SM53A-1425

Multi-Fluid Model of 1D Magnetotail Current Sheet

L. C. Steinhauer1 (steinhauer@aa.washington.edu), M. P. McCarthy2, E. C. Whipple2,3
1Redwood Plasma Physics Laboratory, University of Washington, Seattle, WA; 2Earth & Space Science Department, University of Washington, Seattle, WA; 3Northwest Space Physics, 1114 N. Wiltshire Rd, Palmer, AK

Advances in Simulating and Modeling Magnetospheric Processes Using Data From Multiple Spacecraft III Posters

Abstract #1425

Comparisons of data with models of the magnetotail current sheet have mainly used the Harris model of the current sheet.

The Harris model has important limitations:
1. \(B_z = 0 \), so no particles cross the sheet from asymptotic sources.
2. It assumes a uniform mean y-component of drift velocity.
3. The particle density vanishes asymptotically.

Kinetic and fluid approaches have been used for current sheet models:
1. A fluid model can describe the fluid behavior reasonably well, but needs unknown equations of state for closure.
2. A kinetic model is complicated to construct in that it would have to fit data with expressions involving constants of motion.

A multi-fluid model extends the versatility of the fluid model approach. It can treat sources from opposite sides of the sheet. Boundary conditions can be symmetric or non-symmetric.

Fluid equations are easier to handle than kinetic equations.

Some Previous Magnetotail Current Sheet Work

Speiser, Lyons, Sester, Schindler: Particle trajectories showed acceleration in "non-adiabatic" central region. Gain in speed is primarily in earthward direction. Self-consistent kinetic models used larger scales in x- and y-directions than in z-direction.

Kan: obtained exact 2-D kinetic solutions. His method was followed by others who obtained exact 2-D solutions for X-point structures (Reviewed by Lui).

Eastwood, Hill, Corfield, et al. discussed fluid and kinetic aspects, showing that balance between \(B \) and \(p_{\perp} \) is important.

Schindler, Sommer: The first adiabatic invariant, \(J \), is conserved through the sheet in spite of failure of the magnetic moment, \(J \) reverses to go at exit from sheet.

Tsyganenko et al: Models of tail \(B \) from spacecraft data. Central gradient in \(B \) due to local current but asymptotic behavior from dipole & remote current-source.

Baumjohann et al: data from traversals of the central sheet show a polystrophic index close to 5/3 and \(T_y \) staying nearly constant at about 7.

Model Assumptions

1. one-dimensional (\(\nu_z = \Delta y = 0 \))
2. steady state (\(\Delta t = 0 \))
3. quasi-neutrality (\(T_e = T_i = 0 \))
4. massless electrons
5. \(E_x = E_y = 0 \) far from current sheet
6. isotermal ion fluid (\(v_i = a_{\perp} T_i \), with \(T_i = \text{constant} \))
7. ion fluids described by a polytropic equation of state (\(\rho_i = \text{constant} \))
8. no trapped ions; however, there are two symmetric, identical, singly charged, ion fluids (\(B_0 = a_{\perp} T_i \), \(u_i = a_{\perp} T_i \), \(T_i = \text{constant} \))

Conclusions: Usefulness of Fluid Current Sheet Models

• The isotropic ion model is an improvement on the Harris model. \(B_z \) is taken into account; it allows passing particles with asymptotic non-zero density and asymptotically vanishing out-of-plane drift speed, \(u_i \).
• They give rise to predictive relationships between the ion pressure, the current sheet thickness, and the density peaking factor.
• Comparison of data with models can be used to help determine the equations of state that may apply under different conditions.
• They are simpler to construct than kinetic models. Also, moments of measured distribution functions (\(\rho, \mu, \eta \)) will provide averages over peculiarities and/or fluctuations in measurements, avoiding some of the difficulties of working with the full velocity distribution function.

Acknowledgments

This research effort at UW was supported by NASA through a contract at the University of California, Berkeley, and through support for the Cluster spacecraft mission at the University of New Hampshire.