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a b s t r a c t

Although methods to determine optimal Hashin–Shtrikman bounds for polycrystals of cubic to mono-
clinic symmetry have been described, the calculation of bounds for triclinic crystals has not previously
been possible. The recent determination of elastic moduli of common minerals with low symmetry
provides motivation to extend the Hashin–Shtrikman formulation to lower symmetry. Here, Hashin–
Shtrikman moduli, valid for crystals of any symmetry, are calculated as a function of the properties of a
reference isotropic material. Defining the difference between moduli of the crystal and the moduli of the
reference isotropic material as the residual tensor, the optimal lower (and upper) bounding moduli are
found by a search along the boundary of positive (or negative) definite regimes of the residual elasticity
tensor. The new numerical approach reproduces earlier results for higher symmetry crystals and suc-
cessfully provides optimal bounds for triclinic crystals that have previously not been subject to analysis.
The algorithm is sufficiently compact that implementation is relatively easy within any modern com-
putational environment. Hashin–Shtrikman bounds for triclinic minerals in the plagioclase solid solution
series are reported. These bounds are significantly narrower than extremal Voigt–Reuss bounds. The Hill
averages moduli lie within the Hashin–Shtrikman bounds.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic properties of polycrystals (aggregates of many crystals)
are relevant in engineering and technical applications (see the
review by Adams and Olson, 1998) as well as in the geosciences.
Since the elasticity of rocks (as polycrystalline aggregates) controls
seismic wave speeds, efforts to understand Earth composition on
the basis of its seismic structure require an ability to predict ag-
gregate properties from single crystal properties (eg. Hacker et al.,
2003).

The pioneering work of Hashin and Shtrikman (1962, 1963),
who found limits of elastic energy deviations from a reference
isotropic state, gave bounds for isotropic elastic properties of
polycrystals where the shape and orientations of constituent
crystals are uncorrelated. In contrast, the Voigt (uniform strain on
all crystals), and Reuss (uniform stress on all crystals) bounds (Hill,
1952) are realized in multi-layered laminate structures (Avella-
neda and Milton, 1989; Avellaneda et al. 1996). The Hashin–
Shtrikman (H–S) optimal bounds must lie within the Voigt–Reuss
(V–R) bounds.

Empirical evidence suggests that measurements of elastic
properties of aggregates with random crystal orientations lie
within H–S bounds (Watt et al., 1976; Brown et al., submitted for
publication). Watt et al. (1976) argued that the Hashin–Shtrikman
optimal bounds are the tightest constraints that can be de-
termined without a detailed description of the microstructure of a
material (the shape and size distributions of crystals within the
aggregate). Thus, H–S optimal bounds provide a key constraint on
the behavior of systems that are otherwise not well characterized.
Investigations of the properties of polycrystals remain active. With
an additional “symmetric cell” assumption tighter bounds have
been reported (Pham, 2011a; 2011b; 2012).

Although the generalized theory for bounds as given by Hashin
and Shtrikman is valid for any crystal symmetry, prior im-
plementations (Peselnick and Meister, 1965; Watt, 1979, 1980,
1986; Watt and Peselnick, 1980) relied on (symmetry-dependent)
analytical factoring of the residual elastic tensor. This tensor is
defined as the difference between the actual anisotropic moduli
and moduli of a reference isotropic material. As discussed in the
next section, the optimal bounds are extremal values in regimes
where the residual elastic tensor is either positive definite or ne-
gative definite. Low symmetry crystals have complicated expres-
sions for the positive (negative) definite boundaries. In the case of
monoclinic crystals, closed forms could not be determined for all
conditions and iterative numerical solutions were required (eg.
Watt, 1980). No attempt has been reported to factor the (more
complicated) lower symmetry triclinic tensor. Efforts to realize
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practical calculations of optimal H–S bounds culminated with the
publication by Watt (1987) of an algorithm, appropriate for cubic
through monoclinic symmetries. That FORTRAN code required a
complex mix of analytic and numerical calculations. Each sym-
metry class was handled differently as a result of the changing
topology associated with the positive (negative) definite bounding
conditions.

