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THE EFFECT OF S-WAVE ARRIVAL TIMES ON THE ACCURACY OF 
HYPOCENTER ESTIMATION 

BY JOAN S. GOMBERG, KAYE M. SHEDLOCK, AND STEVEN W. ROECKER 

ABSTRACT 

Well-constrained hypocenters (latitude, longitude, depth, and origin time) are 
required for nearly all studies that use earthquake data. We have examined the 
theoretical basis behind some of the widely accepted "rules of thumb" for 
obtaining accurate hypocenter estimates that pertain to the use of S phases and 
illustrate, in a variety of ways, why and when these "rules" are applicable. Results 
of experiments done for this study show that epicentral estimates (latitude and 
longitude) are typically far more robust with respect to data inadequacies; 
therefore, only examples illustrating the relationship between S phase arrival time 
data and focal depth and origin time estimates are presented. Most methods 
used to determine earthquake hypocenters are based on iterative, linearized, 
least-squares algorithms. Standard errors associated with hypocenter parame- 
ters are calculated assuming the data errors may be correctly described by a 
Gaussian distribution. We examine the influence of S-phase arrival time data on 
such algorithms by using the program HYPOINVERSE with synthetic datasets. 
Least-squares hypocenter determination algorithms have several shortcomings: 
solutions may be highly dependent on starting hypocenters, linearization and the 
assumption that data errors follow a Gaussian distribution may not be appropriate, 
and depth/origin time trade-offs are not readily apparent. These shortcomings 
can lead to biased hypocenter estimates and standard errors that do not always 
represent the true error. To illustrate the constraint provided by S-phase data on 
hypocenters determined without some of these potential problems, we also show 
examples of hypocenter estimates derived using a probabilistic approach that 
does not require linearization. We conclude that a correctly timed S phase 
recorded within about 1.4 focal depth's distance from the epicenter can be a 
powerful constraint on focal depth. Furthermore, we demonstrate that even a 
single incorrectly timed S phase can result in depth estimates and associated 
measures of uncertainty that are significantly incorrect. 

INTRODUCTION 

Well-constrained hypocenters (latitude, longitude, depth, and origin time) are 
required for studies of Earth structure, focal mechanisms, and the delineation of 
active tectonic features; indeed, the earthquake studies that do not require accurate 
hypocenters are few. The nonlinear nature of the problem of determination of an 
earthquake hypocenter makes it difficult to predict the response of the solutions to 
characteristics of the input data and parameters. However, the problem has been 
studied by many researchers and "rules of thumb" have been developed. These 
pertain to the number and configuration of recording stations, the starting hypo- 
center (Bolt, 1960; Nordquist, 1962; Cisternas, 1964; James et al., 1969; Chatelain 
et  al., 1980), and the distribution and number of P and S phases ( James et  al., 1969; 
Buland, 1976; Chatelain et al., 1980; Ellsworth and Roecker, 1981). We present a 
summary of what these and other authors have learned about the sensitivity of 
hypocenter determination, particular focal depth, to the inclusion of S phases. 
These "rules of thumb" and the theoretical basis behind them are illustrated in a 
series of experiments using hypothetical data. 
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The approach that is most often taken to solve this nonlinear problem has been 
to linearize the relationship between travel time and location (Geiger, 1910). A 
truncated Taylor's series expansion of this relationship results in a problem in 
which travel-time residuals are linearly related to perturbations to some starting 
hypocenter. Mathematically, this is written as 

Olon] Alon + \01at] Alat + Az + Ato = residualk k = 1, 2 . . . . .  K (1) 

where the partial derivatives of travel time, T, with respect to longitude (ion), 
latitude (lat), depth (z), and origin time (to), respectively, are calculated for some 
starting hypocenter and the location of the station where the kth phase was recorded. 
K is the total number of phase arrival times used. The residual for the kth phase is 
the difference between the observed arrival time and the arrival time calculated for 
the starting hypocenter and station location where the phase was recorded. 

All commonly used computer programs to perform earthquake hypocenter deter- 
mination are based on this linearized approach [e.g., HYPO71 (Lee and Lahr, 1974), 
HYPOINVERSE (Klein, 1978), and HYPOELLIPSE (Lahr, 1979)]. The hypocen- 
ter solution or perturbations, Alat, Alon, Az, At0, may be found using a variety of 
least-squares procedures (Flynn, 1960), such as step-wise multiple regression (Lee 
and Lahr, 1974), and singular value decomposition (Bolt, 1960; Buland, 1976; Klein, 
1978). Regardless of which procedure is used, insight into the sensitivity of the 
hypocenter solution to the data (residuals) can be gained by forming the normal 
equations that correspond to equation (1) and examining the terms of the pseudo- 
inverse (Lawson and Hanson, 1974; see Appendix A). It then becomes apparent 
that a trade-off between depth and origin time can become significant when the 
depth partial derivatives are similar in magnitude and sign; in terms of data 
requirements this means that the phases used should have a variety of vertical 
slownesses or equivalently, take-off angles. When the constraints on depth and 
origin time are independent, the sensitivity of the origin time to all data is equal 
and constant, and for the depth, the sensitivity to each datum is proportional to 
the corresponding partial derivative (Ellsworth and Roecker, 1981). Thus, to obtain 
well-resolved depths and origin times, it is necessary to use a set of phase arrival 
times with a range of associated depth partial derivatives (Appendix A). When this 
is true, then those data with the largest associated depth partial derivatives will 
provide the strongest constraint on the focal depth. 

Although the problem of hypocenter determination is usually solved using some 
form of linearized least-squares algorithm, the general characteristics of the rela- 
tionship between P- and S-phase data and hypocenter estimates are not just a 
consequence of using linearized least-squares, but rather are controlled by the 
geometry and physics of the problem. Therefore, we will also examine this relation- 
ship without performing any linearization using the probabilistic formulation of 
Tarantola and Valette (1982; see also Tarantola, 1987). The basis of their approach 
is that the information about a model (the hypocenter contained in the vector m) 
obtained from a set of data (arrival times contained in the vector t), and an 
understanding of the underlying physics may be presented by the probability density 
function (p.d.f.), P(m): 

P(m) -- E(m) ~_~ ~(t)~(t  I m) dt. (2) 
it(t) 
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The vector notation is shorthand for 
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P(ml . . . .  , m N )  = ~(ml . . . . .  m N )  " .  
o v  

f = E ( t l  . . . .  , t K ) ~ ( t l  . . . .  , t~:l m l ,  . . . ,  rnN)  

= ~ ( h , . . . ,  t K )  
d t l  . . .  d t K .  (3) 

In the problem of the hypocenter determination, the model vector m has four 
elements, N -- 4, and contains the hypocenter parameters 

m = [lat, lon ,  z, to] T. (4) 

(m) represents any a p r i o r i  information about the hypocenter (we only require 
that the focal depth be below the surface), ~ (t) represents a p r i o r i  information 
about the true (error-free) values of observables contained in vector t (e.g., that the 
data are describable by a particular distribution function), ft ( t i m )  represents the 
conditional probability of predicting t from an assumed model m, and tL (t) describes 
the "state of ignorance" (we use tt (t) = constant, which means that all observations 
are equally possible). 

