structure that is given an arbitrary variable name (“Input” is used here) that is 253 
passed between all analysis functions. Units are GPa for moduli, TPa-1 for 254 
compliances, km/s for velocities, and gm/cm-3 for density. Angles are in degrees. 255 
Sets of example data-containing (published and synthetic) funcions are included in 256 
the supplemental materials. The information is organized into the requisite 257 
structure within functions labeled mkStr XXX (where XXX is a descriptive label for 258 
each example). Within these functions tables of data (in some cases simply copied 259 
from published sources) are parsed into appropriate structure variables. These files 260 

can serve as templates in working with new or different data sets.   261 

A majority of reported data sets have been obtained in samples rotated about an 262 
axis normal to a specified plane. The orientations of crystal axes in laboratory 263 
Cartesian coordinates are represented using three Euler angles.  All measurements 264 
within a common crystal plane are grouped as one “sample” associated with 265 
rotations about the Cartesian z-axis defined by the Euler angles. Alternatively, 266 
individual velocities can be listed using only the unique “direction cosines” for each 267 

measurement.  268 

The input structure contains two major subdivisions: “Data” and “opts”. All 269 
information in the data side (velocities, uncertainties, measured Euler angles and/or 270 
direction cosines, sample density, chemistry, comments, previously published 271 
moduli, etc.) is not changed during the optimization process. The “opts” side of the 272 
structure contains information that may be changed during optimization or is set by 273 
the user to control the optimization process. 274 

Included on the data side of the structure are “trust region” estimates for moduli 275 
and Euler angles.  By defining a region of sensible results, optimization can be better 276 
guided.  For example, the requirement that the elastic moduli tensor be positive 277 
definite requires that some moduli have positive values. In many cases, a global 278 



minimum can be found even if a broad trust region is specified. In some cases, 279 
constraining the region of acceptable solutions provides assistance and can be 280 
justified by a priori knowledge. If a resulting solution lies at the edge of a specified 281 
trust region, the user should expand the extent of the trust region and re-run the 282 
optimization. 283 

Results of invoking the optimization are placed in a structure that is arbitrary given 284 
the name “Results” in the following examples. Included in this structure is the input 285 
structure plus all relevant details of the optimization. This structure can be saved as 286 
a record of both what data were fit, what approach was used for optimization, and 287 
what resulted from the optimization including the optimized moduli, their 288 

uncertainties, velocity predictions, and deviations between data and predictions.   289 

Workflow Example 290 

In this section, the basic command line syntax is described to illustrate the workflow 291 
associated with optimization of elastic moduli.  The first example dataset uses the 292 
Collins and Brown (1998) results for a monoclinic pyroxene mineral that is 293 
characterized by 13 unique elastic moduli. The experimental data from that work is 294 
contained in the function mkSt r CPX .  Optimization begins by loading into the 295 
workspace, the input structure, I nput ,  trial moduli, Co,  and individual crystal Euler 296 

angle, ea: 297 

[ Input ,Co, ea]=mkSt rCPX(' p' ); 298 

The variable, ea, is necessary only if data are taken in planes represented by 299 
rotations about Euler axes.  In the case of data characterized only by direction 300 
cosines, this variable can be returned empty.  Co can be moduli that represent a 301 
priori knowledge or can be set to default (or random) values. In this case, the input 302 
string ' p'  results in Co being initialized to the published moduli. Any other input 303 
string will results in Co being set to default silicate moduli: longitudinal moduli (C11, 304 
C22, C33) set to 100 GPa. Other moduli that are non-zero for orthorhombic symmetry 305 
(C12, C13, C23, C44, C55, C66) are set to a nominal value of 50 GPa.  The remaining 306 

uniquely monoclinic moduli are set to zero. 307 

The following command returns an analysis based on the published moduli. 308 

[ Cout,eaout,Results]=Vel ocities2Cij(Input,Co,'n' ,ea,'n' ,'LM' ); 309 

The command line output of this command is               310 

 r ms mi sfit =20. 8 m/ s  chi sqr  =   1.01  el apsed time  0.0 s 311 

The function Vel ociti es2Cij  has input variables I nput  (the data structure), Co (an initial 312 
guess for moduli), and ea (the initial euler angles for a data set characterized by the 313 
orientations of sample slices). The other input variables control the optimization 314 
process. The string following Co can be set to ‘ y’  to optimize moduli, ‘ n’  (do not 315 
optimize moduli), and ‘ r’  (initiate optimization from randomly generated moduli that 316 
are uniformly distributed within the defined trust regions).  The second input string 317 



applies to the Euler angles and can also be set to ‘ y’, ‘ n’  or ‘ r’  with the same meaning. 318 
When both strings are set to ‘ n’  the function returns values and statistics based in 319 
the input moduli and Euler angles. In the standard workflow with each invocation of 320 
the function, one either optimizes for moduli or for Euler angles.  A simultaneous 321 
optimization for both moduli and Euler angles is not currently implemented. The 322 
third string defines the optimization algorithm: ‘NM’ for Nelder-Mead, ‘LM’ for 323 
Levenberg-Marquardt, and ‘BG’ for Backus-Gilbert.  A last (optional) input variable, 324 
when set to zero, suppresses all command line output during execution of the 325 
function. 326 

The function returns Cout  (optimized moduli), eaout  (optimized euler angles), and 327 
Resul ts (a structure containing all information about data used in the optimization, 328 
the resulting optimized values, and associated statistics .  Saving Resul t s preserves all 329 
information related to that particular optimization effort. The structure Resul t s is 330 
also used as input to the visualization (graphing) functions. 331 

The command line output gives the rms (root-mean-square) misfit (a common 332 
figure of merit) and chisqr  (the reduced chi-square χ2 - the sum of the square of 333 
misfits weighted by uncertainty and normalized by the number of data).  That χ2 is 334 
close to one is appropriate if uncertainty has been adequately characterized and 335 

data errors are random and the optimization has found an appropriate solution.   336 

Optimization of moduli starting from a random (within the trust region) set of 337 
moduli is accomplished by setting the first string flag to ‘ r’ , as shown with the 338 
following command and output. 339 

>> [Cf ,eaout ,Resul ts,Ct ]=Vel ocities2Ci j(Input ,Cout ,'r',ea,'n' ,'LM' ,1);  340 
i teration    chi sqr       optimal ity       lambda      rel axation 341 