Despite the theoretical advantages of Hashin–Shtrikman bounds,
the use of Voigt–Reuss–Hill bounds has remained ubiquitous in the
geosciences. In part this may represent an implicit judgment that
the Hill average of Voigt and Reuss bounds is adequate. However,
Hashin–Shtrikman bounds may have also been avoided as a result
of a perception that these bounds are too difficult to calculate.
Maintaining an executable version of the older generation FORTRAN
code was not an easy task. Furthermore, the complexity of the al-
gorithm used in that code may have inhibited more widespread
understanding and routine use of H–S bounds.

In this study, the fundamental equations for Hashin–Shtrikman
moduli are implemented in a high-level language (MATLAB) and
contemporary numerical methods are employed to search for the
optimal bounds. The size of the code is dramatically smaller. The
method is symmetry class independent. It exactly reproduces
earlier (higher symmetry) results and is extended to applications
in the case of triclinic crystals.
2. Theory

Key equations of the derivation given by Hashin and Shtrikman
(1962, 1963) are reproduced here in order to identify necessary
numerical steps. The elastic energy of a polycrystal is

U dV
1
2 (1)ij ij∫ σ= ϵ

Given “effective” isotropic moduli Kn and Gn (the quantities to
be bounded here), the elastic energy of the aggregate is approxi-
mated as
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where Cijkl is the anisotropic elastic tensor for the crystal of
interest and Cijkl

o is the elastic tensor of a (variously described in the
literature as the “fictive”, “comparison” or) “reference” isotropic
material:
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where Ko and Go are moduli for the “reference” material. Within
the variational framework of the theory, these “reference” moduli
are free parameters that can be adjusted to find the appropriate
bounding “effective” elastic moduli.

With the 4th order tensor isotropic operator defined as

I
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Hijkl is determined by
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If the differences between the actual stresses in a polycrystal
and stresses in the “reference” material are defined by
p C (7)ij ij ijkl
o

klσ= − ϵ

Hashin and Shtrikman found that the extremes of elastic de-
viatoric energy with respect to pij required that
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where Ω is the orientation of a particular crystal relative to the
co-ordinate system, angle brackets represent averages over all
orientations, and
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Defining

A H I (12)ijkl ijkl ijkl ij klβ γδ δ= − −

and determining Bijkl such that:
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Hashin and Shtrikman rewrote Eq. (8) in terms of Bijkl and
averaged over all orientations to give
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where the average of Bijkl〈 〉 is
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This can be reduced to
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Application of pure dilatational strain in Eq. (14) gives an “ef-
fective” bulk modulus
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Application of pure shear strain in Eq. (14) gives an “effective”
shear modulus

G G
B

B1 2 (19)
o

2

2β
= +

+
⁎

Within the variational framework of the Hashin–Shtrikman
derivation, the “effective” moduli are maximized or minimized
through appropriate choices for Ko and Go subject to whether the
tensor of deviatoric stresses Rijkl is either positive definite or ne-
gative definite. Such extremal values are the optimal bounding
moduli.

The problem can be graphically understood with reference to
Fig. 1. Here elastic moduli for the triclinic plagioclase feldspar,
albite, as reported in (Brown et al., 2006) are used. However, the
topology and trends are similar for all crystals of all symmetry
classes. The horizontal axis is the parameter Go and the vertical
axis is the parameter Ko. Domains where Rijkl is either positive or
negative definite are given with dark shading. The tensor is always
positive definite for small values of Ko and Go. The tensor is always
negative definite for large values. Boundary locations depend on
the specific moduli of a particular crystal. As noted by Hill (1963),
the lower positive definite boundary trends to the Reuss bulk



