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1.
V.

Outline

Transient Luminous Events (TLES): What
are sprites, jets, and elves?

Why do we study these high altitude optical
discharges?

What causes sprites, jets, and elves?

In situ balloon and rocket measurements
above thunderstorms

Electric fields at sprite and elve altitudes



Lightning-Related Middle Atmospheric Transient Luminous Events
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[Lyons et al., BAMS, 84, 445, 2003; Pasko, Nature, 423, 927, 2003]



Sprite Properties

Ground Based Sprite Image from Fort Collins, CO 1995 (Courtesy of the
Geophysical Institute, the University of Alaska)
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Sprites Captured By An Aircraft Over the Midwestern U.S. in 1994
(Courtesy of the Geophysical Institute, University of Alaska)



Sprite-Halo over Argentina Feb.23, 2006




What are Jets?

A gigantic jet reaching from the top
of the thundercloud to the
lonosphere over the South China
Sea imaged from Taiwan
(reproduced from Su et al. [2003]).
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Jet Captured By An Aircraft Over the Midwestern U.S. in 1994
(Courtesy of the Geophysical Institute, University of Alaska)



What are Elves?

Jéc-02: 10:-00.80k

An elve imaged over Europe in Nov. 1999 by
M. J. Taylor and L. C. Gardner of Utah St. U.



Why Study High Altitude Discharges?

e Global electrodynamic circuit

 Energy transfer between lower and upper
atmosphere

 Atmospheric chemistry (NOx)
e Perturbations of the ionosphere
 Tearestria gammaray flashes

o Aircraft/spacecraft safety

e Communications



Why Study High Altitude Discharges?

GLOBAL ELECTRICAL CIROUNT

Adapted from Roble and Tzur, 1986



What causes Sprites?

The Quasi-static Electric Field Model

Shielding Layer

Shielding Layer

+t+++++++++++++
+++++ +

1. Thecloud chargesup 2. The positive CG removes
beforethelightning positive charge but the
dischargeinducing a negative shielding layer
negative shielding layer remainsover a much

longer time scale



Sprite Models: The Quasi-static Electric
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3. The negative shielding layer remains after the discharge
causing polarization in the atmosphere and a quasi-static
E-field. Thiscan belikened to a giant paralld plate
capacitor asshown above. Thisstrong E-field causes
electrical breakdown producing sprites.



What Causes Jets and Elves?

Lightning-Related Middle Atmospheric Transient Luminous Events
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[Lyons et al., BAMS, 84, 445, 2003; Pasko, Nature, 423, 927, 2003]



The Sprite Balloon Campa
 Brazil 2002-2003
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Nearby (< 75 km) Quasi-Electrostatic
Field Changes due to Lightning

4 o 38 electric field changes greater
than 10 V/m were measured
above 30km in alt.

e e Location of strokes: Brazilian
Integrated Ground Based
Lightning Network (BIN)

e Sprites not ruled out, although
none were confirmed optically

Flight 1 Trgectory and BIN CGs



GOESS Satellite IR image from 23:45
UT Dec. 6, 2002 for the southeast of
Brazil
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80 minutes of vertical dc electric field
data during Flight 1

50

WWW\WW tcos

l+CGS, ICs

Vertical electric field (V/m)
o
|

50 _

I 1 I I N I | | N I N N I I | | I N I I | | | T T I Y I | | N I I I I | | 1111
23:30:00 23:45:00 00:00:00 00:15:00 00:30:00 00:45:00
UT 6/7 December 2002




Largest typical —CG driven electric field change
measured at the payload: -72 kA Peak Current, 39.2
km horizontal distance
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Case Study: A Large +CG Event

e Two positive cloud-to-ground (+CG) strokes 140ms
apart 34 km hor. distance from the balloon payload
(alt=34km)

 Charge moment: 329-1683 C-km estimated from
remote ELF (extremely low frequency) magnetic
fleld measurements (M. Sato)
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DC Electric Field Change Driven by +CG (Probable Sprite Event)
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In-situ data: Two lightning events, +15kA and +53kA (436 C-km), at
~00:00:09 UT Dec. 7 both less than 40 km from the balloon payload.