It is also common knowledge that  in the hypocenter determination problem there 
is a trade-off between changes in focal depth and origin time. Since this is not 
readily apparent from a least-squares solution, we examine the marginal p.d.f, that 
represents the probability of a particular spatial location given that all origin times 
are possible. The marginal p.d.f, is obtained by integrating equation (2) over all 
origin times, or 

f_ 
a v  

P(lat, lon, z) = P ( l a t ,  Ion,  z ,  to) d to .  
c ~  

(5) 

The use of P(lat, lon, z) is sensible since we typically have no reason for favoring 
one origin time over another. It also allows us to explicitly include the effects of 
hypocenter/origin time trade-offs. The details of the calculation of P (lat, lon, z) are 
presented in Appendix B. 

RESULTS FROM THE LITERATURE 

James e t  al. (1969) examined the instability resulting from using least-squares to 
solve for four-parameter hypocenter solutions when the recording networks are 
comprised of only a small number (<15) of stations. They put forth two key ideas 
about the accuracy of earthquake hypocenter determination: 

1. locations determined for an earthquake whose true focal depth is less than 
half the average station separation will generally be inaccurate, and 

2. since S phases are generally more difficult to accurately identify (particularly 
from vertical components), it is desirable to have several S readings. 

Buland (1976) examined the precision and convergence properties of hypocenter 
determination algorithms by performing a series of numerical experiments. He 
noted that in all cases in which both P and S phases were used, convergence was 
superlinear (in linear convergence, the rms error decreases uniformly with each 
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iteration; in superlinear convergence, the rms error decrease accelerates with each 
iteration) and did not depend on the hypocenter chosen as the starting hypocenter. 
Buland's experiments also illustrated that the inclusion of S-phase arrivals yielded 
hypocenter estimates with smaller standard errors than those determined with only 
P-phase arrivals. However, as will be illustrated later, convergence to the correct 
solution cannot be guaranteed when there are systematic errors in the identifi- 
cation of S phases or introduced by use of an incorrect velocity model. In such 
cases, the standard errors do not necessarily reflect the true accuracy of the derived 
hypocenters. 

Chatelain et  al. (1980) performed a series of tests to determine the effects of the 
distance of recorded P and S phases on hypocenter accuracy. They used synthetic 
data and recordings of microearthquakes in a region of the Hindu Kush (area of 
approximately 4 ° x 4 °) in a suite of experiments designed to examine the effects on 
hypocenter estimates of variations in Earth structure, random travel time errors, 
and variations in network geometry. They concluded that, in general, at least eight 
arrivals, of which at least one was an S phase, and at least one was reported from a 
station within a focal depth's distance from the earthquake, were minimal require- 
ments for accurate hypocenter determination for their network. 

Another demonstration of the strength of the S phase as a constraint on earth- 
quake hypocenter determination can be made by examining its effect on the error 
ellipsoid. Urhammer (1982) demonstrated that, if the uncertainties in timing a P or 
S phase are approximately equal, then including one S phase in a dataset reduces 
the semi-major axis of the location error ellipsoid as much as including 1.7 P phases; 
the reason for this becomes clear in the next section of this paper. Uhrhammer 
(1982) made the same observation as James et  al. (1969), that the uncertainties in 
timing S are generally greater than for P. Therefore, he concluded that they will 
have approximately equal effect in reducing the magnitude of the semi-major axis. 

Ellsworth and Roecker (1981) discussed the importance of S phases in the 
linearized least-squares location problem by examining the partial derivatives 
(slowness vectors) of travel time with respect to focal depth and epicenter. The 
depth partial derivatives for P and S phases recorded at stations k and j are 

O Tk p cos ik ~ 0Tj ~ _ cos i 7 

OZ Vp c~Z Vs 
(6) 

where z is the focal depth, vp and vs are the velocities, and Tk p, ik ", and Tj ~, ij ~ are 
the travel times and take-off angles for P and S phases recorded at the kth and j  th 
stations, respectively. To examine the relative contribution of an S phase in 
constraining the focal depth, we consider how a P phase can provide the same 
information. This is true when a TjS/cOz = 0 T ~ / O z  and the relation 

cos ij ~ = ( v J v p ) c o s  ik ~ (7) 

results. This equation shows that  an up-going S phase with a take-off angle of 
ik ~ = c o s - l ( v s / v p )  ~ ___56 ° (assuming a typical value of vp/vs = 1.7) will have a partial 
derivative that is equal to that of a vertically incident P phase. When I iJ s I is greater 
than about 56 ° and equation (7) is true, then an S phase is equivalent to a more 
vertically traveling P phase (in this case, cos ik ~ < v~/vp, cos i~ must be less than 
cos ii ~, and Iih p I > I iT I). Thus, an S phase can be thought of as a geometrically 
equivalent P phase that travels along a steeper ray path to a closer station. 
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Geometrically, phases recorded at closer stations improve depth control, so that we 
expect that inclusion of S will provide better depth constraints for a given geometry. 
Figure 1 schematically illustrates geometrically why recordings at stations close to 
the epicenter provide strong constraints. 