Fig. 1. Isotropic averaging of elastic moduli for albite (An0) as a function of the
reference isotropic moduli. In the lower left corner (dark shade) the residual elastic
tensor Rijkl is positive definite. In the upper corner (shaded black) Rijkl is negative
definite. The Reuss average bulk modulus is plotted at Go¼0 and the Voigt average
bulk modulus is plotted on the right side. The contours (intervals of about 0.4 GPa)
are values of the Hashin–Shtrikman shear modulus (function of Ko and Go) that
increase from left to right. Two points labeled A define the limits of the positive
(negative) boundaries with respect to Go. Point B marks the location on the
boundary where the optimal maximum lower limit Hashin–Shtrikman moduli are
found. Point C is the location on the boundary where the optimal minimum upper
limit Hashin Shtrikman moduli are found.
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modulus as Go goes to zero. As Go goes to infinity, the negative
definite boundary trends to the Voigt average bulk modulus. Both
K⁎ and G⁎ are monotonic functions of Ko and Go. Contours of con-
stant G⁎ (Eq. (19)) are plotted as the light lines in the figure. As
shown, a maximal (optimal) value of G⁎ occurs in the positive
definite region and a minimal (optimal) value for G⁎ occurs in the
negative definite region. These points are marks as B and C and
represent the optimal Hashin–Shtrikman bounds on the shear
modulus. Similar contours in K⁎ provide the graphical solution for
optimal bulk moduli. As graphically demonstrated, the optimal
bounds always lie on the boundary of the positive (negative) de-
finite regions.
3. Implementation

The following MATLAB code fragments illustrate numerical
implementation of the theory described above. All 4th order
elastic tensor quantities are mapped, using the Voigt notation
(Nye, 1957), into 6�6 elasticity matrixes. There is no loss in
generality.

Determination of the Hashin–Shtrikman moduli (Eqs. (18) and
(19)) can be accomplished as follows. Given scalar values for the
reference material moduli, the compliance factors (Eqs. (9)–(11))
are calculated:
alpha¼�3/(3nkoþ4ngo);

beta¼�3n(koþ2ngo)/(5ngon(3nkoþ4ngo));
gamma¼(alpha-3nbeta)/9;
The form of the isotropic operator for elastic tensors is defined
in Eq. (5). In the 6�6 matrix representation, the first three diag-
onal terms are always one while the last three elements can be
either 1/2 or 2, depending on how the operator is invoked. These
two forms are labeled I and Iinv.
I¼eye(6,6);
Iinv¼I;

Iinv(4:6,4:6)¼2nI(4:6,4:6);

I(4:6,4:6)¼.5nI(4:6,4:6);
The 6�6 isotropic modulus matrix (Eq. (4)) is given by

co¼2ngonI;

co(1:3,1:3)¼co(1:3,1:3)þ(ko-2/3ngo)nones(3,3);

The residual matrix (Eq. (3)) and its inverse (Eq. (6)) are
R¼cij-co;

H¼inv(R);
Eqs. (12) and (13) are implemented as follows (note the use of
the inverse isotropic operator when working with compliances):
A¼H-betanIinv;

A(1:3,1:3)¼A(1:3,1:3)-gammanones(3,3);

B¼inv(A);
Orientationally averaged values for the B matrix (Eqs. (16) and
(17)) are given by
sumB1¼sum(sum(B(1:3,1:3)));

dB¼diag(B);

sumB2¼sum(dB(1:3))þ2nsum(dB(4:6));

B1¼(2nsumB1-sumB2)/15;

B2¼(3nsumB2-sumB1)/30;
The Hashin–Shrtikman effective moduli (“khs” and “ghs”) are
then determined (Eqs. (18) and (19)):
khs¼koþ(3nB1þ2nB2)/(3þalphan(3nB1þ2nB2));

ghs¼goþB2/(1þ2nbetanB2);
As shown in the previous section, the optimal bounds on the
Hashin–Shtrikman moduli lie on the boundaries of the positive
(negative) definite regions of matrix R. R is positive (negative)
definite if and only if all eigenvalues of R are either all positive or
all negative. The following code sets the variable value to 1 if
positive definite and to �1 if negative definite.
[�,D]¼eig(R);

s¼sum(sign(diag(D)));

value¼0;

if s¼¼6,

value¼1;

elseif s¼¼�6,

value¼�1;

end
The fragments given above are assembled into the MATLAB
function hscalc with inputs being the reference material moduli
(ko and go) and (as a 6�6 matrix) the crystal (anisotropic) elastic
moduli cij. Output by this function are the H–S effective moduli
and the variable value (1 for positive definite, �1 for negative
definite and 0 otherwise).