    0       5690.679      1.747e+02       1.000e-02     1.000e+00 342 
    1        666.197      7.542e+00       1.000e-03     1.250e+00 343 
    2        132.162      4.041e+00       1.000e-04     1.562e+00 344 
    3         96.509      3.694e-01       1.000e-05     1.953e+00 345 

  4         88.670      8.841e-02       1.000e-05     1.953e+00 346 
  5         33.515      1.646e+00       1.000e-06     2.441e+00 347 
 12         33.515      2.984e+04       1.000e-02     1.000e+00 348 
 13          2.907      1.053e+01       1.000e-03     1.250e+00 349 
 14          1.205      1.412e+00       1.000e-04     1.562e+00 350 

   15          1.048      1.499e-01       1.000e-05     1.953e+00 351 
   16          1.048      8.459e-05       1.000e-06     2.441e+00 352 
   22          1.048      9.541e+05       1.000e-02     1.000e+00 353 
   23          0.990      5.842e-02       1.000e-03     1.250e+00 354 
   24          0.990      4.476e-05       1.000e-04     1.562e+00 355 
   28          0.990      1.010e+06       1.000e-02     1.000e+00 356 
   29          0.990      2.203e-06       1.000e-03     1.250e+00 357 

r ms mi sfit =20.6 m/ s  chi sqr  =   0.99  el apsed time  0.6 s 358 

The first column gives the number of iterations during optimization. Iteration steps 359 
that do not improve misfit are not displayed. The second column gives the 360 
associated chi-square misfit at each step. The column labeled “Optimality” gives the 361 
fractional change in misfit from step to step and is used as one convergence criteria. 362 



The fourth column gives current values of  (the Levenberg-Marquardt parameter). 363 
It is adjusted by an order of magnitude up or down depending on the success  or 364 
failure in reducing misfit. The fifth column (relaxation) gives the current value of an 365 

additional parameter that multiplies the estimated increment of parameters (m in 366 
equation 7). A properly chosen schedule of  and relaxation adjustment allows both 367 
faster convergence and an ability to avoid incrementing parameters into unphysical 368 
(not positive definite) regimes during optimization.  The schedules for changing 369 

both  and relaxation have been adjusted on the basis of tests of several data sets. 370 
These schedules can be modified by edits within the function. 371 

In the example given above, the randomly generated starting model was clearly far 372 
from the optimal solution. Fourteen steps were required to approach a χ2near 1. 373 

The fitter struggled between step 5 and 12. Here the schedule for decreasing  from 374 
the initial steepest descent approach appears too rapid and Gauss-Newton 375 

linearization failed to find the minimum.  As a result of not improving misfit,  376 
(automatically) increased by 4 orders of magnitude between steps 5 and 12. The 377 
value of χ2 then improved in a single step from 33.5 to 3. Non-linearity (second 378 
derivatives of the model with respect to parameters) that is not accurately 379 
accounted for in equation 7 can cause methods based on linearization to struggle in 380 
locating the true minimum in misfit. That iterations 15 through 29 show nearly the 381 
same misfit is an indication of this difficulty. 382 

The optional output variable Ct  returns the values of the randomly generated 383 
starting moduli. The same initial guess is therefore available in the workspace to 384 
test other optimization method.  Setting the input moduli to Ct, the optimization flag 385 
to ‘y’, and the method string to ‘BG’ invokes the Backus-Gilbert optimization from 386 
the same starting guess: 387 

>> [Cf ,eaout ,Resul ts,Ct ]=Vel ocities2Ci j(Input ,Ct ,' y' ,ea,'n' ,'BG' ,1);  388 
i teration    chi sqr       optimal ity      variance     rel axation 389 
   0       5690.679      1.747e+02       2.037e+00     3.000e-01   390 
   1       1812.880      2.139e+00       1.044e+00     3.750e-01   391 
   2        781.117      1.321e+00       5.573e-01     4.688e-01   392 
   3        417.900      8.691e-01       3.042e-01     5.859e-01   393 
   4        265.884      5.717e-01       1.774e-01     7.324e-01   394 
   5        177.133      5.010e-01       1.034e-01     9.155e-01   395 
   6        110.901      5.972e-01       5.457e-02     1.144e+00   396 
   7         85.868      2.915e-01       3.453e-02     1.431e+00   397 
   8         79.864      7.518e-02       2.967e-02     1.788e+00   398 
  18         79.864      1.252e+04       2.967e-02     3.000e-01   399 
  19         75.886      5.243e-02       2.823e-02     3.750e-01   400 
  20         74.819      1.425e-02       2.742e-02     4.688e-01   401 
  21         74.062      1.023e-02       2.670e-02     5.859e-01   402 
  22         72.973      1.493e-02       2.594e-02     7.324e-01   403 
  23         71.377      2.235e-02       2.507e-02     9.155e-01   404 
  24         69.178      3.179e-02       2.408e-02     1.144e+00   405 
  25         66.436      4.127e-02       2.299e-02     1.431e+00   406 
  26         62.410      6.452e-02       2.159e-02     1.788e+00   407 
  27         21.170      1.948e+00       7.750e-03     2.235e+00   408 
  38         21.170      4.724e+04       7.750e-03     3.000e-01   409 



  39         12.881      6.435e-01       5.206e-03     3.750e-01   410 
  40          7.389      7.433e-01       3.132e-03     4.688e-01   411 
  41          3.821      9.336e-01       1.644e-03     5.859e-01   412 
  42          1.760      1.172e+00       7.534e-04     7.324e-01   413 
  43          1.102      5.973e-01       4.654e-04     9.155e-01   414 
  44          1.002      9.935e-02       4.261e-04     1.144e+00   415 
  45          0.997      5.544e-03       4.251e-04     1.431e+00   416 
  54          0.997      1.003e+06       4.251e-04     3.000e-01   417 
r ms mi sfit =20.5 m/ s  chi sqr  =   1.00  el apsed time  1.5 s  418 

Following the Weidner and Carleton implementation, the Backus-Gilbert inversion 419 
optimizes the rms misfit rather than the chi-square misfit.  As a result, here χ2 is 420 

slightly larger and the r ms  misfit is slightly smaller.   421 

Although the Backus-Gilbert method converged, the total number of iteration steps 422 
and the elapsed time are larger than for Levenberg-Marquardt.  In all test cases, 423 
Backus-Gilbert shows less “skill” in optimizing moduli – it takes more iterations and 424 
more CPU time.  More often than when using Levenberg-Marquardt, Backus-Gilbert 425 
optimizations can stall at unacceptable misfit.  In such cases, restarting the 426 
optimization from different starting points allowed successful optimization. As 427 
observed for the Levenberg-Marquardt method, the optimizer can struggle near the 428 
minimum in misfit (here 10 iteration steps were taken at nearly the same level of 429 

misfit). 430 

The Nelder-Mead optimization is invoked with the same randomized initial model 431 

