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Fig. 6.33 Sketch of the dispersion curves for electron Bernstein modes.

When/ = 0in (6.191), we have our old friend Landau damping. When / # 0,
we have cyclotron damping. Physically, cyclotron damping occurs when the parti-

cle sees a wave whose Doppler shifted frequency is the gyrofrequency or some
harmonic thereof: :

w — k.v. = 1Q,, - 1 (6.192)

Suppose the wave is circularly polarized, or has at least one component that ic
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FIGURE 89.1

Dispersion relation for waves exp [i(k» x — wt)] in a field-free plasma.

8.10 THE VLASOV THEORY OF SM
ALL—AMPLITUDE
WAVES IN A UNIFORMLY MAGNETIZED PLASMA
By = B2, Eq =0, Jao =Jao(v,?, vy

“complete” description of a plasma. The motions of most other systems of
coupled oscillators can be simply described in terms of a few “spring constants,”
For example, the bulk modulus of a neutra] 8as provides complete informatio.n
aboutsound waves; by contrast, two otherwise identical plasmas, one maxwellian
exp(~v?/5%), one Poisson, exp(— || /), behave quite differentlyin regard to sound,
wav'e.sA This chameleon behavior of plasma makes it necessary to study each
equilibrium separately. Fortunately, the same methods can be used in all these
cases.
‘ .If the plasma is uniformly magnetized (B, = B, 2), the Viasov equation
linearized about fo, becomes (writing f= f, + /uLB=B,%+ B,E=E) '

vx B,
c

0 49, vx B,
— . 20,28 700 = Ta
(5t+v V+m, Z Vv)fax———'(E1+

) *Vofwo  (8.10.1)
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and the equilibrjum distribution satisfies
9. V% By )
V4212 oy =
(v + - ) fe=0
Pe=2Y, q, f Jewodv=0  no net charge in the plasma
a

(8.10.2)

I=Y 7.q, f Voo dv=0  no net current in the plasma

For the case of a spatially uniform plasma, the most general solution of (8.10.2)
which is isotropic in the plane perpendicular to B, has the form

Jao = foo(wr? 0,) (8.10.3)

This section investigates waves that propagate in a plasma with an equilibrium
distribution of this form. Since the motion of charged particles is so different
along and across a magnetic field, it would be unrealistic to restrict f0 to be
isotropic [ f,o = f10(v?)], as was done in the study of waves in field-free plasmas.
For example, a realistic distribution of the form (8.10.3) might be

s ) el £ )
°_2ch1 2k Ty, P 2¢\T, T,

where vy =v,,0, =/v,> + 2,2

The Vlasov equation is solved by integrating along the orbits of the
particles in the unperturbed fields, as described in Sec. 8.8. For the case con-
sidered here (E, =0, B, = B, %), these orbits are best expressed in cylindrical
coordinates in velocity space; that is, v, = v, cos é, v,=v,sin¢, v, = v;. In
terms of these variables the particle orbits x'(t) are

v, . T
vi=2v,c08(¢ —~w.7) . X' =x——Lsin(¢ —w,7) +—2sin ¢
wt w"

v
v, =v,sin(p —w.1) y=y+ %cos(zﬁ —w,1) —;‘cosq& (8.10.4)
c c

v;=v" ’=pv 14z

These orbits are derived in Appendix I; here the constants of integration are
chosen so that at t — 0, v/ - v, x’ — x, where v, x are fixed points in phase space.

Note that
SoX'(x), V()]

is constant along the orbit of a particle in the unperturbed fields, because £
is constructed out of constants of the motion, as explained in Sec. 7.7.
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The perturbed distribution, from (8.8.6), is

9 (°
f¢k='—m—f

I

(151 .4 ’: B‘) Vo Luol¥)explik - X — wr)] de
Im@)>0 (8.105)

Where X=x'—x, t=¢ — 4 The term (v x B,) - V, , vanishes if fo = fo(0?).
But as mentioned above, this is not a realistic assumption for plasma in a B field,
since motions across and along the magnetic field are quite different. For a
distribution of the form Jo = fo(vi?, v,), the field B, must be evaluated in terms

of E; by Maxwell’s equation
ik x E, = i%’ B,

The operation V., /o can be written

g [5)
Vvﬂ,=2(v—-v,2)Ff°Z+2 oo
L

v,wz

Because v,2 and Uz are constants of the motion, the terms 9f/dv,? and 9fy/dv,
can be removed from the integral. All remaining integrals have the form

fo (v%, 5, Dexplitk - X —wr)] dr

where X (=x’ — X), v, and v}, are given by (8.10.4). Integrals of this form can
be done with the aid of the following identity:

Kis oo - o, ’),] - mmJ,,(

w, o

. kivg
exp [x =

)exp[in(qS —.7)] (8.10.6)

c

where J, is the ordinary Bessel's function of the first kind.
Taking the x axis along

k-B
b(=x-T7)
without any loss of generality,

k=kg+k2 (8107
the result for 7, is

9z 2Zv) Ji(ky v, jw,,) + Xo,(Jiss +J,-p) — iYo,(Jpey =,
fum Z¥
T m (o~ lo, ~ &y vy)

anl

-, (k* "*)exp[i(n -l (8.103)

Deq
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o v Yoo O
where © X=E S+ kB -k Ez)(y,,z T2
w0 o) (afno = af.o)
Y= Eazt okt a0, 0.2
afao
LBy ov)?