Finding optimal bounds for the effective moduli requires a
search along the positive (negative) definite boundaries. As illu-
strated in Fig. 1, the positive definite boundary at K 0o = (lower
point A) is found with a search along the lower (Go) axis as shown
below. The smallest possible reference shear modulus (essentially
zero) is given by gmin and gmax is an upper bound that is prag-
matically set large (1000 GPa).



Table 1
Isotropic average moduli for plagioclase feldspars based on the triclinic elastic
moduli reported by Brown et al. (submitted for publication).

Composition Modulus (GPa) Voigt þHS Hill –HS Reuss

An0 K 63.1 60.3 58.6 57.1 54.1
G 41.4 36.7 35.6 32.9 29.8

An25 K 69.2 67.5 66.7 66.0 64.3
G 39.5 36.2 35.3 33.7 31.1

An37 K 73.0 71.6 70.9 70.3 68.8
G 42.3 38.8 37.9 36.2 33.6

An48 K 77.6 76.4 75.8 75.3 74.1
G 42.9 39.3 38.4 36.6 33.9

An60 K 77.0 76.1 75.4 75.2 73.9
G 41.2 38.4 37.6 36.3 33.9

An78 K 82.3 81.1 80.3 80.0 78.3
G 41.1 38.4 37.7 36.5 34.3

An96 K 88.7 87.3 86.4 86.1 84.1
G 42.5 39.9 39.1 38.0 35.7
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dg¼(gmax-gmin)/2;

go¼gminþdg;

dg¼dg/2;

[�,vo]¼hscalc(kmin,go,cij); % vo is 1, 0, or �1

while du4.01

if vo¼¼0

gn¼go-dg; % point is on right side of boundary –

move left

else

gn¼goþdg; % point is on left side of boundary –

move right

end

[hs,vn]¼hscalc(kmin,gn,cij);

dg¼abs(gn-go)/2; % now search in smaller region

go¼gn;

vo¼vn;

end

With the “reference” shear modulus set to range from zero to
point A of Fig. 1, the positive definite boundary is searched to find
the point with maximal values of the H–S moduli (point B). Either
the bulk or shear modulus can be tested for the maximal value
with little change in results. The boundary is found for each spe-
cified value of go by searching along ko (using similar coding as
given above). The search is controlled by the standard MATLAB
function fminbnd, a bounded search algorithm for the maximum
(minimum) of a function of a single variable. fminbnd uses the
“golden section” method (Brent, 1973) with parabolic interpola-
tion. Since both H–S moduli are monotonically increasing func-
tions of ko and go, a single extremal value exists along the
boundary as shown in Fig. 1.

Since one or more eigenvalues of the residual elasticity matrix
Rijkl goes to zero on the positive (negative) definite boundary, it is
necessary to move slightly off the boundary in order to insure that
necessary matrix inversions are adequately scaled. However, since
Hashin–Shtrikman moduli vary relatively slowly (as shown in
Fig. 1) negligible changes to the calculated bounds result from
avoiding the exact boundary. The search along the negative defi-
nite boundary (minimum go found at upper point A of Fig. 1), to
find the smallest upper values of the H–S moduli (point C of Fig. 1)
proceeds in a similar way.

The MATLAB function included with this paper, HSBounds, re-
turns the optimal H–S bounds. This function makes use of “nested”
sub-functions within the main function. In MATLAB, variables defined
within HSBounds are locally available to any nested function. In
particular, the elastic moduli matrix cij_local can be used by
lowerbound, upperbound, and the functions called by these
functions. This avoids the need to define global variables in order to
use the built-in MATLAB function fminbnd.