Equation (7) also shows why an S can provide a unique constraint. When 
I cos if) > vs/vp (I i; ~) < 56°), then (Vp/Vs)l cos i /I  > 1, which implies that 
[cos ikPl > 1. Since the latter can never be true, there is no P phase with a take- 
off angle that results in as large a partial derivative as that for an S phase. In addi- 
tion to providing a constraint on the hypocenter depth that is greater than any 
possible P phase, the uniqueness of the  S partial derivative at these distances can 
significantly reduce the trade-off between depth and origin time (see Appendix A). 
The distances at which S is a unique constraint can be estimated by rewriting 
equation (6) in terms of source depth, z, and source-receiver distance, D (see 

A A A / k ~ ' ~  . ~ k ~  

/ 

(a) 

', /\ A ~_ , /\- @ ~ / ~  

(b) 

. /\ A A I' / \ ~ _ A _  

(c) (d) 

FIG. 1. (a) Locating an earthquake can be viewed as a triangulation problem. A measured travel time 
is converted to a distance using an assumed velocity model; for a homogeneous half-space, this distance 
defines a hemisphere of possible earthquake locations; the radius of the hemisphere is equal to the 
velocity multiplied by the travel time from source to receiver. For an exact velocity model, all such 
hemispheres drawn for travel times measured at a number of stations will intersect at a single point: the 
true hypocenter. Cross sections (semi-circles) of the hemispheres that result when the velocity is too 
fast, the origin time is too early, or the arrival times are all too late are shown in this figure. The true 
hypocenter is shown by the asterisk, the recording stations by the triangles, and the intersection points 
by the small circles. The location algorithm will determine a hypocenter that, in some sense, is an 
average of the intersection points; note that in this case the estimated depth will be deeper than the true 
depth. Also note that all the stations are located farther than 1.5 times the focal depth in distance. 
(b) The same as (a) except that the semi-circles are those that  would result if the velocity is too slow, 
the origin time is too late, or the arrival times are all too early. (c) The benefit of recording data within 
approximately a focal depth's distance from the true epicenter is illustrated here. One of the five stations 
shown in (a) has been moved and data are recorded within one focal depth's distance from the source. 
This results in a greater number of intersection points closer to the true hypocenter and thus, the 
estimated focal depth should lie closer to the true depth. The only way to double the number of these 
more accurate intersections is to use two (P and S) phase types (a single phase type recorded twice at 
closely spaced distances does not add independent information). (d) The same as (c) except that it 
corresponds'to (b). 
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Fig. 2). For up-going rays, the cosine terms of the partial derivatives are 

cos i = z / . f Z  + D 2 (8) 

and the equivalent criteria to I cos ijsl > v , / vp  is that 

D < z ~ ( v J v ~ )  2 - 1 (9) 

or using a reasonable value of (vp/v~) 2 = 3, 

D < 1.4z. (10) 

This is shown as the shaded region of Figure 2 and will be illustrated further in an 
example presented in the latter part of this paper. 

For a P and an S phase recorded at the same station (equal take-off angles), the 
relation 

OT:_~z - ~ -oz(VP) 0%: (11) 

can be derived from equation (6). Thus, at a given station, the partial derivative for 
S is always larger than that for P by a factor of vJv~ ,  and the S phase is guaranteed 

1 . 0 - - ,  

: : : : : : = : : : : : : :  
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FIG. 2. P a r t i a l  d e r i v a t i v e s  o f  t rave l  t i m e  w i t h  re spec t  to  focal  d e p t h  for P a n d  S p h a s e s  in a 
h o m o g e n e o u s  ha l f - space .  A focal  d e p t h  o f  10 k m  is used.  T h e  d e r i v a t i v e s  are  n o r m a l i z e d  so t h a t  the  S 
d e r i v a t i v e  h a s  a p e a k  v a l u e  o f  1 ( thus ,  t h e  v e r t i c a l  a x i s  is d i m e n s i o n l e s s ) .  T h e  s h a d e d  reg ion  i n d i c a t e s  
the  d i s t a n c e  r a n g e  in  w h i c h  S p r o v i d e s  a u n i q u e  c o n s t r a i n t .  O T / O z  = part ia l  der ivat ive;  T = t ime;  
z = depth;  i = t a k e - o f f  ang le  ( u p - g o i n g  ray  w i t h  respec t  to  vert ica l ) ;  v = P or S ve loc i ty .  
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to act as a unique constraint ,  thereby reducing the t rade-off  between depth and 
origin t ime (see Appendix A). 

An S phase also can serve as a unique constraint  and as a geometrically equivalent 
P phase for the determinat ion of epicenters as well as focal depths (Ellsworth and 
Roecker, 1981). Following similar steps as previous paragraphs,  examinat ion of the 
partial  derivatives of travel t ime with respect to latitude and longitude shows tha t  
the relationship between take-off  angles for P and S phases is 

• Vs 
sin tjs = _ sin ih p. (12) 

vp 

When  I sin i ; I  = vs/vp, an S phase acts geometrically as an equivalent P phase 
from a more distant  station. As before, when recorded at the same distance an S 
phase is a stronger constra int  since the S partial  derivative is larger by a factor of 
v J v s .  When ] sin ijsl > v J v p ,  the S phase serves as a unique constraint  as there is 
no equivalent P phase. Thus,  the recording of an S phase is potential ly more 
valuable than  recording a P phase, since S can provide unique information and is a 
stronger constra int  on all three spatial parameters  of a hypocenter.  

It  is also straightforward to show why in any approach tha t  relies on satisfying 
arrival t ime data, the hypocenter  tha t  results in the best fit to data (using any sort 
of norm) will be the one tha t  best satisfies the S rather  than  the P datum recorded 
at the same station. We examine density functions P(lat,  lon, z, to) tha t  are 
proport ional  to 

Igi- t °bsj q} 
exp - ti °bs = ti + ei (13) 

i=1 q S i  q 

where gi is the i th  theoretical  arrival time, and the observed arrival time, ti °bs, is 
the sum of the exact time, ti, and the associated error, eg. S~ is a measure of the 
spread corresponding to the i th  datum (e.g., the variance in a Gaussian distribution), 
and q = 2 for Gaussian or q = 1 for exponential  distributions. Linearized least- 
squares methods minimize the argument  of the exponent  of (13) assuming a 
Gaussian distribution (examples using both  q = I or q = 2 are shown later); however, 
regardless of what  q is, and if a P and S phase are recorded at the same station, it 
is easy to show tha t  the min imum residual and hence, the highest probability, will 
be obtained by satisfying the S datum. If the hypocenter  is determined such that  
the S datum is satisfied, the P residual will be 

I ( v ~ / v . ) e ~  - epl q 

qS; (14) 

(The suffixes p and s indicate the phase type.) Alternatively, if the P datum is 
satisfied, the S residual will be 

I Vp/V~((vffvp)e~ - ep)I ~ 

q S s  q 
(15) 

which is always larger than  (14) by a factor of I vp/vs I q if the P and S spreads 
are equal. 
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E X A M P L E S  

