A statistical study of global ionospheric map total electron content changes prior to occurrences of $M \geq 6.0$ earthquakes during 2000–2014

J. N. Thomas1,2,3, J. Huard1,2,4 and F. Masci5

1NorthWest Research Associates, Redmond, Washington, USA
2Department of Electrical and Computer Engineering, DigiPen Institute of Technology, Redmond, Washington, USA
3Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
4Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, USA.
5Istituto Nazionale di Geofisica e Vulcanologia, L'Aquila, Italy

Contents of this file

Supplemental Figures S1-S26.

Introduction

Here we report figures that include GIM-TEC deviations that exceed $\pm 1\sigma$ and $\pm 3\sigma$ per day for ± 15 days of earthquakes (in the main paper we show figures that use $\pm 2\sigma$). We also include figures using $Kp > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (in the main paper we show figures that use Dst instead of Kp). Lastly, one figure is included that shows data processed using a 24-hr notch filter rather than a 24-hr running average. These additional figures further support the conclusions of our paper.
Figures S1. Same as Figure 6 in paper, but using GIM-TEC deviations that exceed $\pm 1\sigma$ (instead of $\pm 2\sigma$).

Figures S2. Same as Figure 7 in paper, but using GIM-TEC deviations that exceed $\pm 1\sigma$ (instead of $\pm 2\sigma$).
Figures S3. Same as Figure 8 in paper, but using GIM-TEC deviations that exceed ±1σ (instead of ±2σ).

Figures S4. Same as Figure 9 in paper, but using GIM-TEC deviations that exceed ±1σ (instead of ±2σ).
Figures S5. Same as Figure 10 in paper, but using GIM-TEC deviations that exceed $\pm 1\sigma$ (instead of $\pm 2\sigma$).

Figures S6. Same as Figure 6 in paper, but using GIM-TEC deviations that exceed $\pm 3\sigma$ (instead of $\pm 2\sigma$).
Figures S7. Same as Figure 7 in paper, but using GIM-TEC deviations that exceed ±3σ (instead of ±2σ).

Figures S8. Same as Figure 8 in paper, but using GIM-TEC deviations that exceed ±3σ (instead of ±2σ).
Figures S9. Same as Figure 9 in paper, but using GIM-TEC deviations that exceed ±3σ (instead of ±2σ).

Figures S10. Same as Figure 10 in paper, but using GIM-TEC deviations that exceed ±3σ (instead of ±2σ).
Figures S11. Same as Figure 6 in paper, but using GIM-TEC deviations that exceed $\pm 1\sigma$ (instead of $\pm 2\sigma$) and $K_p > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S12. Same as Figure 7 in paper, but using GIM-TEC deviations that exceed $\pm 1\sigma$ (instead of $\pm 2\sigma$) and $K_p > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S13. Same as Figure 8 in paper, but using GIM-TEC deviations that exceed $\pm 1 \sigma$ (instead of $\pm 2 \sigma$) and $Kp > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S14. Same as Figure 9 in paper, but using GIM-TEC deviations that exceed $\pm 1 \sigma$ (instead of $\pm 2 \sigma$) and $Kp > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S15. Same as Figure 10 in paper, but using GIM-TEC deviations that exceed ±1σ (instead of ±2σ) and Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S16. Same as Figure 6 in paper, but using Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S17. Same as Figure 7 in paper, but using Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S18. Same as Figure 8 in paper, but using Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S19. Same as Figure 9 in paper, but using Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S20. Same as Figure 10 in paper, but using Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S21. Same as Figure 6 in paper, but using GIM-TEC deviations that exceed $\pm 3\sigma$ (instead of $\pm 2\sigma$) and Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S22. Same as Figure 7 in paper, but using GIM-TEC deviations that exceed $\pm 3\sigma$ (instead of $\pm 2\sigma$) and Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S23. Same as Figure 8 in paper, but using GIM-TEC deviations that exceed $\pm 3\sigma$ (instead of $\pm 2\sigma$) and $K_p > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S24. Same as Figure 9 in paper, but using GIM-TEC deviations that exceed $\pm 3\sigma$ (instead of $\pm 2\sigma$) and $K_p > 3$ to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).
Figures S25. Same as Figure 10 in paper, but using GIM-TEC deviations that exceed ±3σ (instead of ±2σ) and Kp > 3 to remove GIM-TEC data related to geomagnetically disturbed days (instead of Dst criteria described in paper).

Figures S26. Same as Figure 6 in paper, but using a 24-hr notch filter rather than a 24-hr running average filter.