Minimal error checking is provided. HSBounds checks that the
input matrix is appropriately 6�6, symmetric, and positive defi-
nite. Thus, the user is expected to construct the correct 6�6
matrix of elastic moduli. Moduli could be passed to HSBounds as a
(more compact) vector. However, problems arise in deciding on
the order of moduli and in tracking the symmetry-differing
number of moduli. The current implementation avoids difficulties
(in the sense that conventions to construct the matrix from a
vector can differ) between the user and the function.

Four matrix arrays are returned by HSBounds. The first is a
2�2 array that contains upper and lower optimal H–S bounds for
the bulk modulus and shear modulus. The second array (3�2)
contains the V–R–H bounds. The third array (2�2) is a listing of
the “reference” moduli at the optimal points. The fourth array
(1�2) gives values of the reference shear modulus at the points
labeled A in Fig. 1. The third and fourth output arrays are provided
in order to confirm that reasonable results have been obtained. All
returned results should be interrelated as shown by the topology
plotted in Fig. 1. In all currently tested cases, results have been
sensible.

If the m-files HSBounds.m and test_HSBounds.m are in the
MATLAB path, invoking the script test_HSBounds will calculate
bounds for the examples used in Watt (1987). The current code
should reproduce his results to 0.01 GPa. Newly reported (Brown
et al., submitted for publication) elastic moduli for triclinic plagi-
oclase feldspars are also included in the script. H–S bounds based
on these data are further discussed below.
4. Discussion

The current implementation has been tested against the ex-
amples provided byWatt (1987). Results for reported moduli agree
to 0.01 GPa, the least significant figure given in the earlier work.
Since the current implementation and the former implementation
used �0.01 GPa internally as a convergence criteria, this agree-
ment is acceptable and exceeds typical experimental uncertainty
by about an order of magnitude.

Hashin–Shrtikman bounds for recently reported triclinic pla-
gioclase feldspars elastic moduli (Brown et al. submitted for
publication) are given in Table 1. The underlying data are listed in
test_HSBounds. The seven crystals range in composition in the
solid solution series from albite (NaSi3AlO8) to anorthite
(CaSi2Al2O8). Compositions are reported in terms of anorthite
content (Anx where x¼0 for albite and x¼100 for anorthite). In all
cases, the H–S bounds are significantly tighter that the V–R
bounds and the (Hill) average of the V–R bounds lies between the
H–S bounds. There is a decrease in the width of all bounds be-
tween An0 and An96 as the overall anisotropy of plagioclase feld-
spars decrease with increasing anorthite composition.
5. Conclusions

A new implementation, based on a straightforward and trans-
parent algorithm, for calculation of isotropic polycrystal aggregate
elastic behavior is reported. The method allows calculation of
bounds derived by Hashin and Shtrikman (1962, 1963) for crystals
having any symmetry. The method is given here as a MATLAB
function. However, it is easily transferable to any modern com-
putational environment that has access to standard numerical al-
gorithms. For the first time Hashin–Shtrikman bounds have been
calculated and reported for crystals of triclinic symmetry. In all
cases examined, the Hill average of Voigt and Reuss bounds lies
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between the upper and lower Hashin–Shtrikman bounds.
Although Watt et al. (1976) argued compellingly that Hashin–

Shtrikman bounds are preferable in situations where the shape
and size distributions of grains are not constrained, the use of
Voigt–Reuss–Hill bounds has remained ubiquitous in the geos-
ciences. In part this represents an implicit judgment that, within
uncertainties, the Hill average of Voigt–Reuss bounds may be
adequate. However, Hashin–Shtrikman bounds may have also
been avoided as a result of prior calculational difficulties. Main-
taining an executable version of the older generation FORTRAN
code was not an easy task. Furthermore, the complexity of the
previous algorithm may have inhibited more widespread under-
standing and use of Hashin–Shtrikman bounds. The current im-
plementation is accomplished with a compact code that will
hopefully be more routinely used by the community.
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