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Internal layers in ice masses can be detected with ice-penetrating radar. In a flowing ice mass, each hori-
zon represents a past surface that has been subsequently buried by accumulation, and strained by ice
flow. These layers retain information about relative spatial patterns of accumulation and ablation (mass
balance). Internal layers are necessary to accurately infer mass-balance patterns because the ice-surface
shape only weakly reflects spatial variations in mass balance. Additional rate-controlling information,
such as the layer age, the ice temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer
the absolute rate of mass balance. To infer mass balance from the shapes of internal layers, we solve an
inverse problem. The solution to the inverse problem is the best set or sets of unknown boundary con-
ditions or initial conditions that, when used in our calculation of ice-surface elevation and internal-layer
shape, generate appropriate predictions of observations that are available. We also show that internal
layers can be used to infer martian paleo-surface topography from a past era of ice flow, even though
the topography may have been largely altered by subsequent erosion. We have successfully inferred
accumulation rates and surface topography from internal layers in Antarctica. Using synthetic data, we
demonstrate the ability of this method to solve the corresponding inverse problem to infer accumulation
and ablation rates, as well as the surface topography, for martian ice. If past ice flow has affected the
shapes of martian internal layers, this method is necessary to infer the spatial pattern and rate of mass
balance.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The spatial pattern and rate of accumulation and ablation (mass
balance) over an ice cap (i.e. mass exchange with the atmosphere)
must be known in order to infer the ice-flow history. On Earth,
rates of accumulation can be determined by drilling an ice core,
measuring the thickness of datable layers, and correcting for strain
thinning where necessary, but this represents mass-balance condi-
tions at only the single point of origin of each ice-core sample.
Internal layers, which in almost all terrestrial cases are isochrones,
contain information about mass-balance patterns in both space
and time. The large body of radar data from terrestrial ice sheets
has greatly increased our understanding of terrestrial ice-sheet
evolution and climate (e.g. Paren and Robin,1975; Morse et al.,
1998; Conway et al., 1999; Fahnestock et al., 2001).

Past and present accumulation and ablation rates are funda-
mental unknowns for the martian polar layered deposits (PLD).
This information is necessary if we are to decipher the connection
between climate and PLD formation, evolution, and observable
ll rights reserved.
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structure. Internal-layer shapes must be known if we want to
determine past mass-balance patterns, because the surface topog-
raphy is relatively insensitive to spatial variations in mass balance.
Fortunately, internal layers in the North and South PLD have been
imaged successfully by radar (e.g. Picardi et al., 2005; Plaut et al.,
2007; Seu et al., 2007; Phillips et al., 2008).

While present-day ice flow on Mars may have an insignificant
influence on the shape of the PLD, it has been proposed that ice
flow was more important in the past (e.g. Clifford, 1987; Fisher,
2000; Pathare and Paige, 2005), and Winebrenner et al. (2008)
showed that the shape of present-day inter-trough topography
along lines following surface gradients (i.e. ‘‘flowlines”) across
Gemina Lingula (also referred to as Titania Lobe; Pathare and Paige,
2005), North PLD matches the shape of an ice mass that has flowed.
We consider an era of past ice flow as a time when the influence of
ice flow was comparable to the influence of mass balance in shap-
ing the internal layers and the ice-surface topography. In this pa-
per, we assume that past ice flow affected the shapes of internal
layers and the surface topography of the martian PLD. Under this
assumption, an approach that accounts for the effect of ice flow
on the internal-layer shape and depth must be used to infer the
mass-balance pattern from internal layers; we demonstrate such
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a method here. In addition, we emphasize that the shapes of inter-
nal layers alone cannot be used to determine whether an ice mass
has flowed or not; this is discussed more fully in Section 3.3.
Depending on the spatial pattern of accumulation and ablation,
identical layer shapes can be generated in an ice mass where flow
is significant and in an ice mass where flow is insignificant relative
to other processes. Conversely, flowing ice masses with similar sur-
face topography but different accumulation patterns can have dra-
matically different internal-layer architecture.

Using terrestrial glaciological experience and methods that
have been applied to terrestrial ice sheets, we show that an inverse
method can potentially infer mass-balance patterns during that era
of flow, from internal-layer shapes on Mars. To demonstrate this
method, we generate synthetic internal layers based on a pre-
scribed spatial mass-balance distribution, and then we attempt
to infer the mass-balance pattern from these synthetic layers.
The relative mass-balance pattern can be successfully inferred from
the shapes of internal layers; however the layer age, the ice tem-
perature, the ice velocity, or the ice-grain sizes and ice-crystal fab-
ric must be known to constrain the absolute mass-balance rate.

We solve different inverse problems to infer mass balance by
assuming that different combinations of information are available.
In the first inverse problem, we infer only the relative spatial pat-
tern of mass-balance from the shape of an internal layer with no
rate information. This problem could potentially be solved with
data currently available for Mars. Then we solve three different in-
verse problems to infer the relative spatial pattern and the abso-
lute rate of mass-balance in a flowing ice mass. We use (1) the
ice-surface topography and ice temperature, (2) the shape of an
internal layer, the ice-surface topography, and ice temperature,
or (3) the shape of an internal layer, the ice-surface topography,
and ice-rheological parameters. Finally, we also solve an inverse
problem using internal layers to infer surface topography from a
time in the past when ice flow significantly shaped the surface; this
is an important problem to solve with martian internal layers be-
cause much of that topography has been significantly eroded to
form the present-day surface.

1.1. Internal-layer structure and depth

In a flowing ice mass, the depth variations of an individual
internal layer are controlled by the spatial pattern of mass balance,
and by ice flow. Waddington et al. (2007) discussed how to diag-
nose the appropriate strain regime of a particular layer. Shallow
layers (with a depth of at most a few percent of the ice thickness,
or in the upper tens of meters in a terrestrial ice sheet), are not sig-
nificantly altered by ice flow, and the net accumulation at each site
can be inferred from the ice-equivalent layer depth divided by the
layer age; this is called the Shallow Layer Approximation (SLA). For
shallow layers, the mass-balance pattern alone determines the
internal-layer structure and depth. If the influence of mass-balance
on the shapes of internal layers was always more important than
the influence of ice flow, the SLA would be appropriate for layers
at all depths. However, in a flowing ice mass, as the depth to the
layer increases, accumulated strain due to ice flow becomes more
important, and this simple SLA relationship between layer depth
and the mass-balance pattern breaks down. For intermediate lay-
ers (in the upper 10–20%, or to a depth from 10 to 100 m in a ter-
restrial ice sheet), the impact of accumulated vertical strain on the
depth of the layer can be estimated using a 1-D model of vertical
ice flow; this is called the Local Layer Approximation (LLA). How-
ever, this local strain correction also can become invalid for deeper
layers. Deeper, older layers reflect conditions further in the past,
but they have been more affected by horizontal gradients in strain
rate and accumulation. Therefore, their information is highly valu-
able but more difficult to interpret. Waddington et al. (2007) dem-
onstrated that it is necessary to use formal inverse methods,
incorporating 2-D ice flow, to correctly determine the accumula-
tion pattern recorded by deeper layers in terrestrial ice caps. We
cannot rule out that ice flow was important in shaping topography
and internal structure across the PLD, especially for Gemina Lin-
gula, North PLD (Winebrenner et al., 2008). Therefore, we expect
that an inverse method must be used to infer spatial patterns
and rates of mass-balance from deeper layers in martian ice.