Although the specific behavior of solutions to the earthquake location problem 
cannot be predicted, all of the conclusions just described share certain common 
features. These general features are illustrated in Figures 3 through 12, which show 
the results of several experiments performed with synthetic data. Synthetic arrival 
time data were generated for a simple, plane-layered structure for a suite of 
hypothetical earthquakes recorded by a hypothetical seismic network (Fig. 3). The 
hypothetical dataset consisted of 25 earthquakes (all with focal depths of 10 km) 
and 71 stations in an area of approximately 300 × 350 km 2 (an average of i station 
per 38.5 × 38.5 km2). The number of P and S phase arrival times generated for 
each event is listed on the top of Figure 4; the station locations closest to each event 
were used in generating the corresponding synthetic dataset. Gaussian noise with a 
standard deviation of _+0.02 sec was added to the arrival times to simulate any sort 
of random error (referred to as "noise" in the figures). These synthetic data were 
used as input to the program HYPOINVERSE (Klein, 1978). The initial epicenters 
were chosen to be the locations of the stations with the earliest arrivals, and the 
initial focal depths were all at 7 km. All phases were given the same weight initially 
and weights were calculated in HYPOINVERSE for each phase based on the derived 
source-receiver distances and travel-time residuals (arrivals at more distance sta- 
tions and/or with large residuals are down-weighted). In order to illustrate that the 
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Fro. 3. Hypothet ica l  seismic network and  ear thquake  locations. All focal depths  are at  10 km. Open 
circle = epicenter  and  event  n u m b e r  (all focal dep ths  are at 10 kin); solid tr iangle = seismic s tat ion.  
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FIG. 4. Focal depth  errors (calculated minus  the true depth) for the 25 ear thquakes  in Figure 3. The  
velocity model used in H Y P O I N V E R S E  was 4 per cent  faster  t han  t h a t  used in the forward calculat ions.  
The number  above or below each symbol is the dis tance (in ki lometers)  to the neares t  s ta t ion  recording 
an S phase. Arrows are drawn in all cases in which a reduct ion in the error occurred as a consequence 
of recording an S closer to the event.  Depth  error when S is recorded at  the closest  stat ion;  symbols and  
dis tances  to the closest  s ta t ion:  solid circle = <1.0 focal depth; s t r iped circle = between 1.0 and 1.4 focal 
depths; circle wi th  clear band  = >1.4 focal depths;  open circle = depth error  when there  is no S recorded 
at  the closest  stat ion.  

benefit  of recording an S phase close to the event  is not  just  a consequence of 
solving the problem using a linearized least-squares algorithm, we also examine the 
marginal p.d.f., P( la t ,  lon, z), for several synthetic  datasets. 

The  consequences of using a velocity model tha t  has a systematic error are 
il lustrated in Figures 4 through 8. A velocity model tha t  was 4 per cent faster than  
that  used to calculate the travel t imes was used to generate the results shown in 
Figures 4 through 8. While a 4 per cent  error throughout  may be larger than  any 
overall systematic model error for most established networks (nonsystematic veloc- 
ity model errors more appropriate to a well-studied region are discussed later), such 
error is certainly possible on a local scale, part icularly since many seismically active 
regions are also regions with complex geology. Systematic model uncertaint ies  of 
this magnitude are also quite possible in aftershock studies, as there may be little 
or no information about the true velocity structure in the region. 

Figures 4 and 5 illustrate the importance of recording an S phase at a station 
located within approximately 1.4 focal depth 's  distance ("close"). Hypocenters  were 
calculated initially using datasets tha t  did not  have an S phase at the closest s tat ion 
to the event. The  open ovals are the focal depth errors tha t  resulted for each event  
with the distance to the nearest  station recording an S given directly above or below 
the oval. An S phase arrival at the closest s tat ion was then added to the dataset  for 
each event  and for those events tha t  had at least one S previously, one S was 
removed. In most cases, the total  number  of P and S phases remained the same but  
one S phase was "moved" to the closest s tat ion to the event; in the remaining cases, 



1614 J. S. GOMBERG, K. M. SHEDLOCK, AND S. W. ROECKER 

n 

0 

0 
O 0 O 0  

0 
o 

o 
O ~ 0 
n u ~  0 0 

O m - -  

O 

0 20 40 
distance (km) to closest station recording an S phase 

60 

¢D 

¢ 
~=~ 

t .  

e =  

~.~-~iiiii~iiiii~iiiiiiiii~iii~i~iii~iii~i~iiii~ii~ii~iiiiiiiiiiiii!ii~iii!i~ ~ T  = COS i 

0.6- 

0.4- 

0.2- 

~ z  v 

~ T $  

0 20 40 60 
source-receiver distance (km) 

FIG. 5. The same focal depth errors shown in Figure 4 are compared with the depth partial derivatives 
(for a half-space) used in the least-squares algorithm (bottom). In the top figure, the open ovals are the 
same as those plotted in Figure 4 and indicate depth errors that result when an S phase arrival time 
from the closest station is not used to determine the hypocenter. The filled ovals are the same as the 
shaded ovals in Figure 4 and indicate the errors when an S datum at the closest station is used. The 
behavior of the partials with distance explains why the depths constrained by an S phase recorded within 
1.4 focal depth's distance are consistently more accurate; at less than 1.4 focal depth's distance, the S 
constraint cannot be duplicated by any P phase. At the same distance an S phase provides 1.7 times the 
constraint provided by a P phase. 

one S phase  was added  to the  dataset .  T h e  fil led ovals r ep re sen t  the  focal dep th  
errors  t h a t  resu l ted  us ing  these  new data;  the  d i s tance  to the  nea re s t  s t a t i on  (now 
record ing  a n  S phase)  is g iven direct ly  above or below the  oval. 

Nea r ly  all even t s  t h a t  are c o n s t r a i n e d  by  an  S phase  recorded close to the  even t  
showed i m p r o v e m e n t  a n d  have errors  t h a t  are less t h a n  ---2 km. Those  even t s  
located on  the  p e r i m e t e r  of the  ne twork  (Fig. 3) show the  greates t  pe rcen tage  
i m p r o v e m e n t  s ince they  were in i t i a l ly  the  mos t  poor ly  cons t ra ined .  W h e n  the  
d i s t ance  to the  nea re s t  s t a t i on  record ing  S is greater  t h a n  1.4 focal dep th ' s  d i s tance  
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FIG. 6. A cross-section of the marginal p.d.f. P(lat, lon, z) for event #8~(Figs. 3 and 4); the latitude is 
fixed at the latitude of the "true" epicenter. The shading is black when P(lat, lon, z) > 90 per cent of 
the peak value and changes every 10 per cent (becomes white at 40 per cent). A Gaussian density function 
is assumed in both cases (see Appendix B), and the velocity model is assumed is 4 per cent faster than 
that used to calculate the travel times. The station and phase distributions are the same for both cases 
except that the closest of the three S (nine P phases were also used) phases used was recorded at three 
focal depth's distance in the top figure and then "moved" to a station within 1.4 focal depth's distance 
for the bottom figure. Note that in the top figure both the least-square (HYPOINVERSE) solution with 
associated standard error and the marginal p.d.f, are badly biased. The latter also illustrates the trade- 
off between origin time and depth (indicated by the pencil-like shape of the p.d.f.). The bottom figure 
illustrates that recording S within a focal depth's distance reduces the sensitivity to the assumed velocity 
model and the trade-off between depth and origin time. 