>> [Cf ,eaout ,Resul ts,Ct ]=Vel ocities2Ci j(Input ,Ct ,' y' ,ea,'n' ,'NM' ,1); 432 
i teration     chi sqr    433 

     0         5690.68    434 
 700          127.95    435 
1400            2.01    436 
2100            0.99    437 
2616            0.99    438 
r ms mi sfit =20.6 m/ s  chi sqr  =   0.99  el apsed time  7.5 s 439 

The elapsed time is greater and the misfit surface has been sampled at more 440 
locations – over 2600 distinctly different sets of model parameters (a new set for 441 
each iteration step) were examined.  The current implementation of the simplex 442 
method is provided within the standard MATLAB environment. An independent 443 
implementation based on widely available source code (e.g. Press et al. 2007) might 444 
provide an opportunity to better “tune” the algorithm for increased performance in 445 
this application by making use of the trust region to scale increments of the 446 
parameters. Since Nelder-Mead does not calculate numerical gradients, it does not 447 
suffer linearization problems near the minimum in misfit. In some test cases, the 448 
best moduli found by gradient methods could be slightly improved through further 449 
optimization using the Nelder-Mead algorithm. 450 
 451 
The ability to optimize Euler angles is often necessary since wave propagation 452 
directions may have non-negligible uncertainties associated with the multiple 453 
mechanical steps separating an x-ray alignment of a crystal with its placement in an 454 



experiment. As noted by Every (1980), the three angles necessary to describe an 455 
orientation in laboratory coordinates are simply additional parameters to optimize. 456 
It can be argued that with sufficient data, the acoustic measurements constrain the 457 
orientations better than do direct measurements of orientation.  Here a test is 458 
performed to explore the ability of velocity data sets to constrain the Euler angles. 459 
Below, the orientations of Euler angles are intentionally randomized with a variance 460 
of 4 degrees. 461 

The initial euler angles are shown as: 462 

>> ea 463 
ea = 464 
    7.9000  269.0000  345.2000 465 
   89.6000   85.4000    7. 3000 466 
    3.2000  193.4000  345.5000 467 

Euler angles are perturbed with a variance of 4°: 468 

>> ear=ea+4*randn(3,3)  469 
ear  = 470 

       3.2023  276.1789  343.8573 471 
   84.2397   83.4797    7. 1015 472 

       5.0633  193.0063  345.0603 473 

These Euler angles with synthetic “experimental error” are then optimized against 474 
the velocity data by invoking the following command: 475 

>> [Cf ,eaout ,Resul ts,Ct ]=Vel ocities2Ci j(Input ,Cout ,'n' ,ear,'y' ,'LM' ,1);  476 
r ms mi sfit =20.9 m/ s  chi sqr  =   1.01  el apsed time  0.1 s  477 

and t he resulting fit for  Eul er  angl es gi ves:  478 

>> eaout  479 
eaout  = 480 
    7.8206  269.1834  345.5780 481 
   89.6646   85.3551    7. 2877 482 

       3.1631  193.3522  345.1303 483 

The recovered Euler angles are within a few hundredths of a degree the actual 484 
values. When both optimized moduli and Euler angles are required, experience has 485 
shown that even with completely unknown Euler angles, a process of alternation 486 
between fitting for moduli and fitting for Euler angles converges to the correct 487 
results.  Implementation of a simultaneous optimization for both moduli and Euler 488 
angles is possible but has not yet been necessary. 489 

Visualization of predictions versus data is accomplished through the use of plotting  490 
functions BWPlot (for body wave data) and SWPlot (for surface wave data). Both are 491 
invoked with the same input parameters. BWPlot is demonstrated here with the 492 

command: 493 

BWPl ot (Resul ts,pl t_wi n,pltprcnt ) 494 



Where Resul ts is the optimization output structure, pl t _wi n is a user specified frame 495 
number where the figure is shown, and pl t prcnt is the percentage range for display of 496 
deviations between data and predictions. The resulting plot is shown as figure 2. 497 

Discussion 498 

Several data sets are included with the supplemental materials.  These examples, 499 
demonstrated below, show features of the software and allow comparisons with 500 
previously published results.  Of particular note are comparisons of reported 501 
experimental uncertainties in elastic moduli.  The level of uncertainty incorporated 502 

into reported values is 2 503 

Coesite: (function providing data: mkStr Coesit e)  The pioneering data set of Weidner 504 
and Carleton (1977) is revisited with this example. Coesite is monoclinic and thus 505 
requires 13 elastic moduli. Measurements were reported in 96 directions. Not all 506 
polarizations of body waves were observed in any one direction. Six of the data 507 
deviated so strongly that even though listed in the table these points were excluded 508 
from the originally published fit.  The reported rms misfit of 151 m/s is 509 
approximately an order of magnitude larger than is typically achieved in current 510 
generation experiments.  511 

Direction cosines and observed velocities were copied directly from the paper into 512 
the example file mkSt r Coesit e. m. Experimental uncertainties (180 m/s for transverse 513 
waves and 130 m/s for compressional waves) were assigned based on average 514 
misfits reported in the paper. Examination of the data indicates that most of the 515 
direction cosines lie on several planes.  Thus, a set of Euler angles could, in principle, 516 
be used to describe the propagation directions. However, here only the reported 517 
direction cosines are used in the optimization. In the function call mkStr Coesit e( Cfl g) , 518 
setting Cfl g to ‘ p’ returns the published moduli in the variable Co. Any other string or 519 
no input arguments returns a default silicate set of moduli.  The commands below 520 
demonstrate loading the data, checking that the published results are duplicated, 521 
and then attempting further optimize using both Levenberg-Marqardt and Backus 522 
Gilbert methods. The moduli uncertainties on the basis of a Monte Carlo test are also 523 
evaluated. Results are summarized in Table 1. 524 

>> [ Input,Cout ,ea]=mkSt rCoesite('p' ); 525 
>> [Cf ,eaout ,Resul ts]=Vel oci ties2Ci j(Input ,Cout ,'n' ,ea,'n' ,'LM' ,1);  526 

r ms mi sfit =151. 6 m/ s  chi sqr  =   1.01  el apsed time  0.0 s  527 

The first line loads the data.  The second line with fitting flags set to ‘n’ calculates 528 
results based on the input moduli.  The misfit of 152 m/s is in agreement with the 529 
original publication. An attempt to optimize misfits is shown next: 530 