On terrestrial glaciers, and parts of the large terrestrial ice
sheets, snow typically accumulates at higher elevations (the accu-
mulation zone). Ice flow redistributes the excess mass to lower ele-
vations where it ablates (the ablation zone). The equilibrium line
demarcates the two zones. Internal horizons represent past ice-
sheet surfaces, which have been subsequently buried, and the
thickness of ice between any two horizons has been displaced
and strained by ice flow. On Earth and Mars, we assume that each
individual horizon is an isochrone, i.e. a surface of constant age.
The horizons are observed with ice-penetrating radar, and at dif-
ferent depths there are different distances between each pair of
horizons. In this paper we refer to each horizon as a ‘layer’, but
we note that a layer also has a thickness. The shape and depth of
an individual layer are influenced by the rate of accumulation or
ablation, gravitational forces, internal stresses, ice-rheological
parameters (which depend on the ice temperature), bedrock
topography, and unconformities.
1.2. Necessary data

Internal layers have been observed across the martian PLD by
the Mars Advanced Radar for Subsurface and Ionosphere Sounding
(MARSIS; e.g. Picardi et al., 2005; Plaut et al., 2007) and by the
Shallow Subsurface Radar (SHARAD; e.g. Seu et al., 2007; Phillips
et al., 2008). The shapes of continuous internal layers along puta-
tive flow lines will be the primary data when we apply our method
to Mars in the future. We also use the PLD surface geometry, which
is available from the Mars Orbiter Laser Altimeter (MOLA), and the
ice thickness from the radars. Currently, the internal-layer ages,
the ice velocity at the time of flow, the ice temperature at the time
of flow, the ice-crystal fabric, and the ice-grain size are not known
for the PLD. However, if any of this information becomes available,
or can be reasonably estimated, then we can incorporate it as part
of the inverse problem.
2. Methods

Inference of mass-balance patterns from internal layers is an in-
verse problem, which can be solved using geophysical inverse the-
ory (e.g. Menke, 1989; Parker, 1994; Aster et al., 2005). An inverse
problem is one where the existing data have resulted from a
known process that depends on some unknown parameter values
or boundary conditions that we wish to find. In the martian prob-
lem, the data are the shapes of individual internal layers and at
least parts of the elevation profile of the ice surface, and the un-
knowns are the layer ages, the mass-balance pattern, and the ice
temperature. An inverse problem needs a forward algorithm and
an inverse algorithm. We calculate the shapes of layers and the
surface topography with the forward algorithm. Then the unknown
parameters can be found by minimizing a performance index in
the inverse algorithm. The performance index is a number repre-
senting how well the observable quantities calculated by the for-
ward algorithm match the data to an expected tolerance while,
in this case, finding a spatially smooth mass-balance pattern. Any
simplifications made in the forward algorithm, or constraints in-
cluded in the inverse algorithm, must be considered when inter-
preting the solution.
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In Appendix A we describe our particular forward algorithm,
and in Appendix B we outline our particular inverse algorithm.
The forward algorithm is a steady-state flowband model that cal-
culates ice-surface elevation and internal-layer shapes (Wadding-
ton et al., 2007). A flowband is illustrated in Fig. 1. This is a 2-D
model that also accounts for width variations; therefore it is con-
sidered to be 2.5-D. There are many unknowns regarding the mar-
tian PLD, and for this reason we start with a simple, steady-state
forward model. As shown in Fig. 1, the model domain does not
need to include an ice-sheet terminus or an ice divide; it can be de-
fined over a limited domain. The surface-profile prediction de-
pends on the ice flux entering the domain, the mass-balance
profile, the ice thickness at one point in the domain, and the con-
stitutive properties of the ice. Layer prediction in this forward cal-
culation requires the ice-surface profile, which is either known or
calculated, and depends on the layer age, the ice flux entering
the domain, and the mass-balance pattern. The forward algorithm
can include only a surface calculation, only a layer calculation, or
both a surface calculation and a layer calculation (see Appendix
A). Therefore, our unknown model-parameter set may consist of
the layer age, the ice flux entering the domain, the spatial pattern
of mass balance, the ice thickness at one point in the domain, and
the ice-softness parameter (see Eq. (A.5)). The inverse algorithm
uses a Gradient solution method (e.g. Parker, 1994; Aster et al.,
2005) to find physically reasonable values of these unknown
parameters (see Appendix B). The preferred parameters generate
an internal layer and an ice surface that fits the data at an expected
tolerance determined by data uncertainties.

This general method can be modified based on site-specific con-
ditions and/or data availability. Following Waddington et al.
(2007), we illustrate this method using data from Antarctica. In
preparation for using this method with martian radar data, we gen-
erate synthetic martian layers, and then we investigate the ability
of the inverse procedure to infer a known synthetic mass-balance
pattern from those synthetic layers.
3. Results

Depending on which data are available, and which calculations
are included in the forward algorithm, different quantities must be
assumed, and different information can be inferred with this in-
verse approach. The simplest problem uses a forward algorithm
that includes only a kinematic layer calculation, assuming that
the surface topography is known, to infer the relative mass-balance
pattern from an undated internal layer. We show that if the layer
age is known, or if the ice velocity or the accumulation rate during
the era of flow is known, we can also infer the absolute mass-bal-
ance rate using a forward algorithm that includes only a kinematic
Fig. 1. Geometry of a flowband with width variations. The ice-surface elevation (at
least at a single point), flowband width, and bed geometry are required inputs to
the forward algorithm. The flowband domain can be limited in horizontal extent.
calculation. In principle, data that are currently available for Mars
could be processed along flowlines so that some of the inverse
problems here could be solved. The other problems further moti-
vate challenges for future laboratory experiments and missions.

Using steady-state continuity from Eq. (A.1), and using the
depth-averaged horizontal velocity in Eq. (A.6), Eq. (1) shows
how, for any ice-sheet profile defined by the ice thickness H(x)
and surface slope dS/dx, the accumulation rate _bðxÞ and the ice–
temperature-dependent softness parameter A(T(x)) always occur
in a ratio,
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Higher accumulation rates _bðxÞ can always trade-off against
greater ice softness A(T(x)) through higher temperature, to produce
the same surface shape, and therefore the same layer shape with a
younger layer age. We discuss ways in which accumulation rate
and ice temperature may be untangled.

3.1. Mass balance and topography in Antarctica

Waddington et al. (2007) solved the inverse problem to infer
the relative spatial pattern and absolute rate of accumulation at
Taylor Mouth, a flank site near Taylor Dome, Victoria Land, Antarc-
tica. At Taylor Mouth, additional data were available beyond the
surface topography and internal-layer shapes observed with radar.
Bed elevation was also measured by radar, and flowband width
was found by interpolating velocities between measurement
points and finding the distance between two nearby flow lines. A
100-m ice core intersects the flow line, and the average accumula-
tion rate at the core site was known. A strain network in this area
provided velocity data at the ice surface.

The forward algorithm in this previous application to Taylor
Mouth (Waddington et al., 2007) included only a kinematic layer
calculation. The unknown parameter set consisted of the ice flux
entering one end of the flowband, the spatial pattern of accumula-
tion (there is no ablation area near this site), and the age of the
layer. Use of only a kinematic forward algorithm was justified be-
cause the surface elevation at Taylor Mouth has been approxi-
mately in steady-state over the past few thousand years.
Therefore, the dynamic calculation of surface topography could
be excluded to simplify the problem. Since the surface topography
is known, and because a dynamic calculation was excluded in the
forward algorithm, rate information was included only through the
surface-velocity measurements and the one accumulation-rate
measurement. At Taylor Mouth, these rate-containing data were
sufficient to constrain the magnitude of accumulation rate.

3.1.1. Inferring mass balance from an undated layer
To show the sensitivity of the Taylor Mouth solution (Wadding-

ton et al., 2007) to rate information from measurements of
surface-velocity and accumulation rate, and to prepare for martian
applications where rate information is unavailable, we now solve
the Taylor Mouth inverse problem using only internal-layer data.
In this problem, the mass-balance rate is determined by the layer
age. If the internal layer is undated, and if no additional rate-con-
trolling data exist, we can infer only the relative mass-balance pat-
tern. To express this result, we represent the spatial pattern of
accumulation, _bðxiÞ at spatial positions xi, as a non-dimensional
spatial pattern of accumulation, ~_bðxiÞ, having root-mean-square
amplitude, i.e.

1
L

Z x¼L

0

~_b2ðxÞdx ¼ 1; ð2Þ

multiplied by the magnitude B of the accumulation rate, giving
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_bðxiÞ ¼ B~_bðxiÞ: ð3Þ

By representing the mass-balance pattern _bðxiÞ in this way, we
can compare the values of B that correspond to solutions using dif-
ferent combinations of rate-controlling data (e.g. the layer age or
the ice temperature).

Fig. 2a shows different accumulation-rate solutions correspond-
ing to different guesses of the layer age, inferred using only an
internal layer as data, and using the known modern surface topog-
raphy. Particles can follow the same paths and reach the same
depths over a longer time when accumulation rate is low, or over
a shorter time when accumulation rate is high. The central result
from this test is that similar spatial patterns can be inferred,
regardless of the accumulation-rate magnitude. Fig. 2b shows
B/Bref, the scaling factor B divided by the scaling factor of a refer-
ence solution Bref (here taken to be the solution from Waddington
et al. (2007)), corresponding to the solutions in Fig. 2a.