(events 1, 2, 4, 10, 16, 20, 22, and 24), there is little or no improvement. Events 14 
and 19 have good azimuthal coverage, and no change is observed when an S phase 
is recorded at stations within 3.1 km of the events. However, note tha t  there were 
12 P phases for these two events (top of the figure) so tha t  the constraint  provided 
by the single S phase was simply "out-voted" by all the P data. This suggests that  
having lots of P phases is not necessarily an advantage, as it prevents the potentially 
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FIG. 7. Compar i son  of the  focal depth  errors tha t  can occur when  S is correctly identified and  when  
a converted phase  is mi s t aken  for S. T he  filled ovals are the  same as the  shaded ovals of Figure 4, and  
the  rectangles  are the  depth  errors t h a t  resul t  when  a 0.2 sec (early) misident i f icat ion error is added to 
all t he  S phases .  The  arrows indicate less accurate  focal depths  t ha t  are a consequence of S phase  
misidentif icat ion.  

more robust constraint provided by an S phase from having any effect on the 
derived focal depth. 

Figure 5 shows the results of this experiment plotted such that the relationship 
between focal depth accuracy and distance to a station recording an S phase is 
clearer. It also corroborates the theoretical discussion presented earlier about the 
relative constraints provided by P and S phases as governed by the partial deriva- 
tives of travel time with respect to focal depth. The focal depth errors for each 
event are plotted as a function of the distance to the nearest station recording 
an S. The focal depth errors generally increase as the distance to the nearest station 
recording S increases. An increase in the magnitude of these depth errors occurs at 
approximately the same distance where S is no longer a unique constraint as 
indicated by the partial derivatives. 

A cross-section of the marginal p.d.f., P(lat,  ton, z) for event 8 is shown in Fig- 
ure 6, assuming that equation (5) is a Gaussian function [a model error of 0.38 sec 
was used, as it is the average difference in travel times calculated for the model 
used in the calculation of the data and for the faster model used to derive 
P(lat, ion, z); see Appendix B for details]. The peak of/5(lat, lon, z) becomes much 
more localized around the true focal depth when S is recorded close to the event. 
This reduction in the bias is caused by the assumption of the wrong model and in 
the trade-off between focal depth and origin time. It illustrates the fundamental 
benefit of an S phase recorded within 1.4 focal depth's distance, which is independ- 
ent of the method of hypocenter estimation. 

In many networks an S phase must be measured from a vertical component as 
no horizontal components exist. Misidentification of a converted S-to-P phase as S 
will result in a systematic error such that  the measured arrival time is earlier than 
the true arrival of the S phase. The consequences of this are demonstrated by using 
the same data as in Figures 4 and 5 (with an S phase at the closest station), but 
subtracting 0.2 sec from all S phases before deriving a location (Fig. 7). The accuracy 
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FIG. 8. The results plotted in Figure 4 are replotted in the top graph. The bottom graph shows the 
errors that result when S is systematically misidentified (e.g., if converted phases are large); the depth 
accuracy has decreased but one would judge them to be more accurate as the standard errors have 
decreased. This also leads to incorrect assessments about the validity of the assumed velocity model. 
Those points that have no error bars correspond to hypocenter solutions that became unstable such that 
the HYPOINVERSE algoritm fixed the depth during the iterative solution process. 

of the focal depth estimates is degraded for all events with the exception of 11, 14, 
and 19. Unlike the previous case, the "out-voting" of the S phase by a large number  
of P phases for events 14 and 19 is advantageous, as it minimizes the effect of the 
erroneous S. 

While misidentifying an S may cause a degradation in focal depth accuracy by a 
few kilometers, a more serious problem becomes apparent  by examining the s tandard 
errors tha t  are very often used to judge the quality of depth estimates. The standard 
errors produced in most  location programs provide a measure of the solution 
precision, but as Figure 8 illustrates, the precision may have no bearing at all on 
the accuracy of the estimate. As Figure 7 illustrated, the inaccuracy of the estimates 
increased because of the erroneous S arrival times, but  Figure 8 shows that,  on 
average, the s tandard errors actually decreased. This is easy to unders tand by 
recalling tha t  the velocity model used was too fast. The erroneous arrival times 
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FIG. 9. The marginal probability distribution is examined for a typical situation in which there are 
fewer stations than for the example shown in Figure 6, the error in the velocity model is 1 per cent too 
fast, and the arrival times are not exact. The latter is simulated by adding Gaussian error (standard 
deviation of 0.1 sec, zero mean) to the calculated travel times. 

were early, making  them more like the t imes tha t  would have been calculated if the 
correct  model had been used. The  t ravel - t ime residuals were reduced, a smaller  rms  
e r r o r  could be achieved, and smaller  s tandard  errors resulted. Thus,  not  only can 
phase  misidentif icat ion cause greater  inaccuracy in focal depth est imates,  but  it can 
also lead to development  of erroneous velocity models. Th is  example also provides 
an impor tan t  lesson in the dist inction between accuracy and precision; the lat ter  is 
s imply a measure  of how closely measuremen t s  can be s imulated regardless of the 
appropr ia teness  of the  closeness criteria or physical  model invoked, and the former  
is a measure  of the closeness of the es t imate  to the t ruth.  

The  necessity for correctly identifying and precisely measur ing S phases  is 
i l lustrated mos t  clearly in Figures 9 to 11. Figure 9 shows the s ta t ion /even t  
configurat ion and phases  used in the calculation of cross-sections of /5( la t ,  lon, z) 
shown in Figure 10; Gaussian "noise" (0.1 sec s tandard  deviation) was added to 
exact  t ravel  t imes, and the model used was 1 per  cent  faster  than  tha t  used in the 
calculation of the arrival  t imes. This  s i tuat ion is similar to tha t  of event  8 (example 
shown in Fig. 6), except tha t  there are fewer s ta t ions and  a smaller  model error; 
this  might  be considered a more typical  "real life" scenario. For  purposes of 
i l lustration, an error of 0.4 sec was added to ei ther the P or the S at  the closest 
station, and  we find tha t  when the p.d.f. [equation (1)] is assumed to be a Gaussian,  
the marginal  p.d.f, of equat ion (5) for ei ther erroneous datase t  is biased. The  
H Y P O I N V E R S E  es t imates  are also badly biased, and the least-squares es t imat ion 
problem in the case with the P "outlier" becomes very nonlinear;  the solution is 
dependent  on the s tar t ing hypocenter  and the s tandard  errors do not  represent  the 
true error. 