 531 
>> [Cf ,eaout ,Resul ts]=Vel oci ties2Ci j(Input ,Cout ,'y' ,ea,'n' ,'LM' ,1);  532 

i teration    chi sqr       optimal ity       lambda      rel axation 533 
    0          1.006      9.940e+05       1.000e-02     1.000e+00 534 
    1          0.995      1.130e-02       1.000e-03     1.250e+00 535 
    2          0.995      1.038e-05       1.000e-04     1.562e+00 536 
     6          0.995      1.005e+06       1.000e-02     1.000e+00 537 



     7          0.995      1.071e-06       1.000e-03     1.250e+00 538 
r ms mi sfit =151. 1 m/ s  chi sqr  =   0.99  el apsed time  0.2 s  539 

Here, using the Levenberg Marquardt algorithm that minimizes χ2,  a slightly better 540 
optimization is found. Alternatively, running the Backus-Gilbert algorithm reduces 541 
the rms misfit: 542 
 543 
>> [Cf ,eaout ,Resul ts]=Vel oci ties2Ci j(Input ,Cout ,'y' ,ea,'n' ,'BG' ,1);  544 

i teration    chi sqr       optimal ity      variance     rel axation 545 
    0          1.006      9.940e+05       2.312e-02     3.000e-01   546 
     1          1.001      4.589e-03       2.301e-02     3.750e-01   547 
      2          1.000      1.551e-03       2.295e-02     4.688e-01   548 
      3          0.999      5.934e-04       2.292e-02     5.859e-01   549 
      4          0.999      2.244e-04       2.291e-02     7.324e-01   550 
        5          0.999      2.976e-05       2.290e-02     9. 155e-01   551 
       12          0.999      1. 001e+06       2.290e-02     3. 000e-01   552 

r ms mi sfit =150. 8 m/ s  chi sqr  =   1. 00  el apsed time  0.4 s  553 
 554 

Differences between the published moduli and moduli determined here are small 555 
relative to uncertainty. In examination of Table 1, several observations can be made 556 
(1) more significant figures were reported in the original paper than were justified, 557 
(2) some parameters are uncertain by more than their value, and (3) previously 558 
reported uncertainties agree with the uncertainties estimated here. The first two 559 
uncertainty columns are calculated from the covariance matrix (based on numerical 560 
derivatives). Differences are expected since these are approximate finite difference 561 

calculations.  562 

The last column in Table 1 gives the Monte Carlo estimates of uncertainties based on 563 
statistics for a thousand synthetic models that have the same distribution of 564 
propagation directions and the same distribution of (assumed to be random) misfits. 565 
These are calculated using the command: 566 

>> [uncerts,Cf s, rms] =Mont eCarloSt at s(Input ,1000,Cout ,1,0);  567 

Depending on the speed of the computer, this command may take several minutes. 568 
The time required for the calculation can be tested using a much smaller sample of 569 
models.  That Monte Carlo results (in Table 1 and in the following tables) are in 570 
agreement with covariance-based estimations lends validation to numerical 571 

framework used here.  572 

Clinopyroxene: (function providing data: mkSt r CPX) Collins and Brown (1998) 573 
reported velocities measured using Impulsive Stimulated Light Scattering on three 574 
slices of a mantle-derived clinopyroxene.  The current analysis (discussed in the 575 
previous section) essentially duplicates the published results as shown in Table 2.   576 

Glaucophane: (function providing data: mkStr Gl aucophane)  Bezacier et al. (2010) 577 
reported velocities and moduli for this monoclinic mineral. Although direction 578 
cosines are given in the paper, Euler angles for three separate rotations about their 579 
crystals were determined (the cross product of any two directions in a plane define 580 
the normal direction). The file [I nput , Cout , ea] =mkStr Gl aucophane( Cfl g)  returns the 581 



published moduli in Cout  if Cfl g =’ p’ ;  In the command line, if I nput . Dat a. dcosfl g is set to 582 
1, only published direction cosines are used in the analysis. If I nput . Dat a. dcosfl g is set 583 
to 0, Euler angles are used. In this second case, it is possible to optimize the Euler 584 
angles.  585 

Undertaking Backus Gilbert optimization from default moduli (far from the 586 
published moduli) recovers the published rms misfit and moduli (Table 3).   587 

>> [Cf ,eaout ,Resul ts]=Vel oci ties2Ci j(Input ,Cout ,'y' ,ea,'n' ,'BG' ,1);  588 
   iteration    chi sqr       optimal ity      variance     rel axation  589 
     0       1989.274      5.017e+02       9.880e-01     3.000e-01   590 
     1        455.036      3.372e+00       7.068e-01     3.750e-01   591 
     2        283.879      6.029e-01       4.043e-01     4.688e-01   592 
     3        183.428      5.476e-01       2.199e-01     5.859e-01   593 
     4        111.689      6.423e-01       1.241e-01     7.324e-01   594 
     5         61.102      8.279e-01       6.702e-02     9.155e-01   595 
     6         17.393      2.513e+00       1.777e-02     1.144e+00   596 
     7          4.451      2.908e+00       4.363e-03     1.431e+00   597 
     8          2.419      8.401e-01       2.380e-03     1. 788e+00   598 
     9          2.056      1.763e-01       2.042e-03     2. 235e+00   599 
      20          2.056      4.863e+05       2.042e-03     3.000e-01   600 
      21          2.009      2.333e-02       2.009e-03     3. 750e-01   601 
      22          1.978      1.568e-02       1.991e-03     4. 688e-01   602 
      23          1.959      9.689e-03       1.983e-03     5. 859e-01   603 
   24          1.949      5.465e-03       1.980e-03     7.324e-01   604 
   25          1.944      2.694e-03       1.979e-03     9.155e-01   605 
   26          1.941      1.081e-03       1.978e-03     1.144e+00   606 
   27          1.941      3.501e-04       1.978e-03     1.431e+00   607 
   28          1.941      9.756e-05       1.978e-03     1.788e+00   608 
   38          1.941      5.153e+05       1.978e-03     3.000e-01   609 
   39          1.941      8.605e-07       1.978e-03     3.750e-01   610 

r ms mi sfit =44.3 m/ s  chi sqr  =   1.09  el apsed time  0.6 s 611 
 612 
However, uncertainties given in the original paper and listed in Table 3 are not in 613 
agreement with either the current covariance-based estimate or the Monte Carlo 614 
based estimate.  On the basis of the distribution of propagation directions and data 615 
scatter, the reported uncertainties for several moduli (C15, C25 C35, C46) appear too 616 
small while others (for example, C22 and C33 relative to C 11) are too large.  617 