On Mars, we are likely to know only the layer shape. It is unli-
kely that we will know the layer age, and velocities and accumula-
tion rates from the regime in which the layers formed cannot be
measured. However, by exploring the sensitivity of the Antarctic
solution, we found that useful information about the relative
spatial variability in mass balance can still be inferred, even if
the absolute rate of accumulation cannot be recovered.
3.1.2. Inferring surface topography
We can also infer the shape of the ice-surface topography from

the shape of an internal layer. This will be useful for the PLD, where
the surface shape at the time of flow has been subsequently
eroded, or largely obliterated. We demonstrate this using data
from Taylor Mouth, Antarctica.

If the surface topography is unknown, and is being solved for as
part of the inverse problem, we still have to estimate the surface
topography for the first iteration of the forward algorithm. As the
inferred mass-balance pattern is iteratively updated in the inverse
algorithm, the inferred surface topography is also updated, using
Eq. (A.7), and this updated surface is used in the subsequent itera-
Fig. 2. (a) The accumulation-rate solution for the Taylor Mouth inverse problem
using an undated internal layer and no rate-controlling data. The dark gray line
shows the solution with an initial guess at the layer age that was 25% lower
(resulting in a higher accumulation rate) than the layer age inferred from
Waddington et al. (2007), and the light gray line shows the solution with an initial
guess at the layer age that was 25% higher (resulting in a lower accumulation rate).
(b) The numbered points correspond to the numbered solutions in the above panel.
The accumulation-rate magnitude B equals unity for the correct accumulation rate.
Without additional rate information, the same internal layer can be generated with
an older age and a lower accumulation rate, or a younger age and higher
accumulation rate.
tion for the mass-balance pattern. The unknown parameter set
consists of the ice flux entering one end of the flowband Qin, the
spatial pattern of accumulation _bðxÞ, the age of the layer Age, and
the ice thickness at one location along the flowband H0. In the ab-
sence of rate-controlling information (e.g. layer age, ice velocity),
we have shown that we cannot determine the absolute rate, B, of
mass balance.

Using data from Taylor Mouth, Antarctica, we demonstrate our
ability to infer the ice-surface topography by performing two tests.
First, we infer ice-surface topography from the shape of an undated
internal layer, an estimate of elevation at one point on the ice sur-
face, and the known ice temperature (referred to as test 1). We
estimate the ice-surface elevation at the furthest upstream point
along the flowband and assume that we know this value within
5 m. In this problem, with no additional rate-controlling data, the
ice temperature determines the inferred mass-balance rate and
the length of the ice mass (the maximum thickness is specified).

In the second test (referred to as test 2) we infer ice-surface
topography from the shape of an undated internal layer and at
least two points on the ice surface. We assume that the ice temper-
ature is unknown, and the greater the horizontal distance between
the two known surface-elevation points, the better we can infer
the ice-surface profile. We show that we can infer a surface with
the correct shape, even if the inferred rates are incorrect. At the
first iteration of the forward algorithm we guess that the ice-sur-
face has a uniform elevation along the flowband. We guess that
the ice-softness parameter ~AðxÞ is five times greater than the origi-
nal value, so that the deformation rates are five times larger. The
inferred mass-balance pattern together with the inferred ice-sur-
face shape generate an internal layer that has the appropriate bal-
ance between smoothness and fit to the data, where the data are fit
with a root-mean-square mismatch consistent with data uncer-
tainties (see Appendix B).

Fig. 3a shows that the solution from the inverse problem is sim-
ilar to the actual ice surface at Taylor Mouth (dotted line). Fig. 3b
compares the mismatches of tests 1 and 2 against the actual ice
surface, normalized by a reasonable estimate of the measurement
uncertainty of 5 m. This test with Taylor Mouth data shows that
Fig. 3. (a) Comparison between the actual ice-surface topography at Taylor Mouth,
Antarctica (dotted line), the initial guess of ice-surface topography (dashed line),
and the best estimate of ice-surface topography found by solving the inverse
problem using an internal layer, the ice-surface elevation at one point, and a known
ice temperature (test 1; black-solid line), and using an internal layer and two points
on the ice surface (test 2; gray-solid line). (b) The actual ice surface is subtracted
from itself (dotted line), from the ice-surface topography estimated at the initial
iteration (dashed line), and from the ice surface found by solving the inverse
problem (black and gray-solid lines), all nondimensionalized by the uncertainty of
5 m in the measured surface elevation.
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the surfaces found by solving these inverse problems have the
same shape as the measured surface; this is a significant result.
The inferred values are within one standard deviation of the
point(s) on the surface that are known, and at most within two
standard deviations elsewhere along the profile. Knowledge of
the ice temperature, especially if there are spatial variations in
ice temperature, gives a slightly better solution. However, since
ice-temperature information is not currently available for Mars,
it is important that we can infer the shape of the surface topogra-
phy from an internal layer and two points on the ice surface; in
Section 3.4.5 we discuss a test to reconstruct paleo-surface topog-
raphy using synthetic data for Mars.

3.2. Synthetic data for Mars

To demonstrate the usefulness of our inverse approach, we
solved inverse problems with synthetic ‘‘data” that we generated
for Mars. Using our forward algorithm with prescribed maximum
ice thickness, ice-softness parameter, mass-balance pattern, layer
age, and input ice flux at the upstream end of the flowband, we cal-
culated the associated ice-surface profile and generated shapes of
synthetic internal layers. Then we used these synthetic data with
our inverse method to infer a model-parameter set that included
a characteristic ice thickness, the ice-softness parameter, the
mass-balance pattern, the layer age, and the input ice flux. In order
to see how well our inverse procedure worked, we compared the
inferred set of model parameters to the known values that we used
to generate the synthetic data.

The following assumptions were made in all our tests for the
PLD. The modeled PLD were assumed to be pure ice, which restricts
the value of the softness parameter A0 (in Eq. (A.5)). The exponent
in the constitutive relationship for ice flow, Eq. (A.4), had a value of
n = 3, as inferred by Winebrenner et al. (2008) for martian ice. An
exponent of n = 3 is typical for terrestrial ice sheets and applies
for deformation primarily by dislocation creep (e.g. Paterson,
1994, p. 85). The temperature at depth was approximated by a uni-
form gradient using a surface temperature of 170 K (e.g. Pathare
and Paige, 2005) and a basal heat flux of 0.025 W m�2 (e.g. Clifford,
1987; Grott et al., 2007). The maximum ice thickness and bed
topography used to generate synthetic data resemble conditions
on the present-day North PLD (e.g. Phillips et al., 2008), as does
our chosen mass-balance rate of �0.5 mm year�1 (e.g. Laskar
et al., 2002). Present-day ice temperatures (e.g. Pathare and Paige,
2005) make ice flow very slow, but any value of ice temperature
could have been used. The surface geometry for each mass-balance
pattern came from a steady-state surface calculation based on ice
dynamics using Eq. (A.7). The ice-divide thickness was chosen to
be 2 km. We assume a uniform flowband width, which is a simpli-
fication, and the flowband width could be estimated by tracking
the divergence of adjacent flow paths along the surface of the ac-
tual topography, as done by Winebrenner et al. (2008).

Using our estimate of surface temperature, heat flux, and mass-
balance rate, and because the steady-state model does not allow
for past ice-temperature transients, the resulting length of the
flowband is approximately 20 km, and we can solve the inverse
problems using only a limited portion of this full length. Compared
to modern flowband lengths of �100 km or more across the PLD,
these lengths are very short because near-basal ice at the pres-
ent-day temperature of �180 K (e.g. Pathare and Paige, 2005)
requires very steep slopes to achieve equilibrium with the
present-day mass balance of �0.5 mm year�1 (e.g. Laskar et al.,
2002). Present-day ice is so cold that ice-flow rates are insignifi-
cant with the existing low surface slopes (e.g. Hvidberg, 2003;
Greve et al., 2004; Greve and Mahajan, 2005), and conditions must
have been different in the past for ice flow to shape the observed
topography (Winebrenner et al., 2008; Koutnik et al., 2008). The
bed topography was chosen to be flat, but any topography can be
used in the model. We used an isothermal temperature distribu-
tion, and we assigned an age of 1 Myr to the synthetic data layer.
To make the inverse problem more realistic, we added red noise
to our synthetic layer and used the perturbed layer as the data.
We set the standard deviation, rðdÞi , on the layer data to be 3 m be-
cause we applied red noise with an amplitude of 3 m, and chose a
correlation length of 600 m. Our initial guess at the layer age was
several percent higher than the true age of the synthetic data;
any initial guess could be used. The initial guess of the accumula-
tion rate was the layer depth divided by our initial guess of the
layer age (SLA, see Section 1.1). We focused our study near the
ice divide, where no ice flux enters the domain (i.e. Qin = 0).