In Figure 11, we use all the same inputs  as in Figure 10 but  assume an exponential  
density function instead of a Gauss ian  since it has longer tails and thus, is more 
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FIG. 10. (a) This example uses the data for the source/station distribution shown in Figure 9 with S 
recorded within 1.4 focal depth's distance (the closest station). Gaussian (0.1 sec standard deviation) 
"noise' has been added to the data, and the assumed model is  I per cent too fast. At the closest station, 
an error of 0.4 sec has been added to the S travel time and the P time is exact. The S "outlier" seriously 
biases the p.d.f, and the HYPOINVERSE depth. This illustrates the nonrobust nature of a Gaussian 
distribution and a least-squares solution. (b) If the outlier corresponds to the P travel time rather than 
the S time, the bias in the p.d.f, is less severe; since S provides a greater constraint than P, hypocenter 
solutions are also more sensitive to errors in S. However, a P "outlier" causes the least-squares solution 
to become very nonlinear; it becomes very dependent on the choice of starting solution, and the standard 
errors do not represent the true error. 

appropriate and robust in the presence of data outliers. The bias in P(lat, lon, z) is 
eliminated for the dataset with the P outlier but changes insignificantly when there 
is an S outlier. This behavior is to be expected according to the discussion of 
equations (13) through (15), and illustrates that, even with a robust approach, 
the ill effects of erroneous S are extremely difficult to reduce. The spread of 
the S datum would have to be greater than that of the P by a factor of vJv~ 
(typically ~ 1/~/3) or equivalently the S datum must be down-weighted by a factor 
of v~/vp to have an effect equal to that  of P. In practice, S phase measurements 
cannot be made as accurately as those for P phases and will have larger spreads 
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FIG. 11. The same data as in the previous examples are used here. However, an exponential marginal 
p.d.f, is used instead of a Gaussian; the exponential distribution is more robust with respect to data 
outliers. (A longer tailed distribution than a Gaussian is also probably more appropriate for real datasets; 
e.g., see Jeffreys, 1932; Buland, 1976). (b) The exponential distribution is more robust but only 
insignificantly so with respect to S outliers. The maxima of both the Gaussian and exponential 
distributions occur where the travel time residuals are minimized (in an L2 or L1 sense); when the P 
and S data are weighted identically (e.g., weights are equal to the variances for Gaussian distributions), 
the minimization is always optimized by satisfying the S travel time even if it is erroneous. This can 
lead to depth estimates that are very stable and very inaccurate! 

ass igned  to them.  Whi l e  th i s  does reduce the  sens i t iv i ty  to e r roneous  S, it  also 
reduces  the  m a g n i t u d e  of the  c o n s t r a i n t  t h a t  correct  S read ings  can  provide.  

F igure  12 i l lus t ra tes  the  i m p o r t a n c e  of record ing  S phases  w h e n  the  ver t ica l ly  
averaged veloci ty  model  is correct.  T h e  veloci ty model  used  in  H Y P O I N V E R S E  

was too fast  by 2.9 per  cen t  in  the  uppe r  3 k m  a n d  too slow by 1.3 per  cen t  below 
th i s  so t h a t  the  ver t ica l  t rave l  t ime  f rom a 10 k m  focus was the  same as for the  
correct  model.  T h e  p lo ts  at  the  top a n d  b o t t o m  of F igure  12 follow the  same  fo rma t  
as F igures  4 a n d  5, respect ively.  T h e  m a g n i t u d e  of the  dep th  errors  is reduced wi th  
respect  to those  r e su l t ing  when  there  is a sys temat ic  veloci ty model  error  b u t  the  



2 , .0 -  

v 
~1.0 
=. e~ 

0.0- 

3.0 

-1.0 

EFFECT OF S-WAVE ARRIVALS ON HYPOCENTER EARTHQUAKE 1621  

100.2 53.2 34.2 

(~ no S 34.8 98.7 
51~ 1 n(~ 4~) ? ~  33.5 4104~ 745.0 n~ 

~ ~5~'~~ 1~1~2~1.~10 ~~91~.66_1~!25"31 7.~4 ~.~4 1~ ~3_03.~5~.~/~1~ ~ ~I4.9 ~..~3 i~ 10.9 

. . . . . .  " . . . . . . . .  11.4 ' " ------~--- 3.5 -17.8Q1~--" ' 38Q8- . . . . . . . . . . . .  

, I 70.9 ~ I , 
0 10 event number 20 

(a) 

v 

E 
O 
Q Q 

Q 
e-  

Q 

I I 
0 20 40 60 

distance (kin) to closest station recording an S phase 

(b) 

FIG. 12. (a) Focal depth errors (calculated depth minus true depth) for the 25 hypothetical 
earthquakes recorded at the hypothetical network shown in Figure 3. The velocity model used in 
HYPOINVERSE was 2.9 per cent faster in the upper 3 km and 1.3 per cent slower below this than the 
model used to calculate the travel times. The vertical travel time for both models was the same. The 
open ovals are the errors tha t  result when no S phase is recorded at the closest station. The format and 
labeling are the same as for Figure 4. The open and filled ovals corresponding to event 4 actually have 
depth errors of 6.2 and 5.9 km, respectively. (b) The same depth errors plotted as a function of the 
distance to the nearest station recording an S phase. The shaded area is the distance range in which 
S phases are unique constraints (see Fig. 2). Depth error when S is recorded at the closest station; 
symbols and distances to the closest station: solid circle = <1.0 focal depth; striped circle = between 1.0 
and 1.4 focal depths; circle with clear band = >1.4 focal depths; open circle = depth error when there is 
no S recorded at the closest station. 

i n c l u s i o n  o f  S p h a s e s  h a s  t h e  s a m e  e f f e c t  a s  i n  t h e  p r e v i o u s  e x a m p l e s .  I t  i m p r o v e s  

t h e  f o c a l  d e p t h  a c c u r a c y  i n  n e a r l y  a l l  c a s e s ,  p a r t i c u l a r l y  a t  t h e  p e r i m e t e r s  o f  t h e  

n e t w o r k  w h e r e  t h e  c o n s t r a i n t s  p r o v i d e d  b y  t h e  o t h e r  d a t a  a r e  p o o r .  