If Euler angles are optimized, the rms misfit of this data set can be further reduced 618 
by 17%. A change in Euler angles of a few degrees for all slices provides a hint that a 619 
systematic experimental difference might exist between the orientations 620 
determined by x-ray and orientations assigned for propagation directions.   621 

Monoclinic Potassium Feldspar: (function providing data: mkSt r Kspar ) Surface 622 
acoustic waves have been measured using Impulsive Stimulated Light Scattering 623 
(Waeselmann et al. 2016).  Here synthetic velocities, using nominal (rounded to 624 
whole numbers) moduli, are calculated for the propagation directions used in the 625 
laboratory experiments.  Random variance is added to the calculated velocities to 626 
create synthetic data with scatter that matches the variance observed in 627 
experiments (around 10 m/s).  The advantage of this synthetic data set is that the 628 



underlying model (both moduli and Euler angles) are “known” and errors are 629 
normally distribed. The inverse process and uncertainty analysis can then be 630 
validated.  631 

Elastic moduli determined solely on the basis of surface wave measurements have 632 
larger intrinsic uncertainties since the longitudinal moduli (C11, C22, C33) covary 633 
strongly with the off-axis longitudinal moduli (C12, C13, C23).  Additional constraints 634 
in the form of axes compressibilities based on high-pressure x-ray diffraction 635 
studies serve to reduce such covariance (Brown et al. 2006).  636 

Particularly in the case of surface wave datasets for low symmetry crystals, the 637 
multi-start approach (i.e. restarting optimization many times from random initial 638 
models) has proven effective in locating optimal solutions. In the example given 639 
here, the optimization was initiated several times in order to find one set of initial 640 
guesses that converged. If the boundaries of the trust region are reduced based on a 641 
priori knowledge (e.g. providing bounds for moduli based on properties of similar 642 
minerals), the percentage of successful inversions from random starting models 643 
increases. Shown below is the convergence path for the synthetic feldspar data with 644 
additional constraints based on the axes compressibilities. 645 

>> [Cf ,eaout ,Resul ts,Ct ]=Vel ocities2Ci j(Input ,Cout ,'r',ea,'n' ,'LM' ,1);  646 
i teration    chi sqr       optimal ity       lambda      rel axation 647 

    0       62883. 136      1.490e+01       1. 000e-02     1.000e+00 648 
     1       11487. 109      4.474e+00       1. 000e-03     1.250e+00 649 
    2        544.873      2.008e+01       1.000e-04     1.562e+00 650 
    3        327.501      6.637e-01       1.000e-05     1.953e+00 651 
     4         26.277      1.146e+01       1.000e-03     1.250e+00 652 
    5          2.929      7.971e+00       1.000e-04     1.562e+00 653 

  6          1.630      7.969e-01       1.000e-05     1.953e+00 654 
  7          1.621      5.469e-03       1.000e-06     2.441e+00 655 
 16          1.621      6.168e+05       1.000e-02     1.000e+00 656 
 17          1.178      3.766e-01       1.000e-03     1.250e+00 657 

    18          1.163      1.280e-02       1.000e-04     1.562e+00 658 
    19          1.163      2.315e-04       1.000e-03     1.250e+00 659 
    20          1.162      6.991e-05       1.000e-04     1.562e+00 660 
     26          1.162      8.603e+05       1.000e-02     1.000e+00 661 
    27          1.162      8.111e-06       1.000e-03     1.250e+00 662 

r ms mi sfit =10.4 m/ s  chi sqr  =   1.16  el apsed time 15. 6 s 663 
 664 
The total number of steps to solution is similar to those shown for body wave 665 
examples. However, the forward SAW and PSAW calculation (determining acoustic 666 
velocities for assumed moduli) requires more extensive numerical calculations and 667 
the elapsed time is an order of magnitude greater. Table 4 lists the input moduli and 668 
moduli resulting from this inversion. Covariance and Monte Carlo based uncertainty 669 
estimates are also listed. The moduli recovered through the inverse process agree 670 
with the moduli used to create the synthetic data. Extensive testing indicates that 671 
this is generally the case and the Monte Carlo uncertainty estimates agree with 672 
covariance-based estimates. 673 



Hornblende: (function providing data: mkStr Hor nbl ende) In this example a mixed set 674 
of body wave and surface wave data is provided.  The measured velocities are based 675 
on Impulsive Stimulated Light Scattering experiments (Brown and Abramson, 676 
submitted). The number of measurements of transverse body waves was 677 
inadequate to provide a robust solution for the elastic moduli solely on the basis of 678 
body wave data. Thus, additional surface wave measurements were undertaken. 679 
The combination of measured compressional velocities that are strongly dependent 680 
on the longitudinal moduli and surface waves velocities that are strongly dependent 681 
on off-diagonal moduli provides a robust dataset. The data are loaded with the 682 
command: 683 

[ Input , Co, ea]=mkSt rHornbl ende(‘p’ )  684 

Inverse results are shown in Table 5.  Uncertainties based separately on body waves, 685 
surface wave and for the joint fit are shown.  The large uncertainties based only on 686 
surface waves reflect strong covariance between moduli rather than any intrinsic 687 
error. The complementary contributions in the combined data set create a final set 688 
of moduli with significantly reduced uncertainty. Here all moduli for this low 689 
symmetry crystal have 2 uncertainties less than 1 GPa. 690 

Summary 691 

Functions are implemented in the MATLAB® numerical environment that allow 692 
flexible analysis of measured acoustic wave velocities to determine elastic moduli. 693 
The package will run under all standard operating systems and hardware if 694 
MATLAB is available. In the case of surface wave analysis, two FORTRAN source files 695 
must be compiled and linked to MATLAB as MEX-files. Several inverse methods are 696 
provided since no one method and no single optimization attempt will always find 697 
the optimal solution. Example data sets are provided.  These allow a user to gain 698 
experience in finding optimal moduli and provide templates to organize new data in 699 

need of interpretation.   700 

The methods are tested using both published and synthetic data sets.  The 701 
Levenberg-Marquardt method shows greater skill and speed in finding optimal 702 
solutions relative to the Backus-Gilbert inverse technique. Although the Nelder-703 
Mead simplex method is slower, in some cases it can find a slightly better solution 704 
since the linearization inherent in the gradient-based methods fails if second 705 

derivatives of the model with respect to parameters are inadequately represented.  706 