3.3. Internal-layer shapes

Internal-layer shapes can be generated for any mass-balance
pattern and flow regime. For example, Fisher (2000) generated
internal-layer shapes for the ‘‘accublation” model (Fisher, 1993,
2000). The accublation mass-balance pattern has alternating zones
of accumulation and ablation to account for the presence of
troughs on the North PLD landscape. In the accublation model,
the shapes of both the ice surface and the internal layers were sig-
nificantly affected by the mass-balance pattern. However, it is also
possible for different mass-balance patterns to result in similar
surface profiles, yet have very different internal-layer shapes (see
Fig. 5).

While the mass-balance pattern directly shapes the internal
layers, the surface shape is relatively insensitive to details of the
mass-balance pattern. The ice flux q(x), given by Eq. (A.2), is pro-
portional to the integral of the mass-balance pattern. The surface
slope, given by Eq. (A.7), is smooth because it depends on the
mass-balance pattern only through the nth-root of the ice flux,
q(x)1/n. The surface slope is integrated to get the ice-surface topog-
raphy, which further reduces the influence of mass-balance vari-
ability on the ice-surface topography.

3.3.1. Synthetic mass-balance patterns
We generate steady-state internal layers over a limited part of

the domain using several different mass-balance patterns to
emphasize the variation of internal-layer shapes. Fig. 4 shows lay-
ers generated with a synthetic mass-balance pattern with linearly
decreasing accumulation transitioning into linearly increasing
ablation as elevation decreases. The equilibrium line marks the
point of balance between net accumulation and net ablation. Lay-
ers near the ice divide in this accumulation zone can have simple,
nearly horizontal shapes. Since the transition from net accumula-
tion to net ablation is continuous, the internal layers trend gradu-
ally toward the surface, and can intersect the surface in the
ablation zone. In this example, layers also trend towards the sur-
face in the accumulation zone because the accumulation rate de-
creases with decreasing surface elevation. Even though the
magnitude of ablation is small, ablation has a significant impact
on the layer shape.

Fig. 5 shows layers generated with a more complicated
mass-balance pattern that fluctuates on smaller spatial scales.
The internal-layer shapes reflect these smaller-scale variations in
mass balance, but as expected, the ice surface is insensitive to
these details. The gray-dashed line in Fig. 5 shows the ice surface
generated with the mass-balance pattern from Fig. 4. While the
internal-layer shapes associated with the different mass-balance
patterns in Figs. 4 and 5 are very different, the ice-surface profiles
are nearly the same. We use the mass-balance pattern in Fig. 5 to
illustrate how complex layer structures, including unconformities,
can form in a steady state. In Section 3.4.3 we infer the mass-bal-
ance pattern using the internal layer shown in bold in Fig. 5. In



Fig. 4. Lower panel shows synthetic internal layers from the prescribed mass-
balance pattern shown in the top panel. The mass balance decreases linearly with
decreasing surface elevation, as net accumulation transitions into net ablation. The
layers intersect the surface in the ablation zone. The accumulation and ablation
zones are separated at the equilibrium line (EL). The bed is at zero meters, and
layers are shown at equal age intervals.

Fig. 5. Lower panel shows synthetic internal layers from the prescribed mass-
balance pattern shown in the top panel. The mass balance varies on short spatial
scales and the layers intersect the surface in the ablation zones. The bed is at zero
meters, and layers are shown at equal age intervals. The unconformity, highlighted
by the gray band, develops in steady state. The gray-dashed line is the ice-surface
topography from Fig. 4. The shapes of the internal layers depend strongly on the
mass-balance pattern, while the shape of the ice surface does not. The bold layer is
used in the inverse problem we solve in Section 3.4.4 and Fig. 9.

Fig. 6. Prediction of internal layers along a flowband on Gemina Lingula, North PLD,
based on the surface topography and the idealized mass-balance pattern inferred by
Winebrenner et al. (2008). The mass-balance pattern consists of a zone of uniform
accumulation and a zone of uniform ablation, separated by the equilibrium line
(EL).
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Section 4.2 we discuss this unconformity, highlighted with a gray
band in Fig. 5, which develops due to localized ablation followed
by renewed accumulation in the direction of flow.

In addition to the mass-balance patterns used in Figs. 4 and 5, in
Section 3.3.2 we also generated internal layers using the idealized
mass-balance pattern of a zone of uniform accumulation and a
zone of uniform ablation. Figs. 4–6 show that internal layers in a
flowing ice mass can also have very simple shapes; folded or
faulted layer shapes are not required. In terrestrial ice sheets,
folded layers can be found near the base of the ice, where bed
topography, shear stress, and subtle transients in the flow direction
can have a large influence on the layer shapes (e.g. Hooke, 2005, p.
361). Variations in ice rheology (e.g. Thorsteinsson et al., 2003),
movement of the ice divide (e.g. Waddington et al., 2001; Jacobson
and Waddington, 2005), and advance and retreat of the ice margin
(e.g. Hudleston, 1976) can also cause folded layers. Waddington
et al. (2001) noted that folds may be clearly identifiable only for
a very short time before they overturn, which is another reason
that it is rare to observe folds in terrestrial ice sheets. Layers that
exhibit faulting have experienced brittle-type deformation, which
is not indicative of the creep-type deformation that is associated
with ice flow. Cold temperatures promote brittle behavior, and it
is possible that faults are indicators of colder ice temperatures,
whereas unfaulted layers may be indicative of warmer ice temper-
atures. These general features of internal layers in a flowing ice
mass should be considered when interpreting internal structure
across the martian PLD.
3.3.2. Gemina Lingula, North PLD
Winebrenner et al. (2008) found that the inter-trough topogra-

phy of flowbands across Gemina Lingula, North PLD, closely resem-
bled ice-surface topography generated with a simple steady-state
ice-flow algorithm. They interpreted these inter-trough regions
to be areas where surface topography has survived from an earlier
era in which mass movement due to ice flow balanced mass ex-
change at the surface. Their algorithm assumed that the mass-bal-
ance pattern consisted of a zone of uniform accumulation and a
zone of uniform ablation (Paterson, 1972). As explained in Section
3.3, this is not a restrictive assumption, because surface shape is
relatively insensitive to details of the mass-balance distribution.
By seeking the model topography that best fits the actual inter-
trough topography, they could estimate the boundary between
accumulation and ablation zones (the equilibrium line) when the
ice was flowing.
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Fig. 6 shows the internal-layer shapes corresponding to this ide-
alized mass-balance pattern of a single zone of uniform accumula-
tion and a single zone of uniform ablation. We cannot put a scale
on this relative mass-balance pattern, because the dimensional
scaling factor B (see Section 3.1.1) depends on additional assump-
tions about the layer ages or the ice temperature. Fig. 6 demon-
strates that layers in a flowing ice mass can have simple, nearly
horizontal shapes that are continuous across a broad accumulation
region. In the ablation zone, layers intersect the surface. Due to the
discontinuity in mass balance, the layers have a discontinuous
slope at the equilibrium line, but the shape of the ice-sheet surface
is smooth.
Fig. 7. The spatial patterns of accumulation from four different inverse problems
are compared to each other, to the initial guess, and to the correct values (light-gray
curve). Using only undated internal-layer data (gray-dashed curve) we recover the
correct spatial pattern, but the wrong magnitude. Using only the surface-elevation
data (dark-gray curve) we recover an accumulation-rate profile with the correct
average value, but the wrong spatial pattern. Using internal-layer data and surface-
elevation data, in addition to either a known ice temperature (thin solid-black
curve) or known ice rheological parameters (black-dashed curve) we can recover
the actual spatial pattern and rate of accumulation.
3.4. Past surface mass balance and topography for Mars