O n e  p r o p e r t y  o f  n o n l i n e a r  p r o b l e m s  s u c h  a s  h y p o c e n t e r  d e t e r m i n a t i o n  is t h e  

u n p r e d i c t a b i l i t y  o f  t h e  r e s p o n s e  o f  s o l u t i o n s  t o  s m a l l  c h a n g e s  i n  i n p u t  p a r a m e t e r s  

(e.g., s m a l l ,  l o c a l i z e d  d e v i a t i o n s  i n  m o d e l  p a r a m e t e r s  f r o m  t h e  r e a l  s t r u c t u r e ) .  E v e n  
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when the problem of hypocenter estimation is posed in such a way that linearization 
is not required, the influence of incorrect Earth structure and data errors can 
dominate the behavior of hypocenter solutions. Thus, for seismic networks meant 
to monitor seismicity confined to the upper crust, if the regional Earth structure is 
not known everywhere to within an uncertainty of less than a few per cent, then 
the only way to ensure that depth estimates will have uncertainties of no more than 
approximately 1.5 km is to record S phases within approximately 1.4 focal depth's 
distance. However, the S data must be correctly identified and timed with uncer- 
tainties of no more than approximately one tenth of a second. 

CONCLUSIONS 

The "rules of thumb" that we have illustrated may be summarized as follows. 

• At least one S phase recording is required at a station within approximately 
1.4 focal depth's distance from the source (hereafter, a phase recorded within 
this distance range will be called "close") to derive a focal depth that is accurate 
to within approximately _+1.5 kin. This criterion can be relaxed slightly when 
the vertically averaged velocity model assumed in the location procedure differs 
from the true velocity structure by less than a few percent. 

• When systematic model errors are of the order of 4 per cent and there are no 
S phases recorded close to the source, then depth errors can be greater than 
approximately _+3 km even when there is good azimuthal coverage and several 
P phases are recorded at less than a focal depth's distance. As the model error 
becomes less systematic and/or smaller in magnitude, the size of the depth 
errors also decreases. However, recording an S phase close to the event almost 
always improves the accuracy of depth determinations; in the absence of 
detailed knowledge of the regional velocity structure, the most certain way to 
minimize the solution's sensitivity to model parameters and theoretical simpli- 
fications is to record S phases within the aforementioned distance range. 

• Recording an S phase close to an event is especially important when there is 
poor azimuthal coverage; the greatest relative improvement in focal depth 
accuracy is achieved in such cases. 

• Recording S and P phases at a close station significantly reduces the trade-off 
between focal depth and origin time. 

• Systematic S phase timing errors of 0.2 sec in magnitude (due to mistaken 
identification of a converted phase as S) can degrade focal depth estimation 
accuracy by several kilometers even when azimuthal coverage is good. Such 
errors can also result in a reduction in the standard errors; an apparent increase 
in precision can actually be associated with a decrease in accuracy! Furthermore, 
such systematic errors could lead to construction of incorrect velocity models. 

• Because S is such a potentially powerful constraint, a single "bad" S at a close 
station can result in a very stable, yet very wrong solution even when robust 
methods of hypocenter determination are used. 

This study, and the earlier studies cited in this paper, all provide strong evidence 
for the need to correctly identify and time S phases to ensure accurate hypocenter 
determination. The "rules of thumb" outlined here have serious implications for 
seismic network design. The first implication is that the optimal station spacing is 
such that seismographs be separated by no more than three times the depth of the 
most shallow earthquakes for which accurate depth estimates are required. Accurate 
identification and timing of an S-phase arrival can be accomplished with greatest 
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confidence if it is on a transverse component and from a seismogram that remains 
on scale. Therefore, the second and third implications are that network instrumen- 
tation should include two orthogonal horizontal components and should have 
sufficient dynamic range to not saturate in the relevant magnitude range. If all 
these criteria are satisfied, then nearly all hypocenters could be determined with 
sufficient accuracy for any study. In this way, the potential information that can 
be obtained from the data will be maximized. 
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APPENDIX A 

The mathematical basis of the least-squares hypocenter estimation problem is 
summarized in this Appendix. The emphasis of the summary is on the influence of 
the partial derivatives as they pertain to trade-offs between depth and origin time, 
and how well they constrain either of these parameters. The formulations presented 
may be found in greater detail in Ellsworth and Roecker (1981). In situations where 
there is a significant trade-off between origin time and depth, the constraint on 
either parameter provided by a single datum is not proportional to the corresponding 
partial derivatives but, instead, to the sum of the partial derivatives or their squares, 
corresponding to all the data. The trade-off is minimized when there is a range in 
the magnitude and sign of depth partial derivatives which, in terms of data 
requirements, means that the phases used should have a variety of vertical slow- 
nesses or take-off angles. When the constraints on depth and origin time are 
independent, the sensitivity of the origin time to all data is equal and constant, and 
for the depth the sensitivity to each datum is proportional to the corresponding 
partial derivative. Thus, in this case, phase arrival times with larger associated 
depth partial derivatives, or equivalently having greater vertical slownesses or more 
vertical take-off angles, will provide greater constraint on the depth. 

Mathematically, the linearized least-squares hypocenter estimation problem to 
solve can be written as 

01on] Alon + \01at] Alat + Az + Ato = residualk k = 1, 2 , . . . ,  K (A1) 

where the partial derivatives of travel time with respect to longitude (lon), latitude 
(lat), depth (z), and origin time (to), respectively, are calculated for some starting 
hypocenter and the location of the station where the kth phase was recorded. K is 
the total number of phase arrival times used. The residual for the kth phase is the 
difference between the observed arrival time and the arrival time calculated for the 
starting hypocenter and station location where the phase was recorded. 

In matrix form, equation (A1) can be written as 

Am = r (A2) 

where the vector m = [Alat, Alon, Az, At0]T , r contains the residuals and A contains 
the partial derivatives. The normal equations that correspond to equation (A2) are 
written in matrix form as 

A T A m  = ATr. (A3) 

If the following terms of A TA are zero, 

k=l 01on 0, = 0, - 0, - -  - 0, (A4) k=l 01at k=~ 01on Oz k=~ 01at cOz 

then the problems of estimating the epicenter and origin time/depth decouple. The 
partial derivatives have the form 

OTh cos ik OTk OTk cos 0ksin ik OTk sin Cksin ik 
. . . .  (A5) 

Oz v ' Oto = 1, 01at v ' 01on v 
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where ik and 0k are the take-off angle and azimuth from the source to the kth 
station, respectively, and v is the material velocity. The conditions represented by 
equation (A4) will be approximately satisfied if the stations are nearly evenly 
distributed azimuthally around the epicenter, and the depth/origin time estimation 
problem can then be treated separately. Note that the depth, latitudinal, and 
longitudinal partial derivatives also represent the vertical and horizontal compo- 
nents of slowness, 1/v. 