The perturbed currents J, can be calculated from fex, and then substituted into
Maxwell’s equations. The result is

2 0
~kxkxE = %El +:iz’ 4nzﬁ.q,fL Vadv  (8.10.9)

where L is the Landau contour (Figs. 8.4.2 to 8.4.4). The dispersion equation

takes the form

DIX ny sz

D!‘ D y Dyl
zXx Dl’ zz

=0 (8.10.10)

~

where the elements of the determinant (8.10.10) are

3
< knzcz 2n w,z [nzwm Jz ]
n~1-82-T3(E)r [

W g [0
27i w,‘) [nw,’vl dJ, x,}
b=~ IT(Z), [ KON
2 2
k" kltz 2_7! (w—’z) ("wn oy Ju Aa)
D= w? _wz.:‘?' [ ky
Dyx _Dx7 5
k% + ke 2n w,? daJ, ) 2.]
Dy =1-E T 2er () [on aervifad) ™ @100

2 dJ,
@p — 8 A }
(%), fowsin dios o
2

2
ky k 4 () W™ . 5
2=t T3 (), [

w (2] (2N
2mi ,? L _}
Dy =~ w Zu n ‘:c )a {v" O et d(ky v, /o) Z
k¢ 2a (&_’) 200 A
D,,=1- o2 —Z;; w, /), [v" o
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In (8.10.11) the integral operator s defined by

[F(v)] = f_m dy, fwk—MI)_ dv,

o Kyvy +no, -

and two recurrent combinations of velocity derivatives are replaced by

2 E% (1 _ K ”u) + X ¥
v, ) © dv)?

i % nw, ( @ 0

AT Ty (h_‘)
The argument of all Bessel functions above isk
are to be taken along the Landau contour
(8.10.10) and (8.10.11), which determine the
plasma, are a depressing contrast to the relativ
(8.9.7) which describe waves in a field-free pl
magnetized plasma are:

10,/@, and the integrals J2, dv
shown ‘in Fig, 84.1, Equations

apparent.

3 There is now structure atw x nw,.

2 magnetic field o (=eB/mc) is a n
with the plasma frequency ,.

4 The resonance at ¢ — k- v found in field-
damping of plasma waves, occursat o) — n® = k) vy ; only particles movin,
aliong the magnetic field contribute to damping, and they damp only wavei
; ztn 'l}ave a componeri;t of propagation parallel to B,. This is because in

1form magnetic field i i i
-+ g eld there is no net motion of particles across the

5 In thl': ﬁc?ld-free ]:tlasma the parameter which determines the oscj

behavior is the ratio of the wave speed and the thermal speed

o [m,
kV kT,

The gyration frequency of particles in
atural frequency in this system, along

free systems, which contributed

latory

In the magnetized plasma the parameters

=2 kLo o ke
Dcq WD my @, k” K—Tu w,

» P
all play a role in defining a parameter range.
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To make some sense out of the general results (8.10.10) and (8.10.11), it is
useful to single out some particular range for the parameters, looking always for
ways in which the plasma resembles the field-free system and for ways in which
the Vlasov results resemble the fluid approximation, as well as looking for dis-
tinctive new features.

' 8.11 THE VLASOV THEORY OF WAVES IN COLD

MAGNETIZED PLASMA

The dispersion relation for waves in a cold magnetized plasma can be obtained
from the dispersion relation derived using the linearized Vlasov equations by
taking the limit 7, -0 in (8.10.10). In this limit, (8.10.10) becomes identical
with (4.9.6), the cold-magnetized-plasma dispersion determinant derived using
the macroscopic-fluid-theory plasma equations. This shows that fluid theory
provides an adequate description of waves in a sufficiently cold plasma, i..,
one where there is very little spread in the velocity distribution of the particles,
so that all particles move with a speed nearly equal to that of a fluid element. In
the cold-plasma limit there is no need for an equation of state; the pressure is
simply neglected.

Since the solution of the linearized Vlasov equations reduced to the
solution obtained using the macroscopic fluid theory, a comparison of the
Vlasov theory results for T}, # 0 with the results for T, = Oidentifies those plasma
phenomena that are outside the scope of macroscopic fluid theory. For example,
Landau damping, jon waves, and waves at harmonics of the cyclotron frequency,
all depend on plasma temperature.

Problem8.11.1 Show that as T, - 0, (8.10.10), and (8.10.11) reduce to
(4.9.6) and (4.9.9).
Hint: It is necessary to.use the approximation

h== % (;2%) I

8.12 WAVES THAT PROPAGATE PERPENDICULAR TO
THE EQUILIBRIUM MAGNETIC FIELD IN A HOT
MAGNETIZED PLASMA (E, = 0, B, = 2B,)—
ELECTROMAGNETIC WAVES AND THE BERNSTEIN
MODES

Taking k, = 0 in (8.10.10) singles out the waves that propagate exactly per-
pendicular to the equilibrium magnetic field in a hot magnetized plasma. These



Bessel Function of the First Kind
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The Bessel functions of the first kind /= (¥Jare defined as the solutions to the Bessel
differential equation

, & ¥ dy

e &
dx* dx

tat-n)y=0 (1)

which are nonsingular at the origin. They are sometimes also called cylinder functions or
eylindrical harmonics. The above plot shows /« (t)for 7 =0 1,2, 5. The notation Jia
was first used by Hansen (1843) and subsequently by Schlomilch (1857) to denote what
is now written 7+ (2 2)(Watson 1966, p. 14). However, Hansen's definition of the function
itself in terms of the generating function

&YYo Z " J. (2) 2)

is the same as the modern one (Watson 1966, p. 14). Bessel used the notation I'to denote
what is now called the Bessel function of the first kind (Cajori 1993, vol. 2, p. 279).

The Bessel function = (2Jcan also be defined by the contour integral