We demonstrate how well we can infer the model parameters
by solving five different inverse problems using a uniform accumu-
lation pattern to generate synthetic internal-layer data. In these in-
verse problems, in addition to the relative spatial pattern, we can
infer the absolute rate of mass balance because the surface-eleva-
tion data, ice temperature, and rheological parameters may each
provide rate information. For most of the inverse problems that
we solve, we used a limited domain with a simple mass-balance
pattern of uniform accumulation so that the results from these dif-
ferent inverse problems could be easily compared. However, any
mass-balance pattern could be used. In Section 3.4.3, we show
the results of an additional test to infer information from an inter-
nal layer generated using a mass-balance pattern that included an
ablation zone; this test was done only for the case in which the
data comprise only surface topography and an undated internal
layer. The parameter values inferred in Sections 3.4.1–3.4.4 are
compared in Table 1. The inferred mass-balance patterns are com-
pared in Fig. 7.
3.4.1. Inferring mass balance from an undated internal layer
In our first inverse problem, we attempt to infer the relative

spatial pattern of mass balance ~_bðxÞ, as in Eq. (3), using a forward
algorithm that adopts the synthetic surface and calculates only
the internal-layer shape. This inverse problem could be solved with
martian internal layers tracked along putative flowlines. This test is
similar to the Antarctic example (Section 3.1.1), where the lack of
data containing rate information makes it difficult to constrain the
layer age; the initial guess at the layer age determines the rate of
accumulation B inferred. In this test, the initial guess at the accu-
mulation pattern differed from the known pattern, and the initial
guess at the layer age was several percent higher than the known
age (any age guess could be used). Even though we cannot find the
correct rate, as shown in Section 3.1.1, the pattern of accumulation
in the solution is a much better approximation of the true accumu-
lation-rate pattern than our initial guess was, as shown in Fig. 7.
Table 1
The layer age, non-dimensional accumulation-rate magnitude B (Section 3.1.1) divided by th
synthetic inverse problems are compared to the correct values of the model parameters.

Inverse problem All model
parameters

Correct values of the parameters –

Undated internal layers only Age, _bðxÞ, Qin

Ice surface and known ice temperature _bðxÞ, Qin, Sin, A(T)
Undated internal layers, ice surface, known ice

temperature
Age, _bðxÞ, Qin, Sin, A(T)

Undated internal layers, ice surface, known ice
rheology

Age, _bðxÞ, Qin, Sin, A(T), K
3.4.2. Inferring mass balance from surface topography
In our second inverse problem, we attempt to infer the relative

spatial pattern ~_bðxÞ and the absolute rate of mass balance B from
the ice-surface elevation S(x) alone. As discussed in Appendix A,
the surface calculation uses ice dynamics and contains rate infor-
mation through the temperature-dependent ice softness parame-
ter (Eq. (A.5)). Fig. 7 illustrates, as we anticipated, that details of
the inferred mass-balance pattern are unlike the actual pattern.
Using the surface data alone is not very informative about the spa-
tial pattern of mass balance, even when the mass-balance pattern
is very simple.

3.4.3. Inferring mass balance with a known ice temperature
In our third inverse problem, we attempt to infer both the rela-

tive spatial pattern ~_bðxÞ and the absolute rate of mass balance B
from the internal-layer shape and the ice-surface shape, assuming
that the ice temperature at the time of flow is known. The results
shown in Figs. 7 and 8 used the same ice temperature that was
used to create the synthetic data. Using the internal layer and
the ice-surface elevation as data, the inverse algorithm generates
a model-parameter set that is very similar to the actual parameter
values; the values are listed in Table 1. Fig. 8a shows the mass-bal-
ance solution compared to the known mass-balance pattern and an
initial estimate of the mass-balance pattern from the Shallow Layer
Approximation (SLA; Section 1.1) based on a poor estimate of the
e accumulation-rate magnitude for the correct solution Bref, and the input flux for four

Layer age,Age
(Myr)

Non-dimensional accumulation-rate
magnitude, B/Bref

Input flux, Qin

(m3/year per m
width)

1.0 1.0 0.3

1.13 0.88 0.261
– 1.02 0.28
1.0016 0.99 0.256

1.002 0.98 0.35



Fig. 9. Results for the inverse problem using an internal layer, the ice-surface shape,
and a known ice temperature. (a) The correct mass-balance pattern varied on short
spatial scales and included a zone of ablation. The initial guess was the depth of the
layer divided by the estimated layer age. (b) The synthetic data layer and prediction
by the forward algorithm using the model parameters were found by solving the
inverse problem. (c) Paths of particles whose end points create a modeled layer. (d)
The resolving function (bold line) shows the best ability of the solution to recover
the single-node perturbation (thin line).
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layer-age parameter. Fig. 8b shows the internal-layer solution
compared to the synthetic layer data, and to the initial guess of
the layer calculated using an initial guess of the accumulation rate
estimated from the SLA. Fig. 8c shows the paths of particles moving
through the ice to form the internal layer, and Fig. 8d shows the
resolving functions for this inverse problem.

Resolving functions, which indicate the ability of an inverse
algorithm to resolve structure in the model parameters (see
Appendix B), show that structure in the spatial variability of accu-
mulation can be better resolved closer to the divide. The spread of
the resolving functions increases due to the increasing length of
particle paths further from the divide. Fig. 8c (and Fig. 9c) shows
the paths of particles starting on the surface as they move through
the steady-state velocity field and map out an internal layer of a
particular age. Particle paths near the downstream end of the do-
main extend farther, and the particles can move through larger
changes in accumulation and strain rate, effectively integrating
information about the mass-balance pattern as they move. In addi-
tion, we desire a spatially smooth accumulation-rate solution, and
we enforce this smoothness criterion in the inverse algorithm (Eq.
(B.1)). Therefore, only weighted averages of accumulation rate over
the width of the resolving function can be inferred.

We also generated synthetic internal-layer data with a mass-
balance pattern, shown in Fig. 5, that varied on shorter spatial
scales, and included an ablation zone. If an internal layer intersects
the surface in the ablation zone, information about this mass-bal-
ance pattern can be inferred from that layer only over the up-
stream area where the internal layer exists. Fig. 9a shows the
mass-balance solution compared to the known mass-balance pat-
tern, and to the initial guess from the Shallow Layer Approximation
(SLA). Fig. 9b shows the internal-layer solution compared to the
synthetic layer data and the initial guess at the layer using an accu-
mulation rate estimated from the SLA. Fig. 9c shows the paths of
particles moving through the ice to form the internal layer, and
Fig. 9d shows the resolving functions. Fig. 9 demonstrates that
we can infer a mass-balance pattern that varied on short spatial
scales; we can also recover information about the pattern of abla-
Fig. 8. Results for the inverse problem using an internal layer, the ice-surface shape,
and a known ice temperature; a portion of this solution is also shown in Fig. 7. (a)
The correct mass-balance pattern was a uniform accumulation rate of
0.3 mm year�1. (b) The synthetic data layer and the layer predicted by the forward
algorithm using the model parameters were found by solving the inverse problem.
(c) Paths of particles whose end points create a modeled layer. (d) The resolving
function (bold line) shows the best ability of the solution to recover the single-node
perturbation (thin line).
tion from the shape of an internal layer as it trends towards the
surface. The individual influences of ice temperature and mass-
balance rate are uncoupled by assuming that the ice temperature
is known. For any estimate of ice temperature on Mars, the
ice-surface topography and the internal-layer shape can be used
to recover the corresponding absolute rate of mass balance.

3.4.4. Inferring mass balance with known ice rheology
In our fourth inverse problem, we attempt to infer the relative

spatial pattern ~_bðxÞ and the absolute rate of mass balance B from
the internal-layer shape and the ice-surface shape, assuming that
the ice temperature is unknown. If both the layer age and the ice
temperature are unknown, additional information must be used
to uniquely determine the accumulation-rate magnitude and
deformation rate, in order to infer the correct values of accumula-
tion and ice temperature (see Eq. (1)). We demonstrate that includ-
ing a third rate factor through a more general constitutive relation
for strain rate may allow us to resolve both mass-balance rate and
ice temperature in some circumstances.