In order to understand how the data (residuals) constrain the depth and origin 
time, the pseudo-inverse, A t = (ATA)-IA T, must be formed (Lawson and Hanson, 
1974). Since the requirements for decoupling of the epicenter and the depth/origin 
time estimation problem are often nearly satisfied, only the decoupled normal 
equations for the latter are considered. The relationship between the data and depth 
and origin time becomes 

m '  = A*r (A6) 

where m '  = [to, z] T. The kth column ofA t is 

det(ATA) 

i=: \ O z /  

(A7) 

where K is the number of residuals. The top and bottom terms describe the 
sensitivity to origin time and depth, respectively. When these two terms are similar, 
there will be a trade-off between depth and origin time; the trade-off will be complete 
when 

E K 

i=l \ OZ /IJ i=1 \0Z/ ]  " 
(A8) 

This condition becomes more nearly true as the partial derivatives become more 
similar to one another; geometrically, this corresponds to the situation where all 
the rays have similar vertical component slownesses. The trade-off will be minimized 
when the residuals correspond to up- and down-going rays so that the partials are 
of opposite sign and thus, cancel in the left-hand term of equation (A8). 

When there is no trade-off between depth and origin time, the kth column of A* 
becomes 

1/14 

OTk/Oz 
E~I (OTi/Oz) 2 

(A9) 

This implies that the sensitivity of the origin time to all data is a constant and the 
sensitivity of the depth to each datum is proportional to the corresponding depth 
partial derivative. Thus, in this case, data having larger partial derivatives will 
provide greater constraint on the depth estimate. 
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APPENDIX B 

The basis of the probabilistic approach of Tarantola and Valette (1982) (see also 
Tarantola, 1987) is that the information about a model that can be obtained from 
a set of data and an understanding of the underlying physics may be represented 
by the probability density function P(m): 

P(m) = ~ (m)  ~ ~ ( t ) f t ( t  [m) dt .  (B1) 
J _  ~ ( t )  

In the problem of hypocenter determination, the vector in contains the hypocenter 
parameters 

m = [lat, lon, z, t0] T (B2) 

where lat, lon represent the epicenter, z is the focal depth, and to is the origin time. 
E(m) represents any a priori  information about the model; the only a priori  
information we use is that for all values of lat, lon, and to 

10 for z > 0 ,  
(m) = for z _-< 0 (B3) 

(focal depths must be below the surface). ~(t) describes the "state of ignorance;" 
the most noninformative probability ascribes the same likelihood to observing any 
datum or 

t~(t) = Q (B4) 

where Q is a constant. ~ (t) represents a priori  information about the true (error- 
free) values of observables contained in vector t (that the observed data are 
describable by a particular distribution function), and ~ ( t ] m )  represents the 
conditional probability of predicting t from an assumed model m (the assumed 
physics and a description of the accuracy to which it represents the true process). 
Combining equations (B1) through (B4), equation (B1) becomes 

P ( m )  = Q E ( t ) ~ ( t  ] m)  d t .  (B5) 

In order to explicitly include effects of trade-offs between origin time and focal 
depth, we examine the marginal probability, P(m) ,  which can be written 

f co 
P(in)  = P(lat, ion, z, to) d to. (B6) co 

When the a priori  data and conditional probabilities, E(t)  and ft(t] m) re- 
spectively, are both Gaussian, equation (B5) can be integrated analytically (see 
Tarantola and Valette, 1982; Roecker et al., 1988 for details). More explicitly, it 
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becomes 

[ F(t°b~--g)T(Ct+Cm)-~(t°b~--g).]} 
P(lat, lon, z, to) = Q e x p l -  L 2 (B7) 

where t °bS contains the observed arrival times, the theoretical arrival t imes are 
contained in the vector g, and C t and C a are the data and model covariance matrices, 
respectively. The marginal probability of equation (B6) becomes 

(B8) 

where 

# 2  : (~obs __ ~ l ) T ( c  t ..~ C m ) - l ( ~ o b s  __ ~l)  (B9) 

lobs is the i th  demeaned arrival time, and ]~/is the i th  demeaned theoretical travel 
time, 

(~ m ~--1 I obs 
bi~'°bs _~_ tiobs - -  2 J  K--1 (Ctj ~- ~ i j /  ~j 

K rn --1 E j=l (Ctj "~- Cij ) 

and (B10) 

~/= h i -  2j~1 (cio + CiT)-lhj 
El:=1 (Ctj Jr- cijrn )-1 

and 

K K 

= E E (Ci~ + C~ )  -~. (Bl i) 
i=1 j = l  

K is the total number of data. In all cases, we assume that  errors in the data and, 
due to inadequate theoretical assumptions, are all uncorrelated. It is also assumed 
tha t  the latter are equal for all theoretical calculations. When this is true, C t 
becomes diagonal such tha t  each diagonal term represents the variance of an 
individual phase arrival time measurement,  and C m is equal to the identity matrix 
multiplied by a constant  variance at tr ibuted to forward modeling errors. 

Use of an exponential density function is more robust with respect to data 
outliers; in this case, we assume tha t  equation (B5) is appropriately represented by 

P(lat, lon, z, to) = exp - [ / K ~ [gi- _t/°bs I t ] 
L i:1 Si ] 

(B12) 

where t/°bs, gi, and K are the same as in the Gaussian case above, and Si is a measure 
of the uncertainty of the i th  datum. Although we have not explicitly defined the 
individual terms of the integrand of equation (B5) and integrated, the assumption 
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of (B12) is no less valid than assuming Gaussian functions. The latter as is usually 
done because it is mathematically convenient but is usually not vertified observa- 
tionally. Use of a longer-tailed distribution such as an exponential is probably more 
appropriate as suggested in several studies that actually examined the distribution 
of travel-time residuals [Jeffreys, 1932; Buland, 1976]. The exponential marginal 
p.d.f, of equation (B6) can be derived analytically and written as 

K-1 
/5(lat, l o n ,  z) = b - l [ e  (-a+brl) -1- e (a-brK)} + e a 

i=1 
{ c i - l e - d i [ e  -clri -- e-Ciri+~]} ( B 1 3 )  

where 

ri ---- t i  °bs - -  hi ,  rl  ~ r2 ~ . . .  ~ rK 

K 
ri 

a = 5" 
i=1~ S i  ~ 

K 1 K 1 K r~ 
b = 2 - - ,  c i = b - 2 2 - -  d i  = 2 2 ~ (B14) 

i=1 S i  n = i + l  Sn  ~ n = i + l  

and h i  is the theoretical travel time (gi = hi + to). 