Vertical Electric Field (V/m)
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Haorizontal Electric Field (V/im)
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Breakdown Thresholds

eonventional Breakdown (Ep): electric field magnitude when ionization rate sur-

passes the attachment rate, Ep = 3.2 x 10" V/m at ST

eRelativistic Runaway (E; ). electrie field magnitude needed for a 1 MeV electron

to initiate a electron avalanche, F; = 2 x 10 V/m at STP.

ePositive (Negative) Streamer Breakdown (E7. EZ): electric field magnitude needed
for an ionized filament to continue to propagate in the direction (opposite direction)

of the field, Ef = 4.4 x 10° V/m and E- = —1.25 x 10° V/m at STP.



Model Output: Predicted lightning-driven
electric fields at sprite altitudes (Z=50-80km)
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Model Output: Predicted lightning-driven
electric fields at sprite altitudes (Z=70km)
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Model Output: Vertical electric field vs.
altitude at R=0 km
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Thunderstorm-Ill Rocket Campaign
Sept.1 1995
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Thunderstorm-IIl Payload

L]

T |
g DER/ECO Fluxgate
i Magneiometer
TUD Siar Sensor 1 i
\ '-_-. : 4
4" din. (berglass tube & -
x B0 lomg ‘ 3
’ a: 3m dp-up
L sdorwer] bength: 357
telescoping Aberplas
I spheres
E Field Exp LW fCLD
2
[ -
3
"
TM poction L4 m

"3.0m" Weitmmanmn
Dioom elemesnt
i

HF =earch coll sensor

3 nxls search ool (CLH
Aft Minnesota Boom
TUL Ligntning T m
=g .
B
£r 1

gkl il s

PFP/DCP =



Vertical electric field driven by —-19.9 KA -CG located Z=89.8 km, R=262 km from rocket
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Vertical electric field driven by =31.7 KA —=CG located Z=81.4 km, R=257 km from rocket
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Predicted Field at Elve Altitudes for
100 kA CG
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Conclusions

Balloon measurements at 35 km generally agree
with quasi-static electric field model

Rocket measurements at 80-100 km are more
than 10 times smaller than predicted by
electromagnetic model

Better understanding of conductivity in the middle
atmosphere Is central to understanding TLES

In situ measurements needed during confirmed
sprite and elve events to verify generation
mechanisms



What are Sprites?

Historically:

Reports of optical phenomena above thunderstorms where first
published in scientific literature in the late 19" century (Toynbee
and Mackenzie, 1886, Everett and Everett, 1903)

In the 1950’s the first airborne observation was reported from a
commercial airlines pilot over Fiji (Wright, 1950)

CTR Wilson was the first to predict the existence of high altitude
discharges (Wilson, 1956)

Not until 1989 were these phenomena captured on film. A
group from the University of Minnesota recorded a twin upward
flash from distant cloud tops while testing a low light level TV
camera intended for sounding rockets (Franz,et al 1989)



What causes sprites?
Runaway Electron Breakdown Model
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Cartoon of Runaway Electron Breakdown
(Courtesy of Star Laboratory, Stanford)

High energy electrons produced by
cosmic rays are accelerated by the quasi-
static electric field.

Through collisions, these electrons
produce ions and new electrons.

Below 1MeV the stopping power
decreases with increasing electron
energy. The higher energy electrons are
able to gain more energy from the electric
field than they lose due to collisions with
neutrals. Thus, the population of
electrons grows exponentially (runaway)



Predicting Electric Fields at Sprite Altitudes

e The parameters that best fit the quasi-static
field model to the balloon data are used to
predict the electric field perturbation at sprite
altitudes (50-80km)

 These electric field pulses are compared to
the electrical breakdown thresholds
(conventional, relativistic, streamer)

 The duration of the pulse is compared to the
duration of observed sprites
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