Glen’s flow law (Glen, 1955; Eq. (A.4)) describes ice flow by a
non-linear constitutive relationship between strain rate and devia-
toric stress, where deformation occurs primarily by dislocation
creep. The flow-law exponent, n, is typically assumed to have a
value of 3. However, under different temperature and stress
conditions, and for different ice-grain sizes, deformation of ice
may be influenced by, or even controlled by, processes other than
dislocation creep. The mechanisms of dislocation creep, grain-
boundary-sliding-limited creep, and basal-slip-limited creep, can
have unique flow-law exponents n, ice-grain-size exponents p,
and activation energies for creep Q (Goldsby and Kohlstedt, 1997,
2001; Durham et al., 2001). In addition, the shape of an ice sheet
differs when different mechanisms are dominant (e.g. Pettit and
Waddington, 2003).

The stress and grain-size conditions for the different regimes in
which each mechanism is dominant can be illustrated with a
‘‘deformation map” (e.g. Goldsby, 2006). Goldsby and Kohlstedt
(2001) proposed a generalized flow law that explicitly accounted
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for several of these deformation processes. Pettit and Waddington
(2003) proposed a simpler modified flow law (discussed in Appen-
dix C) which we use here to illustrate how the existence of multi-
ple deformation regimes can be exploited to extract rate
information. The constitutive relation in Eq. (C.1), which is a gener-
alized version of Eq. (A.4), can account for a range of dominant
deformation processes in terrestrial ice sheets, by blending n = 3
processes with n = 1 processes, and it can be incorporated easily
into an ice-flow model. This modified flow law (Pettit and Wadd-
ington, 2003) has a second rate factor because there can be differ-
ent activation energies for creep when n = 1 or when n = 3,
producing different temperature dependencies for n = 1 and n = 3
processes. When the temperature, stress, and grain size fall in a re-
gime where both terms in the Pettit and Waddington (2003) flow
law have similar magnitudes, i.e. near a boundary in a deformation
map, we show that the additional rate factor can allow us to
separate the individual influences of accumulation rate and ice
temperature in the inverse problem, and therefore to infer both
accumulation rate and ice temperature uniquely.

Using the flow law in Eq. (C.1), expressed in the form of
Eq. (C.2), we solve an inverse problem with both C (defined
by Eq. (C.3)) and k (defined by Eq. (C.4)) as model parameters.
The parameter C, which corresponds to A(T), given by Eq.
(A.5), contains one rate factor in A01 exp(�Q1/RT), and k incorpo-
rates another rate factor through A02 exp(�Q2/RT), where Q is the
activation energy for creep and R is the gas constant. Incorporat-
ing only one additional model parameter, the crossover stress k,
instead of solving for all the rheological parameters and coeffi-
cients directly, is the simplest way to demonstrate the influence
of an additional rate factor. We generated an internal layer and
ice surface with k equal to 3 � 105 Pa, using the same accumula-
tion rate, ice thickness, and temperature from the previous syn-
thetic tests (Section 3.3). In the inverse problem with only two
rate factors (in the temperature-dependent softness parameter
A(T) from Eq. (A.5), and the accumulation rate) we could not in-
fer the correct value of the layer age and the ice temperature
when both values were unknown. Many different pairs of these
values could also fit the data, and the pair selected by our in-
verse procedure depended on our initial guesses. However, in
the inverse problem with three rate factors, we can better infer
the correct values of the layer age and the ice temperature in
some cases when both terms in Eq. (C.2) make comparable con-
tributions to the strain rate _eij. Table 1 and Fig. 7 show the re-
sults. The spatial pattern best matches the correct value
because the crossover stress used to make the synthetic data
leaves a distinct imprint on the ice-surface shape. In this case,
the inferred ice-softness parameter C differs by �1% from the
correct value and the crossover stress k differs by less than 3%
from the correct value, compared to initial guesses that differed
by 10%.

To use this additional rate factor as a constraint when solving
inverse problems with martian radar data, it would be most
accurate to use a generalized flow law such as that of Goldsby
and Kohlstedt (2001). This requires that we know the ice-grain size
(e.g. Barr and Milkovich, 2008) in the target area at the era of flow
of the PLD, and the activation energies, grain-size exponents, and
ice-softness parameters associated with this fully mechanism-
based constitutive relationship. Not all of this information is cur-
rently available, but our synthetic tests provide another reason
why they would be valuable to obtain. This is a challenge for future
laboratory experiments and missions. Our synthetic test indicates
that including an additional rate factor can help to constrain the
timing in some cases, if the ice-rheological parameters are known,
and if the ice mass is in a regime where at least two of the most
important terms in the flow law (e.g. Eq. (C.2)) have a similar
magnitude.
3.4.5. Inferring paleo-surface topography
In our fifth inverse problem, we attempt to infer the surface

topography during an era of ice flow. We have shown in Section
3.1.2 that we can successfully solve this inverse problem using data
from Antarctica. The surface topography across most of the PLD has
been significantly altered by trough formation, and there might not
be many locations where inter-trough surface topography from a
past era of ice flow is still intact (Winebrenner et al., 2008). We
show how internal layers can be used to reconstruct ice-surface
topography across the PLD if we can assume that there was an
era of ice flow.

As in Section 3.1.2, we perform two tests of this inverse prob-
lem. First we assume that we know the elevation of one point on
the ice surface and we know the ice temperature. Second, we as-
sume that we know the elevation at two or more points on the
ice surface and we do not know the ice temperature. In the first
test, the surface generated with this inferred mass-balance pattern
closely matched the original surface used to generate the synthetic
internal-layer data. In the second test, we assume that the ice
temperature is unknown, but at least two points on the ice surface
are available. We find that this information about the thickness at
different elevations along the flowband length allow us to recon-
struct surface topography when the ice temperature is unknown.
However, inferring the correct mass-balance rate B still requires
correct ice–temperature information, or other rate-controlling
information.

This inverse problem to infer surface topography using just two
elevation-data points on the ice surface could be solved using
martian internal layers tracked along putative flowlines across
the PLD. Even if rate-controlling information were unavailable for
the PLD, the shape of the past topography could be inferred from
internal layers.
4. Discussion

4.1. Implications of ice flow

Based on our understanding of terrestrial ice masses, we expect
that martian ice experiences flow at some rate. The real question is
how significant this flow might be in relation to other processes. If
ice flow has a minor influence on PLD structure, then both the
internal-layer shape and surface shape are determined by the
mass-balance pattern. This is similar to the situation in the upper
tens of meters in terrestrial ice sheets, and to terrestrial ice caps
that have stagnated (e.g. Meighen Ice Cap; Paterson, 1969) or have
recently built up (e.g. Hans Tausen Ice Cap; Hvidberg, 2001). A ter-
restrial ice mass whose slope is determined by the mass-balance
pattern alone can take on a much broader range of surface shapes
than an ice mass whose slope is determined by a balance between
surface mass exchange and ice flow. The two different mass-bal-
ance patterns shown in Fig. 4 and in Fig. 5 generate very differ-
ently-shaped internal layers, but, as shown in Fig. 5, they
produce nearly-identical surfaces.

The inverse method that we used in this paper assumes steady
state, so that ice flow, at some rate, has an influence on the topog-
raphy and on the shapes of internal layers. If an episode of ice flow
shaped the North PLD, as proposed by Winebrenner et al. (2008),
then our steady-state method is appropriate to infer information
about the most recent episode of ice flow. Even in the case of tran-
sient flow, transient ice-surface topography resembles steady-state
ice-surface topography, but the internal-layer shapes will be
different. In the future, we could extend this method using a
time-dependent forward algorithm and multiple internal layers,
to infer spatial and temporal patterns of accumulation while
allowing for transient ice-surface topography. However, as we
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have demonstrated here, some fundamental unknowns about the
martian PLD can be determined with this simple, steady-state
approach.
4.2. Unconformities

Unconformities on various scales have been identified visually
in troughs and scarps across the North and South PLD with imagery
(e.g. Murray et al., 2002; Tanaka, 2005; Fortezzo and Tanaka, 2006;
Kolb and Tanaka, 2006; Tanaka et al., 2008). Subsurface unconfo-
rmities have also been detected with radar observations (e.g. Seu
et al., 2007; Milkovich and Plaut, 2008; Putzig et al., 2009). While
unconformities limit the amount of information that we can infer
directly from the shape of a deeper internal layer, understanding
the cause and timing of these breaks in the stratigraphic record
is necessary in order to accurately decipher the history of the
PLD and the climate record archived within these deposits.