Uncertainties based on the diagonal of the covariance matrix and those estimated 707 
using Monte Carlo simulations are generally in accord and agree with most 708 
published estimations. The current package of functions therefore provides a robust, 709 
validated, and flexible environment for analysis of ultrasonic, Brillouin, or Impulsive 710 

Stimulated Light Scattering datasets. 711 

  712 
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Appendix 720 

Determination of elastic moduli from velocity measurements requires organization 721 
of data sets, a collection of utility routines, routines to invoke the mathematical 722 
algorithms, and routines to create graphical representations. The basic function 723 
Vel ociti es2Cij  performs the entire analysis and calls on a set of additional functions 724 
– some are “nested” in the file containing the main function.  Others are provided in 725 
separate files and can be executed independently.  Full documentation of options 726 
and parameters for each function are contained within the function help feature. In 727 
the MATLAB command window, type “help function_name”, where “function_name” 728 
is any of those listed below. 729 
 730 

Description of functions called by Velocities2Cij 731 

Nested functions 732 

The following “nested” functions (contained within the main function Vel ociti es2Cij ) 733 
allow some variables to be globally available and thus these variables are not 734 
explicitly passed in the function calls. 735 
 736 

Functions that accomplish the optimization include: 737 

[ Co, mi sfit,~, output ]=fmi nsearch(func,Co, options); 738 

This Nelder-Mead optimization function is built into MATLAB. Inputs include f unc (a 739 
string defining the function that returns misfit).  Co is the starting set of moduli.  A 740 
list of user-controlled options can be found in MATLAB documentation.   741 

The following functions invoke the Levenberg-Marquardt or Backus-Gilbert 742 
optimization with obvious input and output variables.   743 
 744 

[ Cout ,chi sqr]=LM_LSQR( Ci n)  745 
[ Cout ,chi sqr]=BackusGi l bert (Ci n)  746 
[ eaout ,chi sqr]=LM_LSQR_ea( eai n,ix,lb,ub) 747 

LM_LSQR_ea uses the Levenberg-Marquardt method to optimize Euler angles for a 748 
single round of data (as defined by the input ix).  lb and ub are vectors containing 749 
upper and lower bounds for the Euler angle trust region. 750 

Three functions calculate misfits and the Jacobians for (1) body wave data, (2) 751 
surface wave data, or (3) data sets including both body and surface wave data. 752 

[ chi sqr,J,dvbw, rms, npflg]  = BW_cal c(Co)  753 
[ chi sqr,J,dvsw, rms, npflg]  = SW_cal c(Co)  754 
[ chi sqr,J,dvbwsw, rms, npflg]  = EC_cal c(Co)  755 

where Co is the current set of moduli being adjusted. Variable output by the 756 
functions are the reduced chi-square misfit, chi sqr , the Jacobian J , the list of 757 
deviations between data and the model, dv,  the root-mean-square misfit, r ms , and 758 
npfl g which is set equal to 1 if the current elastic moduli are not positive definite. 759 
Numerical derivatives are evaluated as single sided finite differences with a fixed 760 



increment of the independent variable. More computationally intensive (and 761 
presumably more accurate) methods to evaluate derivatives (double sided and 762 
adaptive increments) were evaluated and did not demonstrably improve 763 
performance or significantly change results. 764 

Standalone Functions 765 
The following functions are not nested within Vel ocities2Ci j . 766 
 767 

[ vel dat ,si gdat ,dcos,idfnt ]=Dat a2mat rixBW( I nput ,ifit) 768 
[ vel dat ,si gdat ,dcos,comp, dcomp] =Dat a2mat rixSW( I nput ,ifit) 769 

 770 
These functions unpack selected data (controlled by i fit ) from an input structure I nput  771 
and return vectors and matrixes of the data. i fi t  is a vector defining which samples in 772 
the full set are to be used.  Body wave velocities sets include up to three velocities 773 
for each propagation direction (a compressional and two polarizations of transverse 774 
waves).  Since, in practice, all three phases may not be observed in any one direction 775 
of propagation, “missing data” are listed in the data structure as NaN (not a number).  776 
i df nt  is a vector of indexes into the velocity matrix giving locations of velocities that 777 
are not NaN.  comp and dcomp are vectors of x-ray determined axis compliances and 778 
their uncertainties. 779 

A function to symmetrically converts between vector and matrix representations of 780 
elastic moduli. (ie. vector in –> matrix out or matrix in –> vector out) is: 781 

Cout =Ci 2Ci j(Ci n,sym)  782 

The input variable sy m is a string declaring the symmetry associated with the moduli. 783 
The convention for listing moduli in vector form is cyclic (i.e.  C11, C12, C13, …, C22, 784 
C23, …). 785 

A function to symmetrically converts between tensor and matrix representations of 786 
the elastic moduli (matrix in -> tensor out or tensor in –> matrix out) is: 787 

cout =Tnsr2Mt rx(ci n)  788 

A function that rotates the coordinate system associated with a set of elastic moduli 789 
is:  790 

cout =rot ateCi j(ci n,at r)   791 

ci n can be either a matrix or tensor representation of the moduli. The 3x3 792 
transformation (rotation) matrix is defined in atr .  The output moduli, cout , are in the 793 
same representation (tensor or matrix) as the input.  794 

Functions to convert between Euler angles (ea) and the orientation matrix (OM) 795 
representations of crystal coordinates relative to laboratory coordinates are: 796 

ea = inv_eiler(OM)  797 
OM = ei ler(ea); 798 



The following function takes a vector of rotational angles, a, in the laboratory 799 
reference frame and the associated Euler angles for that sample, ea, and calculates 800 
the direction cosines at each angle under the assumption that the z-axis is the 801 
rotation axis. 802 

dcos=angl es2dcos(a,ea)  803 

The following functions return the Jacobians (J) (derivatives of velocities with 804 
respect to model parameters) and model velocities (vel c) for a trial set of elastic 805 
moduli, a list of which moduli are allowed to vary (i const ), the input data structure, 806 
and a flag (Cfl g) to determine whether derivatives are to be evaluated with respect 807 

to moduli or compliances. 808 

[ J,  vel c]=j acobi anSW( Co, i const ,Input ,Cf l g) 809 
[ J,  vel c]=j acobi anBW( Co, i const ,sym, dcos,idfnt ,rho,Cf lg)  810 

The following function returns the Jacobian associate with derivatives of the 811 
velocities with respect to Euler angle for specific propagation directions of a 812 
particular sample (defined by index i x). 813 

 814 
 [chi sqr,J,dv,si gdat ]=j acobi an_ea(Input ,ix,Co)  815 

The following function determines isotropic Voigt-Reuss moduli and their 816 
uncertainties given the moduli C and covariance matrixes for moduli, Mc , and 817 

compliances, Ms,  for crystal symmetry given in sym. 818 

out =KG_cal c(C, Mc, Ms, sym)  819 

Given a matrix defining the trust region for elastic moduli (lower and upper bounds), 820 
the following function provides a positive definite and random set of moduli 821 

(uniformly distributed over the range for each modulus).  822 

c=Cr and(TrustRegi on)   823 

The following function calculates velocities and polarizations of body waves with 824 
propagation directions given by direction cosines dcos , density r ho, and moduli 825 
matrix C.  The output for each direction of propagation is sorted by ascending 826 

velocity. 827 

 [vel ocities,ei gvec]  = xstl(dcos,rho,C)  828 

The following function is gateway to calculations of surface wave velocities. I nput  is 829 
the standard input data structure (which contains parameters required for the 830 
surface wave calculations). Co are the moduli, and SWfl g is set to ‘v’ to return 831 
velocities for specified propagation directions or ‘s’ to calculate a grid of surface 832 
wave excitation intensities, G13, as a function of velocity and direction.  The output 833 
structure contains different results depending on the input flag.  This function 834 
requires calls to mex functions (compiled FORTRAN with subroutines that provide a 835 
gateway to MATLAB).  The FORTRAN source code is based on “PANGIM” (Every 836 
1998).  “modevel.F” was modified from “PANGIM” to return the velocity associated 837 



with peaks in the intensity spectra. “modeconv.F” returns spectral intensities on a 838 

grid of velocities and directions of propagation (see Brown et al.  2006) 839 

SWout =Sur faceWaveVel (Input ,Co, SWf l g)  840 

The following function creates nsyn random velocity data sets (each with the same 841 
propagation directions and experimental variance as data described in I nput ). Each 842 
synthetic data set is optimized separately to estimate moduli. These are returned in 843 
matrix Cf s (size is nsyn by the number of moduli). The r ms misfit for all fits is 844 
returned in vector r ms  and the standard errors for each modulus are returned in 845 
uncert . 846 

[ uncert,Cf s, rms] =Mont eCarloSt at s(Input ,nsyn,Co, 0); 847 

Functions that plot results are provided for body waves (if data for individual 848 
samples lie in planes defined by Euler angles) and surface waves.  The number of 849 
subplots is adjusted depending on how many samples are in the data set.  i fi g sets the 850 
window number to plot in.  pl t dev defines the range in percent for the deviations 851 
plots. 852 

BWPl ot (Resul ts,i fig,pl tdev)  853 
SWPl ot (Resul ts,i fig,pl tdev)   854 
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 Weidner 
and 

Carleton  

Current 
Backus-
Gilbert 

Current 
Levenberg-
Marquardt 

Weidner 
and 

Carleton  

2 

Covariance 

2 

Monte 
Carlo 

2 

C11 160.8 160.8 161.3 5.8 4.1 4.8 

C12 82.1 81.6 80.5 8.4 7.6 6.0 
C13 102.9 102.5 103.1 12.2 10.7 10.3 

C15 -36.2 -36.0 -35.9 3.6 2.9 3.0 
C22 230.4 230.5 230.6 5.2 3.9 5.3 

C23 35.6 31.9 34.1 16.2 17.1 14.6 
C25 2.6 4.3 5.0 8.0 7.6 5.6 
C33 231.6 232.3 231.6 8.8 6.6 8.5 

C35 -39.3 -40.1 -39.9 4.8 3.9 4.6 
C44 67.8 67.3 67.8 6.0 6.8 4.4 

C46 9.9 9.6 9.4 4.0 3.8 2.5 
C55 73.3 73.3 73.2 4.6 4.3 2.9 

C66 58.8 58.5 58.1 3.6 3.3 2.2 
Misfit 
(rms) 

152 151 151    

Table 1. Elastic moduli and uncertainties for coesite based on velocities reported by 923 
Weidner and Carleton 1977. Voigt notation moduli are listed in the first column. 924 
Published moduli are in the second column. Current results using the Backus-Gilbert 925 
and the Levenberg-Marquardt inverse techniques are listed in the next two columns.  926 
2 uncertainties are given in the last three columns based on published results, 927 
covariance estimates, and Monte Carlo estimates. Moduli are given in units of GPa, 928 

rms misfit is in m/s.  929 



 Collins 
and 

Brown  

Current 
Levenberg-
Marquardt 

Collins 
and 

Brown  

2 

Covariance 
2 

Monte 
Carlo 

2 

C11 237.8 238.0 0.9 1.3 1.4 

C12 83.5 84.0 1.3 1.4 1.1 
C13 80.0 79.8 1.1 1.3 1.1 

C15 9.0 9.2 0.6 0.8 0.8 
C22 183.6 184.3 0.9 1.2 1.1 
C23 59.9 59.4 1.6 1.6 1.7 

C25 9.5 9.9 1.0 1.0 1.0 
C33 229.5 229.3 0.9 1.1 1.0 

C35 48.1 48.2 0.6 0.7 0.7 
C44 76.5 76.8 0.9 1.0 0.8 

C46 8.4 8.4 0.8 0.8 0.7 
C55 73.0 73.0 0.4 0.4 0.5 

C66 81.6 81.1 1.0 1.2 1.2 
Misfit 
(rms) 

20.8 20.6    

Table 2. Elastic moduli and uncertainties for clinopyroxene based on velocities 930 
reported by Collins and Brown (1998).  Moduli in Voigt notation are listed in the 931 
first column. Published moduli are listed in the second column. Current results using 932 
the Levenberg-Marquardt inverse technique are listed in the next column.  2 933 
uncertainties are given in the last three columns based on published estimates, 934 
covariance estimates and Monte Carlo estimates. Moduli are given in units of GPa, 935 

rms misfit is in m/s. 936 

  937 



 Bezacier 
et al. 