Fig. 5a shows that an unconformity can develop in steady-state
flow when ice moves through multiple zones of accumulation and
ablation. Ice is removed in the ablation zone, but ice is deposited
on the erosional surface when it moves into the adjacent down-
stream accumulation zone. This causes spatial gaps in layers of
the same age, and causes younger ice to be deposited directly onto
much older ice.
5. Conclusions

We can successfully solve the inverse problem to infer the spa-
tial variability in mass balance using the shapes of internal layers.
Waddington et al. (2007) applied this method to Antarctica, and
here we have shown that it is possible to infer spatial patterns of
accumulation and ablation, and possibly also the rates of accumu-
lation and ablation, for Mars. While the mass-balance pattern can
be inferred, the layer age, the ice velocity, the ice temperature, or
the grain size and the crystal fabric must be known before the cor-
rect magnitude of the mass-balance rate can be inferred, because
steady-state ice-surface topography and layer shapes are, in gen-
eral, consistent with a wide range of pairs of ice temperature and
mass-balance rate magnitude. The ice velocity or ice temperatures
necessary in this inverse problem are the values during an era
when ice flow closely equilibrated with surface mass balance to
produce the surface topography and internal-layer architecture;
because the North PLD is probably stagnant today, present-day
ice temperatures and accumulation rates are probably not relevant.
Therefore, estimating the age of the layer when flow stopped, or
determining the ice-grain sizes and conducting laboratory experi-
ments to find the activation energies, ice-softness parameters,
and exponents for the ice-flow law on Mars could lead to more
appropriate constraints on the mass-balance rate.

Internal layers are necessary to resolve spatial variations in
mass balance because surface topography alone retains little of this
information. The ice-surface topography can also be inferred from
the shape of an internal layer, because there is an ice-surface shape
that is consistent with a given mass-balance pattern that together
will generate a given internal layer. If the ice temperature at the
time of flow is known, then the internal-layer shape and one point
on the ice surface can be used to reconstruct the topography. If the
ice temperature is unknown, but the internal-layer shape and at
least two points widely separated on the ice surface are known,
we can also reconstruct the correct topography; this is a problem
we can solve with data currently available for Mars. To solve this
problem we require internal layers from radar observations that
follow putative flowlines. Reconstructed topography across the
PLD could be compared to the shape of the present-day ice surface
in areas of the PLD that have been significantly altered by trough
formation and other sublimation or deposition processes. Inferring
surface topography, mass-balance patterns, and possibly rates and
ice temperatures associated with an era of significant ice flow,
would be a valuable step towards deciphering the climate history
recorded in the PLD.
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Appendix A. Forward algorithm

The basis of this algorithm is steady-state continuity (e.g. Pater-
son, 1994, p. 256),

1
WðxÞ

@qðxÞ
@x

� �
¼ _bðxÞ � _mðxÞ: ðA:1Þ

Along-flow gradients in the volumetric flux of ice q(x), in a flow-
band with surface profile, S(x), bedrock profile, B(x), and width,
W(x), must balance the rate of surface accumulation or ablation,
_bðxÞ, and any basal melting, _mðxÞ. A time-dependent problem
would allow the surface elevation to change over time to accom-
modate an imbalance in this equality. By integrating Eq. (A.1) from
the boundary where ice flux is specified, the ice flux can be repre-
sented kinematically by

qðxÞ ¼ qin þ
Z x

xin

ð _bðfÞ � _mðfÞÞWðfÞdf; ðA:2Þ

where qin (in m3 year�1; we use Earth years) is the ice flux entering
at one end of the flowband domain (x = xin). An equivalent ice flux
can also be represented dynamically, where the flux of ice passing
through a cross-sectional area WðxÞ � HðxÞ, is related to the
depth-averaged horizontal velocity �uðxÞ in that cross-section by

qðxÞ ¼WðxÞHðxÞ�uðxÞ; ðA:3Þ

and �uðxÞ is calculated from the applied gravitational stress together
with the constitutive relation for ice. The ice thickness
H(x) = S(x) � B(x).

The forward algorithm has two components. The first compo-
nent generates a steady-state ice surface, calculated by equating
the ice fluxes, q(x), in Eq. (A.2) (kinematic flux) and Eq. (A.3)
(dynamic flux). The surface calculation is a dynamic calculation
because it incorporates the constitutive relation for strain rate.
The second component of the forward algorithm generates internal
layers using a kinematic particle-tracking calculation.

In the dynamic calculation, the depth-averaged horizontal
velocity comes from the Shallow Ice Approximation (SIA, e.g. Hut-
ter, 1983, p. 256; Paterson, 1994, p. 262). The SIA is a simplifying
assumption that applies in cases where the ice thickness is much
smaller than the characteristic horizontal length scales over which
thickness or stress change significantly. If the characteristic hori-
zontal length scale is the lateral extent of the ice cap, then deriva-
tives of velocities and stresses with respect to x (horizontal axis)
are generally much smaller than derivatives with respect to z (ver-
tical axis). An extended constitutive relationship for ice flow is gi-
ven by Eq. (C.1). Here we use the SIA, where sxz is the only
important component of stress, and we assume that the linear
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term in Eq. (C.1) is negligible. Then, the ice-flow law (Glen, 1955)
reduces to

_exz ¼ AðTðx; zÞÞsn
xz; ðA:4Þ

where _exz ¼ ð1=2Þ@u=@z is the simple-shear strain rate along a hor-
izontal plane, T(x, z) is the ice temperature, sxz is the shear stress
along a horizontal plane, and based on laboratory experiments n
typically has a value of three for dislocation creep (e.g. Paterson,
1994, p. 85), and A(T(x, z)) is the temperature-dependent softness
parameter (in Pa�n year�1; e.g. Paterson, 1994, p. 86)

AðTÞ ¼ A0 expð�Q=RTÞ; ðA:5Þ

where A0 is the temperature-independent ice-softness parameter, Q
is the activation energy for creep, and R is the universal gas con-
stant. Using the flow law in Eq. (A.4) and writing shear stress as
sxz ¼ �qgðS� zÞdS=dx using the SIA, and integrating strain rate over
depth to get velocity, and integrating again to get the depth-aver-
aged horizontal velocity,

uðxÞ ¼ 2~AðxÞ
nþ 2

ðqgÞn dS
dx

����
����
n�1

� dS
dx

� �
Hnþ1ðxÞ; ðA:6Þ

where q is density, g is gravitational acceleration, S(x) is ice-surface
elevation, H(x) is ice thickness, and ~AðxÞ is an effective isothermal
softness parameter. The effective isothermal softness parameter is
found by equating a depth-averaged ice velocity using a tempera-
ture-dependent softness parameter A(T(x, z)), with depth-varying
temperature T(x, z), with the depth-averaged ice velocity for an iso-
thermal column at temperature T(x), as in Eq. (A.6), and solving for
the effective isothermal temperature T(x), and corresponding soft-
ness parameter ~AðxÞ required to give the same depth-averaged
velocity and ice flux.

By representing depth-averaged velocity �uðxÞ in terms of ice
flux and ice thickness using Eq. (A.3), and representing ice thick-
ness as the difference between the surface and the known bed ele-
vations, H(x) = S(x) � B(x), Eq. (A.6) can be rearranged to produce a
non-linear ordinary differential equation for the steady-state ice
surface S(x),

dSðxÞ
dx
¼ � ðnþ 2ÞqðxÞ

2~AðxÞðqgÞnWðxÞðSnþ2ðxÞ � Bnþ2ðxÞÞ

 !1=n

: ðA:7Þ

The ice flux, q(x), is found kinematically using Eq. (A.2). The ice-
surface elevation at one point along the flowband is required as an
initial condition to solve Eq. (A.7).

In the calculation used here, the paths of particles starting on
the surface are tracked through space and time by integrating
the velocity field, given below. We represent the horizontal veloc-
ity, u(x, z), in terms of its depth-averaged value, �uðxÞ, and a non-
dimensional shape function, /ðx; ẑÞ, which captures variations with
depth (Reeh, 1988),

uðx; zÞ ¼ �uðxÞ/ðx; ẑÞ; ðA:8Þ

where ẑ is the normalized non-dimensional height above the
bed,

ẑ ¼ z� BðxÞ
SðxÞ � BðxÞ : ðA:9Þ

The choice of the appropriate shape functions /ðx; ẑÞ from a
thermomechanical calculation can depend on the particular in-
verse problem being solved. Here we chose to use shape functions
for an isothermal, parallel-sided slab (e.g. Paterson, 1994, p. 251).

We invoke mass conservation to find the vertical velocity. Since
ice is incompressible,
@w
@z
¼ � @u

@x
þ @v
@y

� �
; ðA:10Þ

where u is the horizontal velocity along the flowband, v is the veloc-
ity transverse to the central flow line in the flowband as required to
make flow tangential to the flowband width, and w is the vertical
velocity. In a flowband, the transverse strain rate (e.g. Paterson,
1994, p. 257) is

@vðx; zÞ
@y

¼ 1
WðxÞ

dW
dx

uðx; zÞ: ðA:11Þ

The vertical velocity is,

wðx; zÞ ¼ � ½ _bðxÞwðx; ẑÞ � _mðxÞð1� wðx; ẑÞÞ�

þ uðx; zÞ ð1� ẑÞ dB
dX
þ ẑ

dS
dx

� �
� �uðxÞHðxÞ

Z ẑ

0

@/ðx; f̂Þ
@x

df̂;

ðA:12Þ

where

wðx; ẑÞ ¼
Z ẑ

0
/ðx; f̂Þdf̂ ðA:13Þ

is called the vertical-velocity shape function, and /ðx; ẑÞ is called the
horizontal-velocity shape function in Eq. (A.8).

The calculated horizontal and vertical velocity fields are then
integrated over time to obtain the paths of particles that started
on the ice surface. A layer of a particular age is found by connecting
the end points of particle paths calculated over a time span equal
to the age of the layer. A sequence of steady-state layers subject
to the same mass-balance pattern can be generated using a se-
quence of layer ages.

Appendix B. Inverse algorithm

For a particular inverse problem with an associated forward
algorithm, different inversion procedures should yield similar solu-
tions. Different procedures may have different advantages and dis-
advantages affecting the accuracy, uniqueness, stability, and
computation time. We chose an inverse procedure that is compu-
tationally fast and converges on a single solution that satisfies
our criterion for an appropriate match to our data.

In an inverse problem, the observable quantities (e.g. internal
layers) may not contain enough information to discriminate
against solutions (e.g. mass-balance patterns) that are physically
unreasonable on other grounds. Because observations contain er-
rors, we do not want to fit these data exactly; a solution found
by minimizing only the mismatch between the data and the for-
ward-algorithm prediction could overfit the data. To find a physi-
cally reasonable solution, we stabilize, or regularize, the inverse
algorithm. As part of this regularization, we require that the
mass-balance pattern vary smoothly along the flowband, because
variability on small spatial scales is unexpected. Because rough-
ness is penalized, any variability in the solution is clearly required
by the data. We also require a solution that fits the data with a
root-mean-square mismatch consistent with data uncertainties.
The solution to this problem is a ‘‘model”, i.e. a vector of the model
parameters (e.g. mass-balance rate at discrete points) that we seek.
Obtaining a smooth model that fits the data at an expected toler-
ance can be achieved by minimizing a performance index Ip given
by

Ip ¼ kmk2 þ mðkdk2 � T2Þ: ðB:1Þ

In this application, the squared model norm, kmk2, contains the
square of the curvature of the accumulation-rate profile integrated
along the flowband. For model parameters that do not fall in this
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spatial sequence, the model norm incorporates deviations of the
inferred values of these parameters from expected values, in which
we have a known confidence. Penalizing large values of kmk2 pre-
vents the solution from exhibiting roughness in the accumulation-
rate profile or deviating too far from expected values of the other
parameters. The squared data norm, ||d||2, is the sum of squared
mismatches between the Nd observations, oðdÞi , and the forward-
algorithm predictions of the same observable quantities, oðmÞi , nor-
malized by the standard deviations rðdÞi of the data:

kdk2 ¼
XNd

i¼1

ðoðmÞi � oðdÞi Þ
rðdÞi

" #2

ðB:2Þ

The factor m is a trade-off parameter, which is adjusted until the
solution produces a data norm that equals a defined tolerance,
T �

ffiffiffiffi
N
p

, which is based on the statistical uncertainties N of the
data (Parker, 1994, p. 124). The data-mismatch criterion,

kdk2 � T2 ¼ 0; ðB:3Þ

is then satisfied. This value of m sets the most appropriate trade-off
between smoothness and fit. A smaller value of m puts more empha-
sis on a smooth model, whereas a larger value of m puts more
emphasis on closely fit data (Parker, 1994).

Our inverse method performs a local search for the most-likely
solution by finding the minimum of Ip in the model space that is
most accessible from the initial guess of the parameter set. This
steepest-descent approach locates only one solution, and that solu-
tion may be only a local minimum. To address this issue, we can
start from multiple initial guesses of the parameter set. In addition,
most inverse problems are non-linear, making them more difficult
to solve. Our problem is non-linear because predictions of the data
by the forward algorithm are non-linear functions of the model
parameters. We address this complication by linearizing our prob-
lem. This means that instead of solving for the solution directly, we
iteratively solve for corrections to trial values of the unknown
parameters. The parameter values are guessed at the first iteration,
and are then adjusted in subsequent iterations as the inverse algo-
rithm minimizes the performance index (Eq. (B.1)). The forward
algorithm makes predictions of the data using estimates of the
model parameters from the previous iteration. For any given value
of the trade-off parameter m, a solution is found when adjustments
to the model parameters become small. We then adjust the value
of m and repeat the solution procedure until the solution also satis-
fies the data-mismatch criterion (Eq. (B.3)).

Formal inverse theory allows us to investigate our ability to in-
fer unknown parameters; this ability is known as the resolving
power. The preferred solution from our regularized algorithm min-
imizes the performance index IP (Eq. (B.1)), and fits the data at an
expected tolerance, satisfying Eq. (B.3). However, we still do not
know whether we have found the best values and spatial variabil-
ity of the parameters. It is important to assess the ability to resolve
those parameters before making physical inferences from the pre-
ferred solution. Parker (1994; pp. 200–213) showed that, when
using a regularized algorithm, the inferred structure is a version
of the true structure that has been smoothed by a set of narrowly
peaked model-resolving functions. The half-width of the resolving
function at each spatial position gives the physical scale over
which meaningful structure can be resolved. Features with shorter
spatial extent than this cannot be resolved with confidence from
these data and this algorithm.

Appendix C. Modified ice-flow law

The modified ice-flow law from Pettit and Waddington (2003),
in tensor notation, is
_eij ¼
E1A01

dP1
eð�Q1=RTÞ þ E2A02

dP2
eð�Q2=RTÞðs2

eff Þ
� �

sij; ðC:1Þ

where _eij is the strain-rate tensor, E1 and E2 are the two enhance-
ment factors, A01 and A02 are the two temperature-independent
softness parameters, d is the average grain diameter, exponents P1

and P2 express grain-size dependencies, Q1 and Q2 are the activation
energies for creep, R is the gas constant, sij is the deviatoric-stress
tensor, and seff is the effective deviatoric stress (s2

eff is the second
tensor invariant of sij). The first term in Eq. (C.1) is linear in the
deviatoric stress sij, while the second term is a non-linear (Glen)
term with n = 3. When the coefficient of s2

eff in the second term is
extracted as a common factor on the left-hand side of Eq. (C.1),
the strain rate _eij can be expressed as

eij ¼ C½k2 þ s2
eff �sij; ðC:2Þ

where k is called the crossover stress because it is the deviatoric
stress at which the linear and non-linear terms contribute equally
to the strain rate; C is given by

C ¼ E2A02

dP2 eð�Q2=RTÞ; ðC:3Þ

and k is given by

k ¼ E1A01

E2A02

dP2

dP1 e�
Q1�Q2

RT

" #1=2

: ðC:4Þ

Pettit and Waddington (2003) showed that a linear constitutive
relationship produces an ice divide with a more-rounded (less-
peaked) shape. In order to successfully resolve an unknown
mass-balance rate and an unknown ice temperature using the
additional rate factor in Eq. (C.1), the ice sheet must have been in
a regime where the linear and the non-linear terms in Eq. (C.1)
have similar magnitudes.
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