Current 
Backus-
Gilbert 

Current 
Levenberg-
Marquardt 

Bezacier 
et al. 
2 

Covariance 
2 

Monte 
Carlo 
2 

C11 122.3 122.2 121.3 1.9 1.8 1.4 
C12 45.7 45.6 44.0 1.1 2.2 2.0 
C13 37.2 37.2 37.7 1.0 2.6 2.4 
C15 2.3 2.4 2.7 0.1 1.1 1.0 
C22 231.5 231.5 229.2 4.8 2.6 2.9 

C23 74.9 74.9 76.1 2.0 2.7 2.9 
C25 -4.8 -4.7 -4.8 0.1 2.8 2.8 

C33 254.6 254.6 256.3 5.8 3.2 2.9 
C35 -23.7 -23.7 -24.2 0.3 1.6 1.5 
C44 79.6 79.7 79.3 0.9 1.0 1.0 
C46 8.9 8.9 9.4 0.1 1.0 0.9 
C55 52.8 52.8 53.1 0.5 0.8 0.7 
C66 51.2 51.2 51.3 0.4 0.7 0.7 

Misfit 
(rms) 

44.3 44.3 37.0    

Table 3. Elastic moduli and uncertainties for Glaucophane based on velocities 938 
reported by Bezacier et al. (2010).  Moduli in Voigt notation are listed in the first 939 
column. Published moduli are given in the second column. Current results using the 940 
Backus-Gilbert and the Levenberg-Marquardt inverse techniques are listed in the 941 
next two columns. Euler angles were also optimized for the Levenberg-Marquardt 942 
analysis. 2 uncertainties are given in the last three columns - the published 943 
estimate, the current covariance estimate and the current Monte Carlo estimate. 944 

Moduli are given in units of GPa, rms misfit is in m/s. 945 



 Model Inverse Covariance 
2 

Monte 
Carlo 

2 

C11 85.0 84.9 0.2 0.1 
C12 50.0 50.0 0.5 0.4 
C13 40.0 40.1 0.6 0.4 
C15 -1.0 -0.9 0.1 0.1 
C22 160.0 162.9 3.5 1.8 

C23 20.0 17.4 2.9 1.5 
C25 -10.0 -10.5 0.6 0.4 

C33 165.0 166.9 2.6 1.6 
C35 10.0 10.3 0.6 0.4 
C44   20.0 20.0 0.1 0.1 
C46 -12.0 -11.9 0.1 0.1 
C55 20.0 20.1 0.2 0.1 
C66 30.0 29.8 0.2 0.2 

Misfit 
(rms) 

11.1 10.4   

946 

Table 4. Elastic moduli and uncertainties for a synthetic alkaline feldspar based on 947 
surface wave velocity propagation directions used in Waeselmann et al. 2016.  948 
Moduli in Voigt notation are listed in the first column. Model moduli are given in the 949 
second column. Inverse results using the Levenberg-Marquardt inverse technique 950 
are listed in the next column.  2 uncertainties are given in the last two columns 951 
based on covariance and Monte Carlo estimates. Moduli are given in units of GPa, 952 
rms misfit is in m/s. 953 

  954 



 Hornblende Covariance 
2 

Monte 
Carlo 

2 

Body wave 
2 

Surface wave 
2 

C11 133.2 0.5 0.5 0.6 11.6 
C12 53.8 0.9 0.7 1.7 8.1 
C13 48.4 0.7 0.6 0.8 7.2 
C15 -1.0 0.3 0.3 0.3 2.8 
C22 189.3 0.7 0.6 0.8 15.1 

C23 61.2 0.8 0.8 1.4 10.1 
C25 -8.8 1.0 0.8 3.6 4.5 

C33 227.6 0.7 0.7 0.8 23.3 
C35 -31.1 0.4 0.4 0.4 4.2 
C44 73.7 0.4 0.4 0.7 1.6 
C46 4.3 0.4 0.4 1.7 0.7 
C55 47.2 0.2 0.2 0.3 1.2 
C66 48.5 0.2 0.2 1.3 0.5 

Misfit 
(rms) 

13.1     

Table 5. Elastic moduli and uncertainties for a calcium amphibole (hornblende) 955 
based on velocities reported by Brown and Abramson (submitted 2016).  Moduli in 956 
Voigt notation are listed in the first column. Results are given in the second column. 957 

2 uncertainties are given in the last four columns based on the covariance matrix, 958 
the Monte Carlo method, and separate analysis of contributions from body waves 959 
and surface wave measurements to the uncertainty.  Moduli are given in units of 960 
GPa, rms misfit is in m/s. 961 
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963 

964 
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966 

967 

968 

969 

970 

Figure 1. Schematic representation of inverse methods (adapted from M. Sambridge, 971 
personal communication).  The vertical axis suggests the relative contribution of 972 
local gradients in determination of directions to move to improve model misfit. The 973 
horizontal axis suggests an increased number of evaluations of the forward problem. 974 
Inverse methods that rely on local gradients explore more limited regions of the 975 
parameter space (only that part of the space lying along a path from larger to 976 
smaller misfit) while a full grid search relies on massive sampling of the entire 977 
parameter space. The simplex method, while not directly calculating local gradients 978 
works to move “downhill”. In multi-start methods, more regions of the parameter 979 
space are explored while still making use of local gradients. Both genetic algorithms 980 
and simulated annealing are less dependent on local gradients and rely more on 981 

extensive sampling of the parameter space. 982 
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983 

Figure 2. Model predictions, velocities and deviations between observations and 984 
predictions for clinopyroxene. These plots were generated using the MATLAB 985 
function BWPlot.  Velocities were measured in planes perpendicular to three 986 
crystallographic directions (normal to a*, b, and c). The upper panels show 987 
measured velocities and model predictions. The lower panels show percentage 988 
deviations of data from predictions.  For reference dashed lines at +/- 0.3% are 989 

shown. 990 



991 

Figure 3. Model predictions, velocities and deviations between observations and 992 
predictions for a synthetic alkaline feldspar dataset. These plots were generated 993 
with the MATLAB function SWPlot. The upper panels show “measured” SAW and 994 
PSAW velocities as filled circles. The log of the elastic Green’s function tensor 995 
element G13 is shown in the gray scale.  Lighter means greater phase amplitude. 996 
Below each velocity panel is a plot of percentage deviations of data from predictions.  997 

For reference, dashed lines at +/- 0.3% are shown.